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Abstract 
In this paper we represent an efficient algorithm for finding the interval solution for the interval linear 

system. This algorithm applies the optimization problem based on gradient vector in order to obtain the 

lower bound and upper bound of the interval solution. 
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1: Introduction 

 
When the calculation of a square and nonsingular matrix whose entries are real numbers is concerned, one 

of the computing methods is that one writes it down in the form of linear equation system composing of 

the product of n×n by n×1 vector where the former denotes the coefficients and latter represents the 

unknowns. In interval arithmetic direct method have been introduced e.g. the interval Gauss algorithm [2] 

Computation of algebraic solution to interval system via system of coordinates, Scientific computing, 

Validated numerics, Interval methods [9]. The interval linear equation system and interval arithmetic 

proposed by [14] are employed in order to compute interval linear system. Also, the definitions of 

Cramer’s rule, which are fundamental parts of, gradient vector and multivariate function is introduced. 

The organization of the paper is follows. In Section 2, the definitions related to interval number, and  
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interval matrix is given briefly. Then interval arithmetic and interval linear equation systems we clarify 

Cramer’s rule for solving an interval liner system. In Section 3 includes some new definitions pertinent to 

calculating the interval linear system matrix. An example is given in Section 4. Final section is a 

conclusion. 

 

2-1: Preliminary.   

 
Definition (2-1-1): Really that the closed interval denoted by [a, b] is the set of real numbers given by 

 𝑎, 𝑏 =  𝑥𝜖ℛ: 𝑎 ≤ 𝑥 ≤ 𝑏  
 Although various other types of intervals   (open, half-open) appear throughout mathematics our work 

well center primarily on closed intervals. In this paper, the term interval will mean closed interval. We 

will adopt the convention of denoting intervals and their endpoints by capital letters. The left and right 

endpoints of an interval 𝐴 will be denoted by 𝐴 and 𝐴. Thus  𝐴 =  𝐴, 𝐴 .The intervals 𝐴  and 𝐵  are said to 

be equal if they are the same sets. 
 

                               A=B   if and only if  𝐴 = 𝐵  𝑎𝑛𝑑  𝐴 = 𝐵 

 

Definition (2-1-2): ( Endpoint formulas of the arithmetic operations) 

 
Let us find and operational way to add interval. Since 

 

𝑎𝜖 𝐴means that     𝐴 ≤ 𝑎 ≤ 𝐴 

𝑏𝜖𝐵means that     𝐵 ≤ 𝑏 ≤ 𝐵 

 

We see by addition of inequalities that the numerical sum 𝑎 + 𝑏𝜖 𝐴 + 𝐵must  

 

Satisfy                                                     A + B ≤ a + b ≤ A + B 

 

Hence                                                      A+B=  𝐴 + 𝐵 , 𝐴 + 𝐵  

 

And                                                     −𝐴 =  −𝐴, −𝐴 =  𝑎: 𝑎𝜖𝐴  
For subtraction we add the inequalities 

𝐴 ≤ 𝑎 ≤ 𝐴 and−𝐵 ≤ −𝑏 ≤ −𝐵 

 

To get                                                   𝐴 − 𝐵 ≤ 𝑎 − 𝑏 ≤ 𝐴 − 𝐵 

 

It that                                                       𝐴 − 𝐵= [𝐴 − 𝐵, 𝐴 − 𝐵] 
 

Defined product 𝐴 × 𝐵 of two interval 𝐴 and 𝐵. [10, 11, 12] 

𝐴 × 𝐵 =  min 𝑠, max 𝑠  ,   where    𝑠 = {𝐴𝐵, 𝐴𝐵, 𝐴𝐵, 𝐴𝐵} 

A two-dimensional interval vector 

𝐴 =  𝐴1, 𝐴2 = [ 𝐴1, 𝐴1 ,  𝐴2, 𝐴2 ] 
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 Can be represented as a rectangle in the 𝑎1𝑎2-plans: It is the set of all point (𝑎1, 𝑎2) such that    

𝐴1 ≤ 𝑎1 ≤ 𝐴1        , 𝐴2 ≤ 𝑎2 ≤ 𝐴2 

Definition (2-1-3):The support of an interval number is given as 𝐴 =  [𝐴 , 𝐴] , an interval number is said 

to be positive if 0 ≤ 𝐴 ≤ 𝐴. Similarly, an interval number is said to be negative if 𝐴 ≤ 𝐴 < 0. 

