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Abstract 

We apply the bivariate B-spline basis to find an approximate solution for control-state 

function in a constrained optimal control problem, whose constraint is an elliptic partial 

differential equation (PDE) with Dirichlet boundary conditions. In this method, the PDE is 

first discretized and then by using bivariate B-spline basis, a state function is obtained with 

respect to some unknown coefficients. By applying generalized Newton method, the 

optimal value for the control function is also determined. Finally, a numerical example is 

given and the optimal solution is derived by using the bivariate B-spline basis. 

 

Keywords: Bivariate B-spline basis, Optimal control problem, Elliptic equation, WEB-

spline finite element method. 

1. Introduction 

The optimization of a control-state problem was first proposed by Hinze [6]. He considered 

an optimization problem subject to some constrains in terms of PDE with additional 

constrains on the control-state [4, 6]. This problem is today one of the most important 

problems in industrials and economical applications. In general, since it cannot be solved 

by analytic methods, numerical methods should be applied in this sense. 

Before 1980s, indirect methods were used for solving optimal control problems. To obtain 

the first order optimality conditions in these methods, we usually use the calculus of 

variations, see e.g. [6, 9]. 

After that and for two decades up to now direct methods are used [6]. In a direct method, 

the state and control functions are approximated using an appropriate numerical method. 
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Simultaneously, the cost functional is approximated as a discrete function. Hence, the 

coefficients of the approximate function are treated as optimization variables and the 

problem is transformed to a nonlinear optimization problem. Depending upon the type of 

the employed direct method, nonlinear optimal control problems can be quite small or large 

[6, 9].  

Hinze in [6] and Zakeri and Asadi in [4] applied the finite and boundary element 

methods for solving this kind of problems, respectively. In this paper, we apply bivariate B-

spline basis in finite element methods, which is actually efficient for reducing order of the 

system. This method first introduced by Klaus Hollig in [7] and then recalled as WEB-

spline finite element method. Some advantages of the mentioned method is given in third 

section. 

In this paper, we consider an optimal control problem with PDE constraints proposed 

by Hinze and obtain an approximate solution for the state and control function by using 

WEB-spline finite element method. For this purpose in section 2, by using the results of 

[6,9], the mathematical formulation of an optimal control problem with PDE constraints is 

provided. In section 3, the finite element method with bivariate B-spline basis, is explained 

and finally in the last section, we consider an example provided by Hinze in [6] to show the 

accuracy and efficiency of the propose method. 

2. Mathematical formulation 

Let 0  be a known constant and 1
0 ( )Y H   where 2  is the computation domain. 

Also let H and U denote Hilbert spaces, R and Z Banach spaces and adY and adU be 

respectively representations of convex and closed subspaces Y and .U  For a known 

function 0 ,y  let y and u be unknown state and control functions. By finding them, the 

functional 

                              2

2 2

0 ( )

1
( , ) : , ,

2 2 UL
J y u y y u y u Y U




                            (1) 

with the constraints 

                                            

 

0    

ady u in U U

y on




                                         (2) 

should be minimized in the computational domain . This problem can be transformed to a 

linear-quadratic optimization problem of the form 

                                    

2 2

( , )

1
min ( , ) :

2 2

subject to , ,

d UHy u Y U

ad ad

J y u Qy q u

Ay u g u U y Y



                                 (3) 

where , , ,dq H g Z A L Y Z  and , .Q Y H  In what follows, we express existence 

results for the general linear-quadratic problem (3) according to [6]. 

Theorem 2.1. ([4, 6])  Suppose that the following assumptions hold: 

 
 adU U is convex and closed for 0 and bounded for 0 . 

 adY Y  is a convex and closed, such that (3) has a feasible point. 

 ( , )A L Y Z  has a bounded inverse. 

