

On 3-dimensional $(L C S)_{n}$ manifolds

Sunil Kumar Srivastava, Vibhawari Srivastava*
Department of Science \& Humanities
Columbia Institute of Engineering and Technology, Raipur (INDIA)
E-mail -sunilk537@gmail.com
*Department of Mathematics \& Statistics
D. D. U Gorakhpur University Gorakhpur (INDIA)
E-mail -vibhawarisri254@gmail.com

Article history:
Received May 2013
Accepted June 2013
Available online July 2013

Abstract

The object of the present paper is to study 3-dimensional (LCS) ${ }_{n}$ which are Ricci semi symmetric, Locally \emptyset-symmetric and η parallel Ricci tensor and proved that 3 dimensional; Ricci semi-symmetric (LCS) n_{n} manifolds is a manifold of constant curvature and also shown that such a manifold is locally \emptyset-symmetric and with η. parallel Ricci tensor is also locally \emptyset-symmetric.

Keywords: $(L C S)_{n}$ manifolds, Ricci semi symmetric, locally \emptyset-symmetric

1. Introduction: The notion of Lorentzian concircular Structure manifolds ((LCS) ${ }_{n}$ manifolds) was introduced by [1] with example. A n dimensional Lorentzian manifold M is a smooth connected Para-compact Hausdroff manifold with a Lorentzian metric g, that is M admits a smooth symmetric tensor field g of type $(0,2)$ such that for each point $p \in M$, the tensor
$g_{p}: T_{p} M \times T_{p} M \rightarrow R$ is a non -degenerate inner product of signature $(-,+, \ldots,+)$, where $T_{p} M$ denote the tangent vector space of M at p and R is the real number space.In a Lorentzian manifold (M, g) a vector field ρ defined by

$$
g(X, \rho)=A(X)
$$

For any vector field $X \in T M$ is said to be concircular vector field [2] , if

$$
\left(D_{X} A\right)(Y)=\alpha\{g(X, Y)+w(X) A(Y)\}
$$

Where a is anon zero scalar function, A is a 1 -form and w is a closed 1 -form.
Let M be a Lorentzian manifold admitting a unit time like concircular vector field ξ, called the characteristics vector field of the manifold. The we have

$$
\begin{equation*}
g(\xi, \xi)=-1 \tag{1.1}
\end{equation*}
$$

Since ξ is the unit conc $(L C S)_{n}$ ircular vector field ,there exits a non zero 1 form such that

$$
\begin{equation*}
g(X, \xi)=\eta(X) \tag{1.2}
\end{equation*}
$$

Hence the equation

$$
\begin{equation*}
\left(D_{X} \eta\right)(Y)=\alpha\{g(X, Y)+\eta(X) \eta(Y)\} \quad(a \neq 0) \tag{1.3}
\end{equation*}
$$

Holds for all vector field , Y, where D denote the operator of covariant differentiation with respect to Lorentzian metric g and a is a non zero scalar function satisfying

$$
\begin{equation*}
\left(D_{X} a\right)=(X a)=\rho \eta(X) \tag{1.4}
\end{equation*}
$$

Where ρ being a scalar function. If we put

$$
\begin{equation*}
\emptyset X=\frac{1}{a} D_{X} \xi \tag{1.5}
\end{equation*}
$$

Then from (1.3) and (1.5), we have

$$
\begin{equation*}
\emptyset^{2} X=X+\eta(X) \xi \tag{1.6}
\end{equation*}
$$

From which it follows that \emptyset is a symmetric $(1,1)$ tensor. Thus Lorentzian manifold M together with unit time like concurlar vector field ξ, a associated 1 -form η and $(1,1)$ tensor field \emptyset is said to be Lorentzian concircular structure manifolds (briefly ($L C S)_{n}$ manifolds).
2. On $(\boldsymbol{L C S})_{\boldsymbol{n}}$ manifolds. A differentiable manifold of dimension n is called $(L C S)_{n}$ manifolds if it admits a tensor \emptyset of type $(1,1)$, a contravariant vector field ξ, a contravariant vector field η and a lorentzian metric g satisfy the following

$$
\begin{equation*}
\eta(\xi)=-1 \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\emptyset^{2} X=I+\eta * \xi \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
g(\varnothing X, \varnothing Y)=g(X, Y)+\eta(X) \eta(Y) \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
g(X, \xi)=\eta(X) \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\emptyset(\xi)=0, \quad \eta(\varnothing X)=0 \tag{2.5}
\end{equation*}
$$