The width and midpoints of an interval 𝐴 is defined and denoted by   

 

𝜔 𝐴 = 𝐴 − 𝐴      𝑎𝑛𝑑      𝑚 𝐴 =
𝐴 + 𝐴

2
 

 

2-2: Inverse of an interval matrix [13]. 
 

Definition (2-2-1):An interval matrix 𝐴  is a matrix whose elements are interval numbers. An interval 

matrix 𝐴  will be written as: 𝐴 =  
𝑎 11 ⋯ 𝑎 1𝑛

⋯ ⋯ ⋯
𝑎 𝑛1 ⋯ 𝑎 𝑛𝑛

 =  𝑎 𝑖𝑗    1 ≤ 𝑖 ≤ 𝑚  , 1 ≤ 𝑗 ≤ 𝑛 where each 

 𝑎 𝑖𝑗 =  𝑎𝑖𝑗 , 𝑎𝑖𝑗   or 𝐴 =  𝐴, 𝐴  for some 𝐴 , 𝐴 satisfying 𝐴 < 𝐴. We use 𝑅𝑚×𝑛  to denote the set of all 

(m×n) interval matrices. The midpoint (center) of an interval matrix 𝐴  is the matrix of midpoints of its 

interval elements definedas        𝑚 𝐴  =  
𝑚(𝑎 11) ⋯ 𝑚(𝑎 1𝑛)

⋯ ⋯ ⋯
𝑚(𝑎 𝑛1) ⋯ 𝑚(𝑎 𝑛𝑛 )

 .  

 

We introduce the following arithmetic operations on interval matrices. As with interval numbers, we 

define the arithmetic operations on interval matrices as follows. If  𝐴 , 𝐵 ∈ 𝑅𝑚×𝑛  , 𝑋 ∈ 𝑅𝑛  𝑎𝑛𝑑 𝛼 ∈ 𝑅, 

then 

 

 𝑖 .        𝛼 𝐴 =  𝛼 𝑎 𝑖𝑗        1 ≤ 𝑖 ≤ 𝑚   ,   1 ≤ 𝑗 ≤ 𝑛.                                          

 

 𝑖𝑖 .     𝐴 + 𝐵 =  𝑎 𝑖𝑗 + 𝑏 𝑖𝑗    1 ≤ 𝑖 ≤ 𝑚   ,   1 ≤ 𝑗 ≤ 𝑛 .                                 

 

 𝑖𝑖𝑖 .     𝐴 − 𝐵 =  
 𝑎 𝑖𝑗 − 𝑏 𝑖𝑗    1 ≤ 𝑖 ≤ 𝑚 ,   1 ≤ 𝑗 ≤ 𝑛     ,   𝑖𝑓 𝐴 ≠ 𝐵  

𝐴 − 𝑑𝑢𝑎𝑙 𝐴  = 0 = 0                           ,     𝑖𝑓 𝐴 = 𝐵 
       

 

𝐴 =  𝐴, 𝐴 → 𝑑𝑢𝑎𝑙𝐴 = 𝑑𝑢𝑎𝑙 𝐴, 𝐴 =  𝐴, 𝐴 . 

 

 𝑖𝑣 .       𝐴 𝐵 =   𝑎 𝑖𝑘𝑏 𝑘𝑗

𝑛

𝑘=1

     1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛.                          