Then the problem (3) has an optimal solution , .y u  Also if 0, then this solution is 

unique. 
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Proof. The proof with details are given in [6].  

krameR 2.2. A state-control pair , ad ady u Y U  is called optimal in (3), if Ay u g

and 

, , , , , .ad adJ y u J y u y u Y U Ay u g  

In the next section, by referring to the results [2, 3, 7 and 8], we introduce the bivariate B-

spline basis and apply it in finite element method as basis functions. 

 3. Bivariate B-spline basis 

Following the notations in [7], our aim in this section is to apply bivariate B-spline basis in 

the finite element method as the basis functions. B-spline tensor product is an extension of 

B-spline in higher dimensions. So, in order to make a bivariate B-spline of degree ,n , ,n
hbk  

,one dimensional B-spline tensor product is used as follows 

1 2 1 2, , ,( , ) ( ) ( ) ( ,, )n n n
h hk k hb x y b x b k k Kyk k  

in which , ( ) ,
n n

h

x
b x b

h
 

1 11
( ) ( ) ( 1), ( 2,3,...)n n nx n x

b x b x b x n
n n

 

and 

                                   1

0 1

( ) 2 1 2

0 .

x x

b x x x

otherwise

 

In the above formula, the set K  includes all k  indices in such a way that for some ,x

, 0n
hbk and h is increment of variables x and .y In addition, assume that the support of 

bivariate B-spline basis is determined by 1 1 2 2, 1 , 1k k n h k k n h . 

Now, ,
n

hbk  Kk are divided into two sets, i.e. inner B-splines and outer B-splines. ,
n

hbk

is an inner B-spline for Kk only when the support ,
n

hbk has at least one grid cell which is 

completely located in .  

Otherwise every B-spline is considered an outer B-spline. In other words, the set of K

indices split into two subsets, indices of inner B-splines, ,I and indices of outer B-splines, 

.J  

Applying the above bivariate B-spline basis in a finite element method as basis functions 

may seem impossible, because these basis do not follow the essential boundary conditions. 

To resolve this problem, we can use the smoothed distance function 

( ) ( , ) ( ),dist  x x x  which is thoroughly defined as a continuous function and is 

positive on and negative on complement ,  and then multiply ,
n

hbk by this function, e.g. 

refer to the Rvachev method (or R-function), which is used in numerical techniques [7]. 

We can construct a weighted B-spline space by multiplying ( ) x and ,
n

hbk respectively and 

consider it as a subspace of finite elements for the Dirichlet boundary value problems, 

which would give us better approximations. However, since outer B-splines have a small 

support in ,  the condition number of Galerkin matrix might be extremely large. A 

suitable solution for the problem of controlling the unstable outer B-splines is provided by 

appropriately adjoining them with the inner B-splines. Using the above mentioned process, 

we can have access to the weighted B-spline space again and call it weighted extended B-
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spline space ( ).e n
hB   Therefore, for every ,Ii  we define weighted extended B-spline 

B i  (WEB-spline) as follows 

,, ( ),
( )

n
h

J

B b e b b b


 

 
    

 
i i ij j k k

jix
 

 

in which ix show the center of a grid cell in the relation support bi which is completely 

located in . Also the coefficients e ij  satisfy 0eij  
for 1 i j

 
and 1.e ij  To 

calculate e ij  
the starting point is the B-spline representation of polynomials. Marsden in [7] 

proved that every polynomial p of coordinate degree n can be written as a linear 

combination in the form 

 

                                 

( ) ( ) ( ) ( ) ( ) ( ).
I J

p q b q b
 

   i j

i j

x i x j x x                                (4) 

 

Our goal is to associate the inner B-spline with outer B-spline using e ij coefficients. For 

outer index Jj suppose that  
2

( ) 0,..., ,I n I  j  is a two dimensional array of inner 

indices close to j . Since q is a polynomial of coordinate degree ,n  coefficients ( ),q Jj j

can be calculated using ( )I Ii j indices. Now, we considerq as a polynomial interplant 

with the values ( ),q i  ( )Ii j and define Lagrange polynomials of degree n in accordance to 

( )I j  and .L ji  In other words, we have 

( ) , , ( ),L I ji ikk i k j  

then for fixed ,j  e ij  
are placed in the point of j  as the value of Lagrange polynomials. 

