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Abstract 
    The Adomian decomposition method is proposed to solve fractional Bratu-type equations. The iteration 

procedure is based on a fractional Taylor series. Three examples are illustrated to show the presented 

method’s efficiency and convenience. 
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1. Introduction 

Fractional differential equations are studied in various fields of physics and engineering, namely in signal 

processing, control engineering [1, 2], electromagnetism [3], biosciences [4], fluid mechanics [5], 

electrochemistry [6], diffusion processes [7], dynamic of viscoelastic material [8], continuum and 

statistical mechanics [9] and propagation of spherical flames [10]. 

   In general, most of the fractional differential equations do not have exact solutions. Particularly, there is 

no known method for solving fractional boundary value problems exactly. Therefore several methods for 

the approximate solutions to classical differential equations [11] are extended to solve differential 

equations of fractional order numerically. These methods include, Adomian decomposition method [12], 

homotopy perturbation method [13-16], homotopy analysis method [17], variational iteration method 

[18], generalized differential transform method [19], finite difference method [20] and etc [21, 22]. 

   In this paper, Adomian decomposition method [23, 24] is extended for solving fractional Bratu’s initial 

value problem as follows: 

                                                    𝐷𝑥
2𝛼𝑢 𝑥 + 𝜆𝑒𝑢(𝑥) = 0,   0 < 𝛼 ≤ 1,   0 < 𝑥 < 1,                              (1.1) 

𝑢 0 = 𝑢(𝛼) 0 = 0,   𝜆  is a constant, 

where α is an order of Jumarie’s fractional derivative and 𝐷2𝛼  =  𝐷𝛼  𝐷𝛼  and 𝐷𝑥
𝛼𝑢 =  𝑑𝛼𝑢(𝑥)/𝑑𝑥𝛼 . 
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   The rest of the paper is organized as follows. In section 2 we list some basic definitions and properties 

of the fractional calculus theory. Adomian decomposition method is given in section 3. The numerical 

experiments are provided in section 4 and conclusion is in section 5. 

 

2. Fractional derivative 

We give some basic definitions and properties of the fractional calculus theory which are used further in 

this paper. 

Definition 2.1[25] Assume 𝑓: ℝ → ℝ, 𝑥 → 𝑓(𝑥), denote a continuous (but not necessarily differentiable) 

function, and let the partition h > 0 in the interval [0, 1]. Through the fractional Riemann Liouville 

integral 

                                                  𝐼𝑥
𝛼𝑓(𝑥) =

1

Γ α 
  x − ξ α−1x

0
𝑓 𝜉 𝑑𝜉,      𝛼 > 0,                                   (2.1) 

the modified Riemann-Liouville derivative is defined as 

                                            𝐷𝑥
𝛼𝑓(𝑥) =

1

Γ n−α 

dn

dx n   x − ξ n−αx

0
(𝑓 𝜉 − 𝑓 0 )𝑑𝜉,                              (2.2) 

where 𝑥 ∈  0,1 , 𝑛 − 1 ≤ 𝛼 < 𝑛 and 𝑛 ≥ 1. 

G. Jumarie’s derivative is defined through the fractional difference [20] 

                                     ∆𝛼𝑓 𝑥 =  𝐹𝑊 − 1 𝛼𝑓 𝑥 =  (−1)𝑘 𝛼
𝑘
 ∞

𝑘=0 𝑓[𝑥 +  𝛼 − 𝑘 ℎ],                      (2.3) 

where 𝐹𝑊𝑓 𝑥 = 𝑓(𝑥 + ℎ). Then the fractional derivative is defined as the following limit, 

                                                                  𝑓𝛼 𝑥 = limℎ→0
∆𝛼𝑓(𝑥)

ℎ𝛼
.                                                         (2.4) 

The proposed modified Riemann-Liouville derivative as shown in Eq.(2.2) is strictly equivalent to 

Eq.(2.4). Meanwhile, we would introduce some properties of the fractional modified Riemann-Liouville 

derivative in Eqs.(2.5) and (2.6). 

