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Abstract
The main object of the present paper is to derive some results for multivalent
analytic functions defined by a linear operator. Making use of a certain operator,
which is defined here by means of Hadamard product, we introduce a subclasses

S”V(a A u,v,a,c) of the class A(p) of normalized p-valent analytic functions on

the open unit disk. Also we have extended some of the previous results and have
given necessary and sufficient condition for this class.

Keywords: Analytic functions, Multivalent functions, Hadamard product, Subordination,
Linear operators.

1. Introduction
Let A(p) denote the class of functions f of the form:

f(2) =2zP + X7 ap 2P T* (1.1
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(p € N ={1,2,...}) which are analytic in the open unit disk A = {z € C: |z| < 1}.
We write A(l) = A. If f and g are analytic in A, we say that f is subordinate to %
|n A erttendf < g, if there exists Schwarz function w, analytic in A wit

= 0 an |w z) | < 1 in Asuch that f(z) = (W(z)) z €A If g is
unlvalent and g {(0) then f(A) c g(A) it follows f < g. For two
functions f glven y (1 1) and g given by

g(2) =7 + Z by 277,
k=1

their Hadamard product (or convolution) is defined by

(D@ =2+ ) @by 2
k=1

Fora € R, c € R\Z,, where Zy :={...,—2,—1, 0}, we introduce a linear operator
Ju2 (a,0): A(p) — A(p)
defined by
(a,0f(@) =yt (a,c;2)xf(2), (fEAP)zEN), (1.2)

where

@i+ +1-—p+v) P
— (O +1-wWr(P+1-2+V)

qu,’f (a,c;z) =zP + ) (1.3)

and (d),, is the Pochhammer symbol defined by

k=0
(@ = {d(d+1)(d+2) (d+k-1) keN.

Also0<A1<1, yveRandu—v —p < 1. We note that:
Ei) I]f A= u = 0in (1.2), then we have a linear operator was introduced by Saitoh
19].

(i) If a=c=1in (12), then ¢;7(ac;2)*f(2) = A4V f(2), where
A ©" f(2) is the fractional operator introduced by Choi[6].
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We now introduce the following family of linear operators L D% £(z) analogous to
W P(a,c):
L5 (a,€):A(p) — Alp)

which defined as

L2 (a,0)f(2) =P, 2%(a,¢;2) * f(2), (1.4)

where 1/;1 P%(a, c; z) is the function defined in terms of the Hadamard product by

the following condition:

Ap . Ap.a c ) — z?
v (a,c;z) * l/),u,v (a,c;z) = m, (a > —p). (15)

We can easily find from (1.3)-(1.5) that

[ina _ (O P+ (pHL-A4V)i (a+p &
(@)f(2) =20 + 2kt ™ i riprnge Gtk (16)

By definition and specializing the parameters A, i, p, a, c and a we obtain:

LV +1Df(2) = f(2) and  Lob'(p,1)f(2) = zf'(2)/p. It should be

remarked that the linear operator Lj,f,’ “(a,0)f(2) is a generalization of many

other linear operators considered earlier. In particular, for f € A(p), we have the
following observations:

. ngvp‘“ (a,0)f (2) = 33 (a,c)f (2), the Cho-Kwon-Srivastava operator [5].

3 Lgﬁ’“(a, a)f(z) = D*P~1f(z), where D1 is the Well-known
Ruscheweyh derivative of (a + p — 1)-th order was studied by Goel and
Sohi [9].

o LD +1-2Df(2) =0l = % ADAF(2), where Q4P is the
fractional derivative operator defined by Srivastava and Aouf [20] and
D} f(2) is the fractional derivative of f(z) of order A [12, 15,17].

o L3y Ha,)f(2) =IF“f(2), the linear operator investigated by Hohlov
[11].
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ng_“'“ (a,0)f(2) = £,(a,c)f(2), the linear operator studied by Saitoh [19]
which yields the operator L(a,c)f(z) introduced by Carleson and Shaffer
forp = 1[3].

o LV (a+p+LDf(@) = Fop (N =22 [ t*7 (D)t (@ > —p), the
generalized Bernardi-Libera-Livingston integral operator [7].

o LA+ LWf(2) =T,,f(2),(A>-1u>0), the  Choi-Saigo-
Srivastava operator which is closely related to the Carleson-Shaffer operator
L2 + Df(2)[3]

. Op 1(p +a,1)f(z) =73,,f(2), (a € Z a > —p), the operator considered by

L|u and Noor [13].

Now by using the linear operator Lﬁ:f “(a, c)f (2), defined by (1.6), we introduce
the new class 3% (@, 4, 1, v, a, ¢) as follows:

Definition 1.1. We say that a function f € A(p) is in the class S; % (a, 4, i, v, a, ©),
iIf it satisfies the following condition:

1 [ (a0 f (@) 1+ Az
— il 4 < )
p—y zp—1 1+ Bz

z €A, (1.7)

where =1 <B < A <land0<y < p.