Therefore, 

( ), ( ).e L I ij ji j i j  

According to [7], for simplification, we put 0eij  
for each ( ).Ii j  Hence 

( )

( ) ( ).
I

q e q


  ij

i j

j i  

If we replace the latter relation in (4), we get 

( ) ( ) ( ) ( ) .
I J

p q b e b
 

 
  

 
 

 i ij j

i j

x i x x  

This completes the process of making .e ij  Analyzing the above said process leads to the 

following definition, mentioned in [7]. 

Definition 3.1. For an outer index Jj let  
2

( ) 0,...,I n I  j be an two-dimensional 

array of inner indices close to ,j  assuming that h is small enough so that such an array 

exists. Moreover, denote by 

2

1 0,

n

u i

j
e

i
 

 

   



   

 


 
 ij  

the values of the Lagrange polynomials associated with ( ).I j  

According to [2, 7], we give some features of definition B i  as follows 
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 Because of the linear independence of B-splines, WEB-splines are linearly 

independent, too. 

 The factor ( )  ix causes the WEB-splines to vanish on the boundary and 

magnifies functions supported near the boundary for scaling purpose. This fact will 

become important for proving the stability aspect of the WEB-splines. 

 By forming linear combinations, the support of a WEB-spline is in general bigger 

than that of a B-spline. However, restricting nonzero coefficient e ij  to indices with 

1i j  guarantees that the diameter of the support of WEB-spline is still .h  

In particular, WEB-splines with support sufficiently wellseparated from the 

boundary are just ordinary B-spline multiplied by ( ).  ix  Hence, only 1 mh  

WEB-splines involve linear combinations of outer B-splines. 

 The uniform boundedness of the coefficients ,e ij  
prevents the WEB-spline from 

growing in an uncontrolled way as the grid width h is tending to zero. 

Now, let 

                                            

( ) ( ), ( )
I

y c B


  i i

i

x x x                                       (5) 

where , ( )c Ii i are unknown and B i are WEB-splines defined above. To obtain , ( ),c Ii i

we encounter with the linear system of equations derived by the Ritz-Galerkin 

approximation of Poisson's problem (2). In fact we should solve the a nonsingular linear 

system of equations as 

                                                                AC F                                                             (6) 

where 

 1 2{ } with . and , ,..., ,
T

ij K K ij KA A B B d c c c



     i jA x C  

and 

 1 2, ,..., with ( ) ,
T

K if f f f u B d



   iF x  

in which K is the number of inner B-splines. Note that 2( )Cond h A   ( see [3]). 

By solving (6) and substituting the coefficients c i in (5) an approximate solution for 

Poisson's problem (2) can be derived.  

In the sequel by using the results of [1, 2, 3, 7 and 8], we study some advantages of WEB-

spline finite element method and then provide a numerical algorithm for the control-state 

problem (1-2).  

Some advantages of WEB-spline finite element method are respectively, no mesh 

generation is required, the uniform grid is ideally suited for parallelization and multigrid 

techniques, accurate approximations are possible with relatively low-dimensional 

subspaces, smoothness and approximation order can be chosen arbitrarily and finally 

hierarchical bases permit adaptive refinement. 

 

A numerical algorithm for the given control-state problem 

 Let 2
1 2 1 2 1 3 2 4 1 2( , ) ( ),u x x s s x s x s x x L      where 1 2 3, ,s s s and 4s  are the 

unknown coefficients. 

 Solve Poisson's problem: 
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1 2 1 3 2 4 1 2 ,

0 ,

y s s x s x s x x in

y on

     


   

 using the WEB-spline finite element method and obtain an approximate solution 

for the state function ,y ( show it by y ). Clearly, we should first solve the 

following problems 

1

1

1

0       ,

y in

y on

  


 
 

2 1

2      0 ,

y x in

y on

  


 
 

3 2

3      0 ,

y x in

y on

  


 
 

and 

4 1 2

4      0 ,

y x x in

y on

  


   

and then take 1 1 2 2 3 3 4 4 ,y s y s y s y s y    where 1 2 3, ,y y y and 4y are the 

approximate solutions of the above problems. 

 Replace the state and control function y and 1 2 1 2 1 3 2 4 1 2( , )u x x s s x s x s x x    in 

(1). 

 Apply the generalized Newton method and compute unknown values 1 2 3, ,s s s and 

4 .s  

4. A Numerical Example 

In this section, to show the accuracy and efficiency of the WEB-spline finite element 

method for the optimal control-state problem (1-2), we consider the following problem, 

which is expressed by Hinze in [6] 

2
2 2

2

2
2

1 ( )( , ) ( ) ( )
( )

1 0.1 1
( , ) : ( 0.5 ) ,

2 2 Ly u L L
L

Min J y u y sign x u
   



    

 
subject to 

  2, 0,1 [0,1 ], ( )

      0

ady u in x u U L

y on

        


 

 

where y  and u  are the state and control functions, respectively. 

Let 1 2 1 2 1 3 2 4 1 2( , )u x x s s x s x s x x   
 

where 1 2 3, ,s s s
 

and 4s  are unknown constant 

coefficients. We solve the Poisson equation with Dirichlet boundary conditions using 

WEB-spline finite element method in which the step size is considered 0.5, 0.25h and the 

weight function (Rvachev method) is as 

2 2 2 2 2 2
1 2 1 2 1 2 1 2 1 2( , ) 1 (1 ) ( ) .x x x x x x x x x x            

Then we determine the state function y  depending on the unknown parameters 1 2 3, ,s s s

and 4s . 

By substituting y and 1 2 1 2 1 3 2 4 1 2( , )u x x s s x s x s x x    in the functional ,J  we reach a 

nonlinear function with respect to pour variables 1 2 3, ,s s s and 4 .s  
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In order to minimize the functional J , the generalized Newton method can be used and the 

optimal value of J  is therefore obtained. In this example, by using 20 iterations of the 

Newton method, we have obtained the unknown values 1 2 3 4, , ,s s s s  and the optimal value 

.J  Numerical results are listed in tables 1, 2, 3 and the function 1 2( , )u x x  is shown in 

figures 1 and 2. 

h  1s  2s  3s  4s  J  

0.5  0.0204769  0.0318994  0.0188897  0.0742583  0.25003  

0.25  0.0195079  0.0296133  0.0175944  0.0637552  0.249974  

Table 1. Control function u  for different iterations by the iterative Newton method. 

1 2( , )x x  1 0.2x  2 0.4x  3 0.6x  4 0.8x  

1 0.2x  0.0132895  0.00987991  0.00647036  0.00306081  

2 0.4x  0.0124819  0.0120426  0.0116034  - 

3 0.6x  0.0116743  0.0142054  - - 

4 0.8x  0.0108667  - - - 

Table 2. Function 1 2( , )u x x  with 20 iterations by the Newton method and the step size 0.5.h   

1 2( , )x x  1 0.2x  2 0.4x  3 0.6x  4 0.8x  

1 0.2x  0.0126166  0.0116479  0.0106793  0.00971059  

2 0.4x  0.00924416  0.0108257  0.0124072  - 

3 0.6x  0.00587172  0.0100035  - - 

4 0.8x  0.00249928  - - - 

Table 3. Function 1 2( , )u x x  with 20 iterations by the Newton method and the step size 0.25.h . 

 

 
               Figure 1. Function 1 2( , )u x x in the interval 0,1 [0,1 ]x with the step size 0.5h . 
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               Figure 2. Function 1 2( , )u x x in the interval 0,1 [0,1 ]x with the step size 0.25h . 
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