(a) Fractional Leibniz product law 

                                                                 𝐷𝑥
𝛼 𝑢𝑣 = 𝑢(𝛼)𝑣 + 𝑢𝑣(𝛼).                                                   (2.5) 

(b) Fractional Leibniz formulation 

                                                      𝐼𝑥
𝛼𝐷𝑥

𝛼𝑓 𝑥 = 𝑓 𝑥 − 𝑓 0 ,      0 < 𝛼 ≤ 1.                                   (2.6) 

   Therefore, the integration by part can be used during the fractional calculus 

                                                     𝐼𝑏
𝛼 𝑢(𝛼)𝑣 =  𝑢𝑣 |𝑎

𝑏 − 𝐼𝑏
𝛼 𝑢𝑣(𝛼) .                                                   (2.7) 

(c) Integration with respect to (𝑑𝑥)𝛼 . 

   Assume 𝑓(𝑥) denote a continuous ℝ → ℝ function. We use the following equality for the integral w.r.t. 

(𝑑𝑥)𝛼  

𝐼𝑥
𝛼𝑓 𝑥 =

1

Γ α 
  x − ξ α−1

x

0

𝑓 𝜉 𝑑𝜉 

                                                                     =
1

𝛤(1+𝛼)
 𝑓 𝜉 (𝑑𝜉)𝛼 ,   0 < 𝛼 ≤ 1
𝑥

0
.                                 (2.8) 

(d) 

𝐷𝛼𝑥𝛾 = 𝛤 𝛾 + 1 𝛤−1 𝛾 + 1 + 𝛼 𝑥𝛾−𝛼 ,   𝛾 > 0, 

 𝑓 𝑢 𝑥   
 𝛼 

= 𝑓𝑢
′ 𝑢 𝑢 𝛼  𝑥  

                          = 𝑓𝑢
 𝛼  𝑢 (𝑢𝑥

′ )𝛼 . 

 

3. Adomian decomposition method 

In this section, Adomian decomposition method is extended to fractional case in sense of modified 

Riemann-Liouville derivative. 

Consider a fractional nonlinear differential equation in the form 

𝐿𝛼 𝑦 − 𝑁 𝑦 = 𝑓,     𝑦 = 𝑦 𝑥 , 

                                                             𝑦 𝑘𝛼   0 = 𝑐𝑘 , 𝑘 = 0, 1, … , 𝑛 − 1,                                              (3.1) 
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where 𝐿𝛼 =
𝑑𝑛𝛼

𝑑𝑥 𝑛𝛼
= 𝐷𝛼𝐷𝛼 …𝐷𝛼       

𝑛

  is the fractional derivative of 𝑛𝛼-order, then the corresponding 𝐿−𝛼  

operator can be written in the form 

                                      𝐿−𝛼 ∙ =
1

𝛤𝑛 (1+𝛼)
   …  ∙  𝑑𝑡1 

𝛼 …(𝑑𝑡𝑛−1)𝛼(𝑑𝑡𝑛)𝛼
𝑡2

0

𝑡𝑛−1

0

𝑡𝑛
0

𝑥

0
.                   (3.2) 

1

𝛤(1+𝛼)
   ∙  

𝑥

0
(𝑑𝑡𝑛)𝛼 is the Riemann-Liouville integration. 

The nonlinear term, 𝑁(𝑦), is expressed by an infinite series of the Adomian polynomials 

                                                                       𝑁 𝑦 =  𝐴𝑛
∞
𝑛=0 ,                                                              (3.3) 

                                           𝐴𝑛 𝑦0, 𝑦1, … , 𝑦𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
  𝑁  𝜆𝑘𝑦𝑘

∞
𝑘=0    

𝜆=0
,    𝑛 ≥ 0.                            (3.4) 

Using the Maclaurin series of fractional order [26] and applying the operator 𝐿−𝛼   to both sides of 

Eq.(3.1), we have 

                                  𝑦 𝑥 =  
𝑥𝑘𝛼

𝛤 1+𝑘𝛼 
𝑦 𝑘𝛼  (0)𝑛−1

𝑘=0 + 𝐿−𝛼𝑁 𝑦 + 𝐿−𝛼𝑓,   0 < 𝛼 ≤ 1.                        (3.5) 