 

 𝑣 .      𝐴 𝑋 =   𝑎 𝑖𝑗 𝑥 

𝑛

𝑗 =1

    1 ≤ 𝑖 ≤ 𝑚.                                                   

 

Definition (2-2-2): We define the determinant of a square interval matrix as in the case of real square 

matrix except that the determinant of an interval matrix is an interval number.  
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That isdet 𝐴 =  𝐴  =  𝑎 𝑖𝑗 𝐴 𝑖𝑗  , where 𝐴 𝑖𝑗  is the cofactor of 𝑎 𝑖𝑗 with usual meaning.It is easy to see that 

most of the properties of determinants of classical matrices are hold good (up to equivalent) for the 

determinants of interval matrices under the modified interval arithmetic. 

 

Definition (2- 2-3): A square interval matrix 𝐴 is said to be non singular or regular if |𝐴 | is invertible 

 (𝑖. 𝑒 , 0 ∉ |𝐴 |). Alternatively, a square interval matrix 𝐴  is said to be invertible if  𝐴  is invertible 

 (𝑖. 𝑒 , 0 ∉ |𝐴 |). 

Example (2-2-3) :Let     𝐴 =  𝐴, 𝐴 =  
[1,2] [3,4]

[−9,1] [8,10]
  

 Then   𝐴  =  
 1,2  3,4 

 −9,1  8,10 
 =  1,2  8,10 −  −9.1  3,4 =  8,20 −  −36,4 =  4,56  

We see that 0 ∉  𝐴  =  4,56  and hence |𝐴 |is invertible. So that 𝐴  is regular. 

Definition (2-2-4):  Let 𝐴  be a square interval matrix. The adjointmatrix 𝐴 ∗of 𝐴 is the transpose of the 

matrix of cofactors of the elements of 𝐴 . 

That is 𝐴 ∗ = 𝑎𝑑𝑗  𝐴  = (𝑏 𝑖𝑗 ), where 𝑏 𝑖𝑗 = |𝐴𝑖𝑗 |, for all 𝑖, 𝑗 = 1,2,3, … , 𝑛 

 Some of the solution of linear systems procedures are based an extension arithmetic .On the other hand, 

[2,7, 11, 14].Consider 

                                                        𝐴 𝑋 = 𝐵                                                   (1)                                  

Matrix𝐴  in this equation represents the coefficient matrix.𝑋  vector is unknown and 𝐵  vector right-hand 

side. 

3-1: Calculating interval linear system ([14]) 

 
In this section, some definitions will be introduced in order to help in calculating linear system. These are 

multivariate function and gradient. 

 

 

Definition (3-1-1). Consider the n× n liner system of equations: 

 

 
 

 
 𝑎 11 × 𝑥 1 +  𝑎 12 × 𝑥 2 + ⋯ +  𝑎 1𝑛 × 𝑥 𝑛 = 𝑏 1

 𝑎 21 × 𝑥 1 +  𝑎 22 × 𝑥 2 + ⋯ +  𝑎 2𝑛 × 𝑥 𝑛 = 𝑏 2

⋮
 𝑎 𝑛1 × 𝑥 1 +  𝑎 𝑛2 × 𝑥 2 + ⋯ +  𝑎 𝑛𝑛 × 𝑥 𝑛 = 𝑏 𝑛

                                         (2) 

 

The matrix form of the above equation is   𝐴 𝑥 = 𝑏 . Then for 2×2 matrix we have: 

 

 
𝑎 11 𝑎 12

𝑎 21 𝑎 22
  

𝑥 1

𝑥 2
 =  

𝑏 1

𝑏 2

  3  

 

 Where 𝑎 𝑖𝑗 =  𝑎𝑖𝑗 , 𝑎𝑖𝑗  , 𝑥 𝑖 =  𝑥𝑖 , 𝑥𝑖 , 𝑏 𝑖 =  𝑏𝑖 , 𝑏𝑖   ,    for  𝑖, 𝑗 = 1,2.   