For all X, Y in $T M$. Also in $(L C S)_{n}$ manifolds the following relation holds [

$$
\begin{equation*}
R(\xi, X) Y=\left(\alpha^{2}-\rho\right)(g(X, Y) \xi-\eta(Y) X) \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\eta(R(X, Y) Z)=\left(\alpha^{2}-\rho\right)[g(Y, Z) \eta(X)-g(X, Z) \eta(Y) \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
R(\xi, X) \xi=\left(\alpha^{2}-\rho\right)(\eta(X) \xi+X) \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
S(X, \xi)=(n-l)\left(\alpha^{2}-\rho\right) \eta(X) \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
S(\emptyset X, \emptyset Y)=S(X, Y)+(n-1)\left(\alpha^{2}-\rho\right) \eta(X) \eta(Y) \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\left(D_{X} \varnothing\right)(Y)=\alpha\{g(X, Y) \xi+2 \eta(X) \eta(Y) \xi+\eta(Y) X\} \tag{2.11}
\end{equation*}
$$

For all vector fields X, Y, Z where R, S denote respectively the the curvature and the Ricci tensor of the manifold
3. . On 3-dimensional $(\boldsymbol{L C S})_{n}$ manifolds. In a 3-dimensional $(L C S)_{n}$ manifolds ,the curvature tensor satisfies
(3.1) $R(X, Y, Z)=g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y-\frac{\tau}{2}[g(Y, Z) X g(X, Z) Y]$ where τ is scalar curvature.
putting $Z=\xi$ in (3.1) and using (2.10) we get

$$
\begin{equation*}
R(X, Y, Z)=\eta(Y) Q X-\eta(X) Q Y+\left[2\left(\alpha^{2}-\rho\right)-\frac{\tau}{2}\right][\eta(Y) X-\eta(X) Y] \tag{3.2}
\end{equation*}
$$

Using (2.7) in (3.2), we get

$$
\begin{equation*}
\eta(Y) Q X-\eta(X) Q Y=\left[\frac{\tau}{2}-\left(\alpha^{2}-\rho\right)\right][\eta(Y) X-\eta(X) Y] \tag{3.3}
\end{equation*}
$$

putting $Y=\xi$ in (3.3), we obtain

$$
\begin{equation*}
Q X=\left[\frac{\tau}{2}-\left(\alpha^{2}-\rho\right)\right] X+\left[\frac{\tau}{2}-3\left(\alpha^{2}-\rho\right)\right] \eta(X) \xi \tag{3.4}
\end{equation*}
$$

From (3.4) ,we get

$$
\begin{equation*}
S(X, Y)=\left[\frac{\tau}{2}-\left(\alpha^{2}-\rho\right)\right] G(X, Y)+\left[\frac{\tau}{2}-3\left(\alpha^{2}-\rho\right)\right] \eta(X) \eta(Y) \tag{3.5}
\end{equation*}
$$

Which implies that $(L C S)_{3}$ manifolds in η-Einstein manifold.
Theorem 3.1: A 3-dimensional $(L C S)_{n}$ manifolds is a manifold of constant curvature if and only if the scalar curvature is $\sigma\left(\alpha^{2}-\rho\right)$.

Proof: using (3.4),(3.5) in (3.1) we get

$$
\begin{align*}
& \text { 3.6) } R(X, Y, Z)=\left[\frac{\tau}{2}-2\left(\alpha^{2}-\rho\right)\right](g(Y, Z) X-g(X, Z) Y)\left[\frac{\tau}{2}-3\left(\alpha^{2}-\rho\right)\right][g(Y, Z)(X) \xