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Abstract  

 

In this paper, we investigate the applications of two different quadrature schemes that is 

repeated trapezoidal (RT) and repeated modified trapezoidal (RMT) schemes via Arithmetic 

Mean iterative method to solve second kind linear Fredholm integral equations. Furthermore, 

the derivation and implementation of the proposed method are also included. Numerical tests 

and comparisons are given to illustrate the effectiveness of the proposed method. 
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1. INTRODUCTION 

 

Generally, second kind linear integral equations of Fredholm type in the generic form can be 

defined as follows 
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       xfdttytxKxy   , ,  ba,  0                                  (1) 

where the parameter  , kernel   2LK  and free term   Lf  are given, and  Ly  

is the unknown function to be determined. The kernel function  txK ,  is assumed to be 

absolutely integrable and satisfy other properties that are sufficient to imply the Fredholm 

alternative theorem. Meanwhile, Eq. (1) also can be rewrite in the equivalent operator form  

  fy  .                                                           (2) 

 

Theorem (Fredholm Alternative) [3] 

Let   be a Banach space and let  :  be compact. Then the equation   fy  , 0  

has a unique solution x  if and only if the homogeneous equation   0 z  has only the 

trivial solution 0z . In such a case, the operator 
11

:



onto

 has a bounded 

inverse   1
 . 

 

Definition (Compact operators) [3] 

Let   and   be normed vector space and let  :  be linear. Then   is compact if the 

set  1| xxx  has compact closure in  . This is equivalent to saying that for every 

bounded sequence  nx , the sequences  nx  has a subsequence that is convergent to some 

point in  . Compact operators are also called completely continuous operators. 

   In many application areas, numerical approaches were used widely to solve Fredholm integral 

equations. By solving Eq. (2) numerically, we either seek to determine an approximation 

solution in a chosen finite dimensional space nV  by a projection method [5, 6, 8, 11, 14] 

  fPyP nnn                                                         (3) 

where nn Vy   and nn VCP :  is a projection operator, or use the quadrature method 

  fyI nn                                                            (4) 

where n  approximates   and is obtained by discretization of   by an n -point quadrature 

method; see [9, 10, 12, 13, 18]. Such discretizations of integral equations lead to dense linear 

systems and can be prohibitively expensive to solve as n , the order of the linear system of linear 

algebraic equations increases. Thus, iterative methods are the natural options for efficient 

solutions. 

 

   Consequently, two-stage iterative method also called as inner and outer iteration schemes 

have been proposed widely to be one of the feasible and successful classes of numerical 

algorithms for solving any linear system. Actually, there are many two-stage iterative methods 

can be considered such as the Alternating Group Explicit (AGE) [7], Iterative Alternating 

Decomposition Explicit (IADE) [19], Reduced Iterative Alternating Decomposition Explicit 

(RIADE) [20], Block Jacobi [2] and Arithmetic Mean (AM) [17] methods. However, in this paper, 

we examined the applications of the Arithmetic Mean method with two different quadrature 

methods in solving second kind linear Fredholm integral equations.  
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   The outline of this paper is organized in following way. In Section 2, the formulation of the 

quadrature approximation equations based on repeated trapezoidal (RT) and repeated 

modified trapezoidal (RMT) methods will be elaborated. The latter section of this paper will 

discuss the formulations of the AM method, and some numerical results will be shown in fourth 

section to assert the performance of the iterative methods. Finally, Section 5 contains some 

conclusions and directions of the future works.  

 

2. QUADRATURE APPROXIMATION EQUATIONS  

 

As explained in the previous section, a discretization scheme based on method of quadrature 

was used to construct an approximation equation of an integral equation by approximating the 

integral to finite sums. To facilitate in formulating the approximation equations for linear 

Fredholm equation of the second kind, further discussion will be restricted onto repeated 

trapezoidal (RT) and repeated modified trapezoidal (RMT) methods, which are based on 

interpolation formulas. In next subsections, application of the both schemes to discretize the 

Fredholm integral equations of the second kind will be explained.  

 

2.1 Repeated Trapezoidal  

 

The trapezoidal method is one of numerical integration methods derived by integrating the 

linear interpolation formula with equally spaced data points. Trapezoidal method for 

approximating definite integral  
b

a
dtty  can be defined as follows 

           
b

a
n ybyay

h
tdty 

2
                                          (5) 

and its repeated formula can be shown as 

         yby
h

tyhay
h

dtty n

n

j

j

b

a
 



 22

1

1

                                  (6) 

where the constant step size, h  is defined as  

n

ab
h


 .                                                             (7) 

n , jt  and  yn  are the number of subintervals in the interval  ba, , abscissas of the partition 

points of the integration interval  ba,  and truncation error respectively. By applying Eq. (3) 

into Eq. (1) and neglecting the error,  yn  a system of linear algebraic equations can be formed 

for approximation values of  xy  at the nodes nxxx ,,, 10  . Therefore, the repeated trapezoidal 

approximation equations for Eq. (1) can be shown as follows 

inni

n

j

jjiii fyK
h

yKhyK
h

y 












 





,

1

1

,00,
22

 , ni ,,2,1,0                        (8) 

Further discussions on RT method to solve Fredholm integral equations can be found in [3, 4].   