 

Definition (3-1-2).[4]: In this section we find inversion approximately another method for solving the 

linear system of equations in crisp case 𝐴𝑥 = 𝑏 , is Cramer’s rule which states that each entry 𝑥𝑖 in the 
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solution is a quotient of two determinants [15]. For solving interval linear systems (1) With this method, 

consider Eq, (2). Thus𝑥𝑖 = (𝑥1, 𝑥2, … , 𝑥𝑛) is called the answer equation if the 

 

𝑥𝑖 =
det(𝐴 (𝑖))

det(𝐴 )
                  𝑖 = 1, 2, … . , 𝑛, 

Where 𝐴 (𝑖) denotes the matrix obtained from 𝐴  by replacing its ith column by 𝑏 . Based on extension 

principle, Then 𝑥𝑖 = (𝑥𝑖 , 𝑥𝑖) 

𝑥𝑖 =  min
det(𝐴(𝑖))

det(𝐴)
 𝑎𝑖𝑗 ≤ 𝑎𝑖𝑗 ≤ 𝑎𝑖𝑗     ,    𝑏𝑖𝑗 ≤ 𝑏𝑖𝑗 ≤ 𝑏𝑖𝑗   

 

𝑥𝑖 =  max
det(𝐴(𝑖))

det(𝐴)
 𝑎𝑖𝑗 ≤ 𝑎𝑖𝑗 ≤ 𝑎𝑖𝑗     ,    𝑏𝑖𝑗 ≤ 𝑏𝑖𝑗 ≤ 𝑏𝑖𝑗   

Obviously: 

𝑥𝑖 = 𝑓𝑖 𝑎11, 𝑎12 … , 𝑎𝑛1, 𝑎𝑛𝑛 , 𝑏1, … 𝑏𝑛    ,      𝑖, = 1,2, … , 𝑛          4  

 

 

Definition (3-1-3):  (Multivariate  function.) 

If the functions range is a sub- set of real numbers and is called the scalar function. If the domain and 

range of a function of𝑅𝑛  and𝑅𝑚 are non-empty subsets of vector n, then the function will be called the 

multivariate vector function. Then   𝑓: 𝐴 ⊂ 𝑅𝑛 → 𝑅 

If 𝑓: 𝐴 ⊂ 𝑅𝑛 → 𝑅  is a multivariate function then for every 𝑥𝜖𝐴 , 𝑓 𝑥  𝜖 𝑅. Thus we have  

𝑓 𝑥 = 𝑓 𝑥1, 𝑥2, … , 𝑥𝑛  

Theorem (3-1-1): 𝑓: 𝐴 ⊂ 𝑅𝑛 → 𝑅  , 𝑓 𝑥 = 𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 is continuous for𝑐𝜖 𝑅𝑛  if and only if the 

entire components are continuous at this point. A special case of multivariate functions has been 

considered. 

 

Definition (3-1-4): If there is the partial function of𝑓: 𝐴 → 𝑅 at the point 𝑥0𝜖 𝐴, then the vector ,will be 

called the gradient of 𝑓 at the point 𝑥0, and  it will be represented by the symbol  ∇𝑓(𝑥0) . 

∇𝑓 𝑥0 =  
𝜕𝑓

𝜕𝑥1

 𝑥0 , … ,
𝜕𝑓

𝜕𝑥𝑛

 𝑥0   

If the function  𝑓: 𝑅𝑛 → 𝑅 in the neighborhood of the point  𝑥0 = (𝑥1
(0), 𝑥2

(0), … , 𝑥𝑛
(0)) ispartial, and the 

partial derivatives are continuous at the point  𝑥0 , then the derivative of 𝑓 at the point  𝑥0 and 𝑢 will be as 

follows: 

𝐷𝑢𝑓 𝑥 = ∇𝑓 𝑥 . 𝑢 

The negative derivative of 𝑓 at the point𝑥0 and the gradient vector inner product of 𝑢 is the unit vector 𝑢. 

