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Abstract 
 In this note, we prove a new generalisation of the Jensen’s inequality by using a Riemann-Stieltjes 

integrable function and convex functions under a mild condition.  An example was given to support the 
claims of this paper. 
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1. Introduction and Preliminaries 

In [5], Royden and Fitzpatrick, examined the classical form of Jensen’s inequality [3] 

 

𝜑   𝑓 𝑥 𝑑𝑥
1

0
 ≤   (𝜑𝑜𝑓)(𝑥)𝑑𝑥

1

0
.                              (1.1) 

Using the notion of the supporting line that exists at the point (𝛼, 𝜑(𝛼)) for the graph of 

𝜑 𝑤ℎ𝑒𝑟𝑒 𝛼 ∈  0, 1 . Indeed, they gave a short proof for the Jensen’s inequality. The purpose of 

this paper is to employ a simple analytic technique which is independent of the idea in [4] to 

show that for any two convex functions 𝜑 𝑥 , 𝛽(𝑥) and another Riemann Stieltjes Integrable 

function f(x) defined on [a, b] then  

   𝜑   𝑓𝑑
𝑏

𝑎
 ≤   𝜑(𝑓)𝑑

𝑏

𝑎
                                                (1.2) 

under a mild condition. 
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 Remark: A case where 𝛽(𝑥) is the identity function and 𝑏 − 𝑎 = 1gives the kind of                                    

Jensen’s inequality discussed in [5]. 

The following well known definition and Lemmas are useful in the proof of our results. 

Definition 1.1.  A function 𝜑 is convex on [a, b] if,  

𝜑 𝑥 ≤  𝜑 𝑦 +  
𝜑 𝑡 −𝜑 𝑦 

𝑡−𝑦
 𝑥 − 𝑦 ,where𝑎 ≤ 𝑦 ≤ 𝑥 ≤ 𝑡 ≤ 𝑏. 

Lemma 1.1 ([1, 2][5]). Suppose 𝜑 is convex on [a, b] and differentiable at  𝛼 ∈  𝑎, 𝑏 , then, 

                                          𝜑 𝛼 + 𝜑′ 𝛼  𝑥 − 𝛼 ≤ 𝜑 𝑥 , ∀ 𝑥 ∈ [a, b] . 

                Proof: See Lemma 1 of [2] and Theorem 18 in Chapter 6 of [5]. 

Lemma 1.2 [3]. Let 𝜑 be an increasing function on the closed bounded interval [a, b], then 𝜑′  is 

integrable over [a, b] and  𝜑′ ≤ 𝜑 𝑏 − 𝜑 𝑎 .
𝑏

𝑎
 

Proof: See Corollary 4 in section 6. 2 of [5]. 

2. Main results 

Theorem 2.1. Let 𝜑 𝑥 , 𝛽(𝑥) be convex functions on  (−∞, ∞) and 𝑓(𝑥) Riemann-Stieltjes 

integrable w.r.t  𝛽(𝑥) over [a, b] such that 𝛽 𝑏 − 𝛽 𝑎 = 1. Then,  

𝜑   𝑓 𝑥 𝑑
𝑏

𝑎
 ≤   (𝜑𝑜𝑓)(𝑥)𝑑

𝑏

𝑎
. 

Proof. Let 𝛼 =  𝑓𝑑
𝑏

𝑎
  .            (2. 1) 

        Choose 𝑚 ∈ ℝ ∋ 𝑦 = 𝑚 𝑡 − 𝛼 + 𝜑(𝛼) is the equation of the supporting line passing through  

(𝛼, 𝜑 𝛼 ) for the graph of  𝜑. Clearly,   𝜑′(𝛼−) < 𝑚 < 𝜑′(𝜑+). From Lemma 1. 1, we have: 

                𝜑 𝑡 ≥ 𝑚 𝑡 − 𝛼 + 𝜑 𝛼  ∀ 𝑡 ∈  ℝ.            (2. 2) 

        And, in particular   

                             𝜑 𝑓 𝑥  ≥ 𝑚 𝑓 𝑥 − 𝛼 + 𝜑 𝛼  𝑓𝑜𝑟 𝑥 ∈ [𝑎, 𝑏] (2. 3) 

         Integrating both sides of (2.3) 

 𝜑 𝑓 𝑥  𝑑

𝑏

𝑎

≥  (𝑚 𝑓 𝑥 − 𝛼 + 𝜑 𝛼 )𝑑

𝑏

𝑎

 

= 𝑚 𝑓 𝑥 𝑑 −𝑚𝛼 𝛽 𝑏 − 𝛽 𝑎  + 𝜑 𝛼  𝛽 𝑏 − 𝛽 𝑎  

𝑏

𝑎
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= 𝑚𝛼 − 𝑚𝛼 + 𝜑 𝛼  

            = 𝜑( 𝑓𝑑
𝑏

𝑎
) .                                                                        (2. 4) 

       That is,  (𝜑𝑜𝑓)𝑑
𝑏

𝑎
≥ 𝜑   𝑓 𝑥 𝑑

𝑏

𝑎
   completing the Proof. 

Example 

Let 𝛽 𝑥 =  
0 ,           𝑥 = 𝑎
1,    𝑎 < 𝑥 ≤ 𝑏

  

Clearly, 𝛽 𝑏 − 𝛽 𝑎 = 1 and for any convex function 𝜑 and Riemann Integrable function f on [a, b], 

then Theorem 2.1 holds. 
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