 

2.2 Repeated Modified Trapezoidal 
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Besides trapezoidal method, definite integrals  
b

a
dtty  can be also approximated by using the 

modified trapezoidal method, obtained based on the Hermite interpolation [21]. Hermite 

interpolation is a method closely related to the Newton divided difference interpolation that 

considers derivatives at data points. The formula for the method is defined as follows 

             ybyay
h

byay
h

dtty n

b

a


''
2

122
                            (9) 

Then, the RMT formula is as follows 

              ybyay
h

by
h

tyhay
h

dtty n

n

j

j

b

a
 





''
21

1 1222
                 (10) 

In order to discretize Eq. (1) using RMT method, conditions of  txK ,  and  xf  must be 

differentiable with respect to their variables should be satisfied. Meanwhile, two cases which 

are whether 
 

tx

txK



 ,
 exist or not, also need to be considered. Formulation for both cases 

explained in [18]. Before further clarification, the following notation will be used for simplicity.   

 

j

ji

ji
t

txK
J






,
,  

 

i

ji

ji
x

txK
H






,
,

 

 

ji

ji

ji
tx

txK
L






,
,  

 ii xyy ''   

 ii xff ''   

   By applying the formula for RMT in Eq. (10) into Eq. (1), the approximation equations for both 

cases shown as follows 

 

Case 1: The partial derivative 
 

tx

txK
L ji






,
,  does not exists 
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1

1
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00,

21
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,,00,
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,1,,1,0,
1212
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n

j

jjnnn

nn
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j
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j

nnijjiii

fyH
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yHhyH
h

y

fyH
h

yHhyH
h

y

nnifyK
h

yK
h

yByKhyAy 

     (11) 

 

Case 2: The partial derivative 
 

tx

txK
L ji






,
,  exists 

http://en.wikipedia.org/wiki/Newton_polynomial
http://en.wikipedia.org/wiki/Interpolation
http://en.wikipedia.org/wiki/Derivative
http://en.wikipedia.org/wiki/Data_point
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where 

jijiji J
h

K
h

A ,

2

,,
122

  

jijiji J
h

K
h

B ,

2

,,
122

  

jijiji L
h

H
h

C ,

2

,,
122

  

jijiji L
h

H
h

D ,

2

,,
122

  

 

From Eqs. (5), (8) and (9), it is obvious that discretization of second kind Fredholm integral 

equations using RT or RMT method yields a system of linear equations as follows 

~~

fyM                                                              (13) 

where the coefficient  matrix M  is a dense matrix. Meanwhile, 
~

f  and 
~

y  are the right hand side 

vector and unknown vector to be determined respectively. 

 

 

 

3. FORMULATION OF ARITHMETIC MEAN METHOD 

 

As afore-mentioned, AM methods are one of the two-stage iterative methods and the iterative 

process involves of solving two independent systems such as 1

~

y  and 2

~

y . To develop the 

formulation of AM method, express the coefficient matrix A  as the matrix sum 

UDLA                                                         (14) 

where L , D and U  are the strictly lower triangular, diagonal and strictly upper triangular 

matrices respectively. Thus, by adding positive acceleration parameter,   the general scheme 

for AM method is defined by 
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                             (15) 

where 
)0(

~

y  is an initial vector approximation to the solution and 20  . 

 

   The AM method requires a slight additional computational effort of the sum of two matrices at 

each iteration k , but its rate of convergence is relatively insensitive to the exact choice of the 

parameter   [17]. Practically, the value of   will be determined by implementing some 

computer programs and then choose one value of  , where its number of iterations is the 

smallest. The AM algorithm is explicitly performed by using all equations at level (1) and (2) 

alternatively until the specified convergence criterion is satisfied. By determining values of 

matrices L , D and U  as stated in Eq. (14), the general algorithm for AM with RT and RMT 

methods to solve problem (1) would be generally described in Algorithms 1, 2 and 3. Generally, 

the basic idea for the convergence analysis of the AM method has been proved by [17].   

 

4. NUMERICAL EXPERIMENTS 

 

In order to compare the performances of the iterative methods described in the previous 

section, several numerical tests were carried out on the following both Fredholm integral 

equations.  

 

Example 1 [22] 

Consider the Fredholm integral equation of the second kind  

    xdttyxtxxy  
1

0

2 )(4 , 10  x                                     (16) 

and the exact solution is given by 
2924)( xxxy  . 

 

Example 2 [16] 

Consider the Fredholm integral equation of the second kind  

105)()()( 36
1

0

22   xxxdttytxxy , 10  x                           (17) 

with the exact solution  

84

2141

28

1045
5)( 236  xxxxxy . 

 

For comparison, the Gauss-Seidel (GS) iterative method acts as control method of 

numerical results. Three criteria will be considered in comparison for GS with RT (GS-RT), GS 

with RMT (GS-RMT), AM with RT (AM-RT) and AM with RMT (AM-RMT) methods that is 

number of iterations, execution time and maximum absolute error. Throughout the simulations, 
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the convergence test considered the tolerance error, 1010 . In this paper, interval  ba,  will 

be uniformly divided into 2,2  mn m  and discrete set of points be given as ihaxi  . 