The maximum value of the derivative at each point is the direction of the gradient and the minimum value 

of the derivative at each point can be obtained in the opposite direction of the gradient. 
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3-2: Implementation. [6] 

 
The derivative of 𝑓 at (an interior point of its domain)  𝑥, denoted by 

f ΄(𝑥), and defined by  

𝑓΄ 𝑥 = lim
𝑥𝑛 →𝑥

𝑓 𝑥 − 𝑓(𝑥𝑛)

𝑥 − 𝑥𝑛
 

  
Let us consider a differentiable function  𝑓: 𝑅 → 𝑅. The derivative offat (an interior point of its domain) x 

is denoted by 𝑓 ’(𝑥). If 𝑓 ’(𝑥)>0 then we say that f is increasing at x, if 𝑓 ’(𝑥)<0 then we say that f is 

decreasing at x, if 𝑓 ’(𝑥) = 0 then f can have a local maximum, minimum or inflexion  point at x. 

 

 
                                                         Figure 3-1    Derivative of function f. 

 

  A differentiable function is always increasing in the direction of its derivative, and decreasing in the 

opposite direction. It means that if we want to find one of the local minima of a function f starting from a 

point 𝑥° then we should search for a second candidate in the right-hand side of 𝑥° if 𝑓 ’(𝑥°)<0 (when f is 

decreasing at 𝑥° ) and in the left-hand side of 𝑥°  if 𝑓 ’(𝑥°)>0 (when f increasing at 𝑥° ). The equation for 

the line crossing the point (𝑥° ;𝑓 ’(𝑥°)) is given by 
 

𝑦 − 𝑓(𝑥°)

𝑥 − 𝑥°
= 𝑓 ΄(𝑥°) 

That is 

𝑦 = 𝑓 𝑥° + (𝑥 − 𝑥°)𝑓 ’(𝑥°) 

 

The next approximation, denoted by 𝑥1, is a solution to the equation 

 

0 = 𝑓 𝑥° + (𝑥 − 𝑥°)𝑓 ’(𝑥°) 

Which is 

𝑥1 = 𝑥° −
𝑓(𝑥°)

𝑓΄(𝑥°)
 

This idea can be applied successively, that is 

 

𝑥(𝑛+1) = 𝑥(𝑛) −
𝑓(𝑥(𝑛))

𝑓΄(𝑥(𝑛))
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Figure 3-2     The downhill direction is negative at 𝑥0 

 

The above procedure is a typical descent method. In a descent method the next iteration 𝑥(𝑛+1) should 

satisfy the following property  

𝑓(𝑥 𝑛+1 ) < 𝑓(𝑥 𝑛 ) 

 

   I.e. the value of f at 𝑥(𝑛+1) is smaller than its previous value at𝑥(𝑛)  .  

In error correction learning procedure, each iteration of a descent method calculates the downhill 

direction (opposite of the direction of the derivative) at𝑥(𝑛)which means that for a sufficiently small 

𝜇 > 0 the inequality 

                           𝑓 𝑥(𝑛) − 𝜇𝑓 ’(𝑥)(𝑛) < 𝑓(𝑥)(𝑛) 

should hold, and we let 𝑥(𝑛+1) be the vector  

                       𝑥 𝑛+1 = 𝑥 𝑛 − 𝜇𝑓΄ 𝑥 𝑛   

 

 Let 𝑓: 𝑅𝑛 → 𝑅 be a real-valued function. In a descent method, whatever is the next iteration, 𝑥(𝑛+1), it 

should satisfy the property 

𝑓(𝑥 𝑛+1 ) < 𝑓(𝑥 𝑛 ) 
I.e. the value of f at 𝑥(𝑛+1) is smaller than its value at previous approximation   𝑥(𝑛). Each iteration of a 

descent method calculates a downhill direction (opposite of the direction of the derivative) at 

( 𝑥)(𝑛)which means that for a sufficiently small 𝜇>0 the inequality 

 

𝑓(𝑥 𝑛 − 𝜇𝑓 ’(𝑥 𝑛 ) < 𝑓(𝑥 𝑛 ) 