The Adomian decomposition method suggests the solution be decomposed into the infinite series of 

components 

                                                                        𝑦 𝑥 =  𝑦𝑘(𝑥)∞
𝑘=0 ,                                                         (3.6) 

where 𝑁 =  𝐴𝑛
∞
𝑛=0 , and 

𝐴𝑛 𝑦0, 𝑦1, … , 𝑦𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
  𝑁  𝜆𝑘𝑦𝑘

∞
𝑘=0    

𝜆=0
,    𝑛 ≥ 0. 

The iterates are determined by following recursive way 

                                                     𝑦0 𝑥 =  
𝑥𝑘𝛼

𝛤 1+𝑘𝛼 
𝑦 𝑘𝛼  (0)𝑛−1

𝑘=0 + 𝐿−𝛼𝑓,                                            (3.7) 

and 

                                                            𝑦𝑘+1 𝑥 = 𝐿−𝛼𝐴𝑛 𝑥 ,    𝑛 ≥ 0.                                                    (3.8) 

Finally, we approximate the solution by the truncated series 

                                                  𝛷𝑁 𝑥 =  𝑦𝑛 𝑥 ,         lim𝑁→∞𝛷𝑁 𝑥 = 𝑁−1
𝑛=0 𝑦 𝑥 .                             (3.9) 

 

 

4. Examples 

In this section, we solve three examples by Adomian decomposition method. 

 

Example 1. Consider fractional Bratu-type equation with initial condition 

                                                    𝐷𝑥
2𝛼𝑢 𝑥 − 2𝑒𝑢(𝑥) = 0,   0 < 𝛼 ≤ 1,   0 < 𝑥 < 1,                              (4.1) 

𝑢 0 = 𝑢(𝛼) 0 = 0. 
The exact solution of Eq.(4.1) in 𝛼 = 1 is 

𝑢 𝑥 = −2 ln(cos 𝑥). 
Using the Maclaurin series of fractional order, we can determine the initial value or a trial function 

𝑢0 𝑥 = 𝑢 0 +
𝑢 𝛼 (0)

𝛤(1 + 𝛼)
𝑥𝛼 = 0. 

The generalized iteration procedures can be given as 

                                                𝑢𝑘+1 𝑥 =
1

𝛤2(1+𝛼)
  𝐴𝑘(𝑑𝑡1)𝛼(𝑑𝑡2)𝛼 ,    𝑘 ≥ 0.

𝑡2

0

𝑥

0
                               (4.2) 

where 𝐴𝑘  is a Adomian polynomials 

𝐴0 = 𝑁 𝑢0 ⇒  𝐴0 = 2, 
𝐴1 = 𝑢1𝑁

′ 𝑢0 ⇒  𝐴0 = 2𝑢1, 

                                            𝐴2 = 𝑢2𝑁
′ 𝑢0 +

1

2
(𝑢1)2𝑁 ′′ 𝑢0 ⇒  𝐴0 = 2𝑢1 + (𝑢1)2,                            (4.3) 

. 

. 

. 
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In this example, the nonlinear term is 𝑁 = 2𝑒𝑢 . 

By applied Eq.(3.8) and Eq.(4.3), we obtain 

𝑢1 𝑥 =
2

𝛤 1 + 2𝛼 
𝑥2𝛼  

𝑢1 𝑥 =
4

𝛤 1 + 4𝛼 
𝑥4𝛼  

. 

. 

. 

Therefore 

                                     𝑢 𝑥 = 𝑢0 + 𝑢1 + 𝑢2 + ⋯ =
2

𝛤 1+2𝛼 
𝑥2𝛼 +

4

𝛤 1+4𝛼 
𝑥4𝛼 + ⋯.                          (4.4) 

The exact solution for 𝛼 =  1 and approximate solutions for 𝛼 =  0.5, 0.6, ⋯ , 1 are shown in Fig.1. 