Results of numerical simulations, which were obtained from implementations of the iterative 

methods for Examples 1 and 2, have been recorded in Tables 1 and 2 respectively. Meanwhile, 

reduction percentage of the execution time for the GS-RT, AM-RT and AM-RMT methods 

compared with GS-RMT method have been summarized in Table 3.  

 

Table 1. Comparison of a number of iterations, execution time and maximum absolute error for 

the iterative methods at optimum value of   (Example 1) 

 

 Number of iterations 

Methods 
n 

512 1024 2048 4096 8192 

GS-RT 

GS-RMT 

194 

198 

194 

199 

195 

199 

195 

199 

195 

199 

AM-RT 

AM-RMT 

84 

46 

84 

46 

84 

46 

84 

46 

84 

46 

 Execution time (seconds) 

Methods 
n 

512 1024 2048 4096 8192 

GS-RT 

GS-RMT 

2.62 

2.91 

10.77 

14.02 

38.77 

48.83 

145.01 

177.01 

570.58 

644.35 

AM-RT 

AM-RMT 

2.03 

1.92 

7.80 

7.42 

31.05 

27.45 

123.06 

109.38 

491.49 

402.16 

 Maximum absolute error 

Methods 
n 

512 1024 2048 4096 8192 

GS-RT 

GS-RMT 

4.6922 E-4 

3.5954 E-7 

1.1730 E-4 

4.5208 E-8 

2.9325 E-5 

6.0171 E-9 

7.3307 E-6 

1.1272 E-9 

1.8321 E-6 

5.1823 E-10 

AM-RT 

AM-RMT 

4.6922 E-4 

3.5913 E-7 

1.1730 E-4 

4.4840 E-8 

2.9325 E-5 

5.6402 E-9 

7.3311 E-6 

7.4613 E-10 

1.8326 E-6 

1.3497 E-10 

 

 

Table 2. Comparison of a number of iterations, execution time and maximum absolute error for 

the iterative methods at optimum value of   (Example 2) 

 Number of iterations 

Methods 
n 

512 1024 2048 4096 8192 

GS-RT 

GS-RMT 

56 

57 

56 

57 

56 

57 

56 

57 

56 

57 

AM-RT 

AM-RMT 

32 

25 

32 

26 

32 

26 

32 

26 

32 

26 

 Execution time (seconds) 
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Table 3. Reduction percentage of the execution time for the GS-RT, AM-RT and AM-RMT 

methods compared with GS-RMT method 

 

 

 

 

 

 

 

 

5. CONCLUSIONS 

 

In the previous section, it has shown that the quadrature approximation equations based on 

repeated trapezoidal and repeated modified trapezoidal methods can easily generate a system 

of linear equations. From the Eqs. (8), (11) and (12), it can be found that approximation 

equations based on RT method involve  1n  equations and  3n  equations for RMT method. 

Through numerical results obtained in Tables 1 and 2, it clearly shows that by applying the AM 

method can reduce number of iterations compared to the GS method for both discretization 

methods. In terms of execution time, GS-RT, AM-RT and AM-RMT methods are faster compared 

to GS-RMT method (refer Table 3). Through the observation from the results obtained, it shows 

that RMT method is more accurate than the RT method. Overall, the numerical results have 

shown that the AM-RMT method is more superior compared to the GS-RT, GS-RMT and AM-RT 

methods. For future works, this study will be extended to investigate the applications of the 

complexity reduction techniques [1, 15] in solving Fredholm integral equations.  
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Methods 
n 

512 1024 2048 4096 8192 

GS-RT 

GS-RMT 

0.89 

0.95 

3.47 

3.96 

17.06 

20.44 

55.85 

70.89 

189.98 

242.87 

AM-RT 

AM-RMT 

0.61 

0.55 

2.56 

2.45 

9.39 

9.06 

38.17 

36.88 

167.44 

155.23 

 Maximum absolute error 

Methods 
n 

512 1024 2048 4096 8192 

GS-RT 

GS-RMT 

4.7770 E-4 

8.6136 E-7 

1.1942 E-4 

1.0751 E-7 

2.9856 E-5 

1.3495 E-8 

7.4639 E-6 

1.7567 E-9 

1.8659 E-6 

2.9065 E-10 

AM-RT 

AM-RMT 

4.7770 E-4 

8.6130 E-7 

1.1942 E-4 

1.0744 E-7 

2.9856 E-5 

1.3422 E-8 

7.4639 E-6 

1.6832 E-9 

1.8659 E-6 

2.1709 E-10 

Methods Example 1 Example 2 

GS-RT 

AM-RT 

AM-RMT 

9.96 – 23.19% 

23.72 – 44.37% 

34.02 – 47.08% 

6.31 – 21.78% 

31.05 – 54.07% 

36.08 – 55.68% 
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Algorithm 1. AM with RT method  
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ii) Level (2) 
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Algorithm 2. AM with RMT (Case 1) method    

 

i)  Level (1) 
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Algorithm 3. AM with RMT (Case 2) method  
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