Should hold, and we let 𝑥(𝑛+1) be the vector 

 

                  𝑥(𝑛+1) = 𝑥 𝑛 − 𝜇𝑓 ΄ 𝑥 𝑛                           
 

The (𝑥𝑖) is function of (𝑎11, 𝑎12 … , 𝑎1𝑛 , … , 𝑎𝑛1, … , 𝑎𝑛𝑛 , 𝑏1, … , 𝑏𝑛) i.e  

 

𝑥𝑖 = 𝑓𝑖   (𝑎11, 𝑎12 … , 𝑎1𝑛 , … , 𝑎𝑛1, … , 𝑎𝑛𝑛 , 𝑏1, … , 𝑏𝑛) ,      𝑖, = 1,2, … , 𝑛 

 

  The goal, then, is to minimize this function. It turns out, if the output functions are differentiable, that 

this problem has a simple solution: namely, we can assign a particular unit blame in proportion to the 

degree to which changes in that unit's activity lead to changes in the error. That is, we change the weights 

of the system in proportion to the derivative of the error with respect to the weights. The rule for changing 

weights following presentation of input/output pair (𝑥1
(𝑛), 𝑥2

(𝑛)) is given by the gradient descent method, 

i.e. we minimize the quadratic error function by using the following iteration process: 
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(𝑎11, 𝑎12 … , 𝑎1𝑛 , … , 𝑎𝑛1, … , 𝑎𝑛𝑛 , 𝑏1, … , 𝑏𝑛)(𝑚+1)                    

= (𝑎11, 𝑎12 … , 𝑎1𝑛 , … , 𝑎𝑛1, … , 𝑎𝑛𝑛 , 𝑏1, … , 𝑏𝑛) 𝑚 

− 𝜇  
𝜕𝑥

𝜕𝑎11

,
𝜕𝑥

𝜕𝑎12

, … ,
𝜕𝑥

𝜕𝑎𝑛𝑛
,
𝜕𝑥

𝜕𝑏1

, … ,
𝜕𝑥

𝜕𝑏𝑛
  

 

 3.3. Summary  

 

 Step 1: The initial value is 𝑎𝑖𝑗
(0), which is positioned in the interval of[𝑎𝑖𝑗 , 𝑎𝑖𝑗 ]and usually 

consider  as the ( midpoint), It is  also assumed that𝜇 > 0 

 Step 2: We compute the gradient with regard to new variables. 

∇𝑥𝑖 =  
𝜕𝑥𝑖

𝜕𝑎11

,
𝜕𝑥𝑖

𝜕𝑎12

, … ,
𝜕𝑥𝑖

𝜕𝑎𝑛𝑛
,
𝜕𝑥𝑖

𝜕𝑏1

, … ,
𝜕𝑥𝑖

𝜕𝑏𝑛
           𝑖 = 1, … , 𝑛 

 Step 3: New matrix elements are follows: 

 

(𝑎11, 𝑎12 … , 𝑎1𝑛 , … , 𝑎𝑛1, … , 𝑎𝑛𝑛 , 𝑏1, … , 𝑏𝑛)(𝑚+1)                    

= (𝑎11, 𝑎12 … , 𝑎1𝑛 , … , 𝑎𝑛1, … , 𝑎𝑛𝑛 , 𝑏1, … , 𝑏𝑛) 𝑚 

− 𝜇  
𝜕𝑥

𝜕𝑎11

,
𝜕𝑥

𝜕𝑎12

, … ,
𝜕𝑥

𝜕𝑎𝑛𝑛
,
𝜕𝑥

𝜕𝑏1

, … ,
𝜕𝑥

𝜕𝑏𝑛
  

 

 Step 4: If  (𝑥𝑖
(𝑛+1)) <  𝑥𝑖

(𝑛)    we continue the training by going back to Step 2, otherwise we 

go to Step 5. 

 Step 5: minimum values of the unknown quantity 𝑥𝑖  is the step before. 
 