 

 
 

Figure 1: The exact solution in 𝛼 =  1 and approximate solutions of ADM. 

 

Example 2. Consider fractional Bratu-type equation with initial condition 

                                                    𝐷𝑥
2𝛼𝑢 𝑥 − 𝜋2𝑒𝑢(𝑥) = 0,   0 < 𝛼 ≤ 1,   0 < 𝑥 < 1,                            (4.5) 

𝑢 0 = 0,   𝑢(𝛼) 0 = 𝜋. 
The exact solution of Eq.(4.5) in 𝛼 = 1 is 

𝑢 𝑥 = − ln 1 − sin 𝜋𝑥  . 
Using the Maclaurin series of fractional order, we can determine the initial value or a trial function 

𝑢0 𝑥 = 𝑢 0 +
𝑢 𝛼  0 

𝛤 1 + 𝛼 
𝑥𝛼 =

𝜋𝑥𝛼

𝛤 1 + 𝛼 
. 

The generalized iteration procedures can be given as 



   B. Ghazanfari, A. Sepahvandzadeh / J. Math. Computer Sci.     ( ), -  

 

240 
 

                                            𝑢𝑘+1 𝑥 =
1

𝛤2(1+𝛼)
  𝐴𝑘(𝑑𝑡1)𝛼(𝑑𝑡2)𝛼 ,    𝑘 ≥ 0,

𝑡2

0

𝑥

0
                                   (4.6) 

where 𝐴𝑘  is a Adomian polynomials 

𝐴0 = 𝑁 𝑢0 ⇒  𝐴0 = 𝜋2𝑒𝑢0 , 
𝐴1 = 𝑢1𝑁

′ 𝑢0 ⇒  𝐴0 = 𝜋2𝑒𝑢0  𝑢1, 

                                            𝐴2 = 𝑢2𝑁
′ 𝑢0 +

1

2
(𝑢1)2𝑁 ′′ 𝑢0 ⇒  𝐴0 = 𝜋2𝑒𝑢0(𝑢1 +

1

2
(𝑢1)2),               (4.7) 

. 

. 

. 

In this example, the nonlinear term is 𝑁 = 𝜋2𝑒𝑢 . 

By applied Eq.(3.8) and Eq.(4.7), we obtain 

𝑢1 𝑥 = 𝑒
𝜋𝑥𝛼

𝛤 1+𝛼 +
𝜋𝑥𝛼

𝛤 1 + 𝛼 
− 1, 

𝑢2 𝑥 =
1

4
𝑒

2𝜋𝑥𝛼

𝛤 1+𝛼 −
𝜋𝑥𝛼

𝛤 1 + 𝛼 
𝑒

𝜋𝑥𝛼

𝛤 1+𝛼 + 𝑒
𝜋𝑥𝛼

𝛤 1+𝛼 −
𝜋𝑥𝛼

2𝛤 1 + 𝛼 
−

5

4
, 

. 

. 

. 

Therefore 

𝑢 𝑥 = 𝑢0 + 𝑢1 + 𝑢2 + ⋯ =
𝜋𝑥𝛼

𝛤 1+𝛼 
+  𝑒

𝜋𝑥𝛼

𝛤 1+𝛼 +
𝜋𝑥𝛼

𝛤 1+𝛼 
− 1 +  

1

4
𝑒

2𝜋𝑥𝛼

𝛤 1+𝛼 −
𝜋𝑥𝛼

𝛤 1+𝛼 
𝑒

𝜋𝑥𝛼

𝛤 1+𝛼 +  𝑒
𝜋𝑥𝛼

𝛤 1+𝛼  −

                          
𝜋𝑥𝛼

2𝛤 1+𝛼 
−

5

4
 + ⋯.                                                                                                              (4.8) 

 

The exact solution for 𝛼 =  1 and approximate solutions for 𝛼 =  0.5, 0.6, ⋯ , 1 are shown in Fig.2. 
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Figure 2: The exact solution in 𝛼 =  1 and approximate solutions of ADM. 