By specializing the parameters A,B,a, A, u,y,a,c and p, we obtain many classes
which were studied by authors earlier. For more details see [1,2,4,10,12,14,15].
The aim of this paper, is to give more results the above class of multivalent
functions. Also we continue and extended some of the previous results and have
given other properties of this class.

2. Main Results

Theorem 2.1. A function f € A(p) belongs to the class S} (@, 4, i, v, a, ¢) if and
only if

(F+X)(2) z[(f*X)(2)] 1+ A4z
N RN

zP 1+ Bz’
where
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ey P i(c)k(pﬂ e LA VUE@E Dk s

(@@ + D@+ 1—p+v)k!
Proof. Let f € A(p). From (1.7) we have

1
p—vY

zp—1

Ly (@ f @) y]

1 - w ©rp+1l-pw)(@+1-1+v)i(a+p)i - -
= p-1 k p+k-1/,p-1 _
p—y [pz MR e W woremmr wr Al LU A y]

_ o @rp+1-pw) @+1-24+v), (a+p)k (p+k) k
=1+ 2 -1 (@)k @+Di (p+1—p+v) k! Pk

_ o k o (1) (p+1-A+v)i(a+pli(P+k) i
= [1+ Ziapnt] + |14+ D B e S S 7

_ (0@ +g[(f*x>(z)' Lz A
zP p 1+Bz

and therefore the left-hand side of (1.7) and of (2.1) are the same. |
Ifweputa =c=11=pu=0anda =p+ 1intheorem 2.1, we have:
Corollary 2.1. A function f € A(p) belong to S, (4, B,y)(see [2]) if and only if

1+ Az
1+ Bz

ey o gt <

Ifweputa=A=c=11=u=0,B=-1anda =p+ 1intheorem 2.1, we
have:
Corollary 2.2. A function f € A(p) belong to S, (y)(see [15]) if and only if

142z
+—Z(p + k)ap+kz < T+ s

Ifweputa=c=1A1=u=y=0anda =p+1intheorem 2.1, we have:
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Corollary 2.3. A function f € A(p) belong to S, (4, B)(see [4]) if and only if

1+ Az
14— Z(p + k)ap+kz <7 e

IfweputA=a=c=1,1=u=0B=—-1and a = n intheorem 2.1, we have:
Corollary 2.4. A function f e A(p) belong to 7, ,,,_1 (y)(see [10]) if and only if

(p+k)(n+p)k , 1tz
p V 1+z

Ifweputa=c=1,A=u=y=0,A- —-A,B— —Band a = n in theorem 2.1,
we have:
Corollary 2.5. A function f € A(p) belong to V, ,, (4, B)(see [12]) if and only if
1 (p+ k) + 1- Az
14 = (p )( p)k ap+ka < .
1-Bz

I
pk=1 k!

Ifweputa=c=1,1=u=0A- —A,B - —B and a = nin theorem 2.1, we

have:

Corollary 2.6. A function f € A(p) belongto V, ,,(4, B,y)(see [1]) if and only if
1 < p+k)(n+p) 1-— Az

1+ a, .,z < .
p-y& k! pk 1- Bz

Ifweputa=c=p=L,A=u=y=0A-—-AB->—-Banda=p+1in
theorem 2.1, we have:
Corollary 2.7. A function f € A(p) belong to K (4, B)(see [14]) if and only if

1+z(1+k) P 174z
a VA .

Theorem 2.2. A function f bel_ongs to the class S, (a, 4, u, v, a, ¢) if and only if
there exists a Schwarz function w(z) such that

B el y p Y1+ Aw(t) B
f(z) = [ZQ(k) p+k Zp k] zp[f . 1+BW(t))dt anp]

where
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O +1-wWir(@+1-2+v)i(a+p
(@r(@+L(@+1-—u+v)k!

Q(k) =

Proof. Let f € Sy%(a, 4,1, v,a,c). Then from the definition 1.1, we have
1 [ (@0f @) 1+ Aw(2)
p—y zp~1 - =1+BW(Z)'

where |w(z)| < 1in A with w(0) = 0. Therefore

Z E A,

Ly @af @) _y  @=1)1+Aw@)
zP oz z 1+ Bw(z)

Ly (@, f () y (@—v)1+Aw(t)
:f tp dt:j[_Jr t 1+Bw()

V4

(a o)f (2)

+ Ln zP + Z Q(k)%aerkzk
k=1

j [V (p Y) 1+ Aw(t)
t 1+ Bw(t)

Thus from (1.4) and (1.6) we obtain

p+ N v, (P—v)1+Aw(d)
f(z)*ZQ(")[ Zpk ZpU t 1+Bw(t)]dt_Lan]’

and our assertion follows immediately. |
Remark 2.1. By specializing the parameters A,B,a, A, u,v,a,c,p and by using
Theorem 2.2 and Corollaries 2.1-2.7, we get necessary and sufficient condition for
functions belongs to classes were studied in [1,2,4,10,12,14,15].
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