For simplicity:  we will consider the square matrix which consists of interval numbers is and 𝑥 =  𝑥1, 𝑥2 . 
 

4. Numerical examples 

 
  It this section one example is given in order to illustrate the proposed method. Let 𝐴  be 2×2 matrix 

which is given as follows and solve it using Cramer’s rule: 

 

 
[3,4] [1,2]

[0, 1] [7,8]
  

[𝑥, 𝑥]

[𝑦, 𝑦]
 =  

[2,4]

[−1,1]
  

Due to (4): 

                                                  𝑥𝑖 =  𝑓𝑖  (𝑎11, 𝑎12, 𝑎21, 𝑎22, 𝑏1, 𝑏2)       
 

𝜕𝑥1

𝜕𝑎11

=
𝑎22 𝑏2𝑎12 − 𝑎22𝑏1 

 𝑎11𝑎22 − 𝑎12𝑎21 
2

𝜕𝑥1

𝜕𝑎12

=
𝑎22 𝑎21𝑏1 − 𝑏2𝑎11 

 𝑎11𝑎22 − 𝑎12𝑎21 
2
 

 
𝜕𝑥1

𝜕𝑎21

=    
𝑎12 𝑏1𝑎22 − 𝑎12𝑏2 

 𝑎11𝑎22 − 𝑎12𝑎21 
2

𝜕𝑥1

𝜕𝑎22

=
𝑎12 𝑎11𝑏2 − 𝑎21𝑏1 

 𝑎11𝑎22 − 𝑎12𝑎21 
2
 

𝜕𝑥1

𝜕𝑏1

=
𝑎22

𝑎11𝑎22 − 𝑎12𝑎21

𝜕𝑥1

𝜕𝑏2

=
−𝑎12

𝑎11𝑎22 − 𝑎12𝑎21

                   

 

Similarly 𝑥2 can be obtains with respect to its variables. 
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Step 1: 

 
3.5 1.5

0.50 7.5
  

𝑥1
(1)

𝑥2
(1)

 =  
3

0
  

We solve the system: 

𝑥1
(1) = 0.8823         ,        𝑥2

(1) = −0.058       

𝜕𝑥

𝜕𝑎11

= −0.2595        
𝜕𝑥

𝜕𝑎12

= 0.0173        
𝜕𝑥

𝜕𝑎21

= 0.0519      
𝜕𝑥

𝜕𝑎22

= −0.0035       
𝜕𝑥

𝜕𝑏1

= 0.2941      

𝜕𝑥

𝜕𝑏2

= −0.0588 

Assuming   𝜇 = 0.05 we have 

 

Step 2: 

𝑎𝑖𝑗
(2) = 𝑎𝑖𝑗

(1) − 0.05(∇𝑓) 

𝑎𝑖𝑗
(2) =  3.5, 1.5, 0.50, 7.5, 3, 0 − 0.05 −0.2595, 0.0173, 0.0519, −0.0035, 0.2941, −0.0588 

= (3.5130, 1.4991, 0.4974, 7.5002, 2.9853, 0.0029) 

 
3.5130 1.4991

0.4974 7.5002
  

𝑥1
(2)

𝑥2
(2)

 =  
2.9853

0.0029
  

𝑥1
(2) = .8744           ,         𝑥2

(2) = 0.0576   

⋮ 

Step 43: 

𝜕𝑥

𝜕𝑎11

= −0.1635      
𝜕𝑥

𝜕𝑎12

= 0.0052     
𝜕𝑥

𝜕𝑎21

= 0.0322     
𝜕𝑥

𝜕𝑎22

= −0.0010     
𝜕𝑥

𝜕𝑏1

= 0.2603  

𝜕𝑥

𝜕𝑏2

= −0.0513 

𝑎𝑖𝑗
(43) = 𝑎𝑖𝑗

(42) − 0.05(∇𝑓) 

