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Abstract
In this note, we prove a new generalisation of the Jensen’s inequality by using a Riemann-Stieltjes
integrable function and convex functions under a mild condition. An example was given to support the
claims of this paper.
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1. Introduction and Preliminaries

In [5], Royden and Fitzpatrick, examined the classical form of Jensen’s inequality [3]

o (J, Fedx) < [ (pof)()dx. (11)

Using the notion of the supporting line that exists at the point (@, ¢(a)) for the graph of
@ where a € (0,1). Indeed, they gave a short proof for the Jensen’s inequality. The purpose of
this paper is to employ a simple analytic technique which is independent of the idea in [4] to
show that for any two convex functions ¢(x), B(x) and another Riemann Stieltjes Integrable
function f(x) defined on [a, b] then

o([;fap)< [ o(Hap (1.2)

under a mild condition.
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Remark: A case where f(x) is the identity function and b —a = lgives the kind of
Jensen’s inequality discussed in [5].

The following well known definition and Lemmas are useful in the proof of our results.

Definition 1.1. A function ¢ is convex on [a, b] if,
p(x) < o(y) + %;m(x —y)wherea <y<x<t<h.

Lemma 1.1 ([1, 2][5]). Suppose ¢ is convex on [a, b] and differentiable at a € (a, b), then,
p(@) + ¢ (@) (x—a) < p(x), Vx€[ab].
Proof: See Lemma 1 of [2] and Theorem 18 in Chapter 6 of [5].

Lemma 1.2 [3]. Let @ be an increasing function on the closed bounded interval [a, b], then (p' is

integrable over [a, b] and ff ¢ <o) - ().
Proof: See Corollary 4 in section 6. 2 of [5].
2. Main results

Theorem 2.1. Let ¢(x), B(x) be convex functions on (—o,) and f(x) Riemann-Stieltjes
integrable w.r.t B(x) over [a, b] such that $(b) — f(a) = 1. Then,

o (I} FCOdB) < [ (poN(x)dp

Proof. Leta = fab fag . (2.1)

Choose m € R 3 y = m(t — a) + ¢(a) is the equation of the supporting line passing through
(a, p(a)) for the graph of ¢. Clearly, ¢’(a_) <m< <p’(<p+). From Lemma 1. 1, we have:

p)zm(t—a)+epla)Vte R. (2.2)
And, in particular
o(f(0)) = mlf(x) — al + p(a) for x € [a,b] (2.3)

Integrating both sides of (2.3)

b

b
f o(f())dp=> f (mlf @) — al + p(@))d B

a

b
= mff(x)dﬂ— ma[B(b) — B(@)] + p(@)[B(b) — B(a)]
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=ma —ma+ ¢(a)
=o(f, fap) . (2.4)
That is, ff((pof)dﬁz ® (fab fx)d ,B) completing the Proof.

Example

0, XxX=a
Letﬂ(x)={1 a<x<b

Clearly, B(b) — B(a) = 1 and for any convex function ¢ and Riemann Integrable function fon [a, b],
then Theorem 2.1 holds.
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