 

Example 3. Consider fractional Bratu-type equation with initial condition 

                                                 𝐷𝑥
2𝛼𝑢 𝑥 + 𝜋2𝑒−𝑢(𝑥) = 0,   0 < 𝛼 ≤ 1,   0 < 𝑥 < 1,                             (4.9) 

𝑢 0 = 0,   𝑢(𝛼) 0 = 𝜋.  
The exact solution of Eq.(4.5) in 𝛼 = 1 is 

𝑢 𝑥 = ln 1 + sin 𝜋𝑥  . 
Using the Maclaurin series of fractional order, we can determine the initial value or a trial function 

𝑢0 𝑥 = 𝑢 0 +
𝑢 𝛼  0 

𝛤 1 + 𝛼 
𝑥𝛼 =

𝜋𝑥𝛼

𝛤 1 + 𝛼 
. 

The generalized iteration procedures can be given as 

                                            𝑢𝑘+1 𝑥 =
1

𝛤2(1+𝛼)
  𝐴𝑘(𝑑𝑡1)𝛼(𝑑𝑡2)𝛼 ,    𝑘 ≥ 0,

𝑡2

0

𝑥

0
                                 (4.10) 

where 𝐴𝑘  is a Adomian polynomials 

𝐴0 = 𝑁 𝑢0 ⇒  𝐴0 = −𝜋2𝑒−𝑢0 , 
𝐴1 = 𝑢1𝑁

′ 𝑢0 ⇒  𝐴0 = 𝜋2𝑒−𝑢0  𝑢1, 

                                     𝐴2 = 𝑢2𝑁
′ 𝑢0 +

1

2
(𝑢1)2𝑁 ′′ 𝑢0 ⇒  𝐴0 = 𝜋2𝑒−𝑢0(𝑢1 −

1

2
(𝑢1)2),                  (4.11) 

. 

. 

. 

In this example, the nonlinear term is 𝑁 = −𝜋2𝑒−𝑢 . 

By applied Eq.(3.8) and Eq.(4.11), we obtain 

𝑢1 𝑥 = −𝑒
−𝜋𝑥𝛼

𝛤 1+𝛼 −
𝜋𝑥𝛼

𝛤 1 + 𝛼 
+ 1, 
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𝑢2 𝑥 = −
1

4
𝑒
−2𝜋𝑥𝛼

𝛤 1+𝛼 −
𝜋𝑥𝛼

𝛤 1 + 𝛼 
𝑒
−𝜋𝑥𝛼

𝛤 1+𝛼 − 𝑒
−𝜋𝑥𝛼

𝛤 1+𝛼 −
𝜋𝑥𝛼

2𝛤 1 + 𝛼 
+

5

4
, 

. 

. 

. 

Therefore 

𝑢 𝑥 = 𝑢0 + 𝑢1 + 𝑢2 + ⋯ =
𝜋𝑥𝛼

𝛤 1+𝛼 
+  −𝑒

−𝜋𝑥𝛼

𝛤 1+𝛼 −
𝜋𝑥𝛼

𝛤 1+𝛼 
+ 1 +  −

1

4
𝑒
−2𝜋𝑥𝛼

𝛤 1+𝛼 −
𝜋𝑥𝛼

𝛤 1+𝛼 
𝑒

−𝜋𝑥𝛼

𝛤 1+𝛼 −

                         𝑒
−𝜋𝑥𝛼

𝛤 1+𝛼 −
𝜋𝑥𝛼

2𝛤 1+𝛼 
+

5

4
 + ⋯.                                                                                            (4.12) 

 

The exact solution for 𝛼 =  1 and approximate solutions for 𝛼 =  0.5, 0.6, ⋯ , 1 are shown in Fig.3. 

 

 

 
 

Figure 3: The exact solution in 𝛼 =  1 and approximate solutions of ADM. 

 

 

 

 

 

 

 

5. Conclusion 
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The Adomian decomposition method for fractional differential equations has been extensively worked out 

for many years. In this study, the approximate solution of a fractional Bratu-type equations are 

investigated by Adomian decomposition method. The results show that the Adomian decomposition 

method is effective and very simple. 
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