 𝑎𝑖𝑗
 43 =  3.9240, 1.4782, .4159, 7.5043, 2.4350,0 .1120 

− 0.05 −0.1635, 0.0052, 0.0322, −0.0010, 0.2603, −0.0513 

=   3.9322, 1.4779,0 .4143, 7.5044, 2.4220, 0.1146  
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3.9322 1.4779

0.4143 7.5044
  

𝑥1
(43)

𝑥2
(43)

 =  
2.4220

0.1146
  

 

𝑥1
(43) = 0.6231        ,      𝑥2

(43) = −0.0191 
 

And for 𝑥𝑖we have: 

 

Step 1: 

 
3.5 1.5

0.50 7.5
  

𝑥1
(1)

𝑥2
(1)

 =  
3

0
  

We solve the system: 

𝑥1
(1) = 0.8823        ,               𝑥1

(1) = −0.058       

𝜕𝑥

𝜕𝑎11

= −0.2595        
𝜕𝑥

𝜕𝑎12

= 0.0173        
𝜕𝑥

𝜕𝑎21

= 0.0519      
𝜕𝑥

𝜕𝑎22

= −0.0035       
𝜕𝑥

𝜕𝑏1

= 0.2941      

𝜕𝑥

𝜕𝑏2

= −0.0588 

Assuming   𝜇 = 0.05 we have 

Step 2: 

𝑎𝑖𝑗
(2) = 𝑎𝑖𝑗

(1) + 0.05(∇𝑓) 

𝑎𝑖𝑗
(2) =  3.5, 1.5, 0.50, 7.5, 3, 0 + 0.05 −0.2595, 0.0173, 0.0519, −0.0035, 0.2941, −0.0588 

= (3.4870, 1.5009, .5026, 7.4998, 3.0147, −0.0029) 

 
3.4870 1.5009

0.5026 7.7998
  

𝑥1
(2)

𝑥2
(2)

 =  
3.0147

−0.0029
  

𝑥1
(2) = 0.8904               ,          𝑥2

(2) = −0.0601  

⋮ 

Step 31: 

𝜕𝑥

𝜕𝑎11

= −0.4097        
𝜕𝑥

𝜕𝑎12

= 0.0367      
𝜕𝑥

𝜕𝑎21

= 0.0840       
𝜕𝑥

𝜕𝑎22

= −0.0075        
𝜕𝑥

𝜕𝑏1

= 0.3434 

𝜕𝑥

𝜕𝑏2

= −0.0704 

𝑎𝑖𝑗
(31) = 𝑎𝑖𝑗

(30) + 0.05(∇𝑓) 
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 𝑎𝑖𝑗
 31 =  3.0343, 1.5366, 0.5942, 7.4926, 3.4564, −0.0923 

+ .05 −0.4097, 0.0367, 0.0840, −0.0075, 0.3434, −0.0704 

=   3.0138, 1.5384, 0.05984, 7.4922, 3.4736, −0.0958  

 
3.0138 1.5384

0.5984 7.4922
  

𝑥1
(31)

𝑥2
(31)

 =  
3.4736

−0.0958
  

 

𝑥1
(31) = 1.2083         ,        𝑥2

(31) = −0.1093       
 

Thus consider the value of 𝑥1 as follows. 

 𝑥1, 𝑥1 =  0.6231, 1.2083  

And similarly for 𝑥2also obtains wehave: 

 𝑥2, 𝑥2 = (−0.2075, −0.0520) 

By using the same notion 2×2 case can be easily extended to n×n case. 

5. Conclusion 
 

  In this paper, a method is proposed to calculate the interval linear systems. To solve this equation 

system, some definitions such interval matrix are introduced. According to the mentioned definitions, 

Cramer’s rule and gradient vector are also defined and applied in order to calculate the interval linear 

systems. It should be carefully considered that in order to calculate the interval linear systems by using 

our proposed method. We represent an efficient algorithm for finding the interval solution of the interval 

linear system. This algorithm applies optimization problem based on gradient vector in order to obtain the 

lower bound and upper bound of the interval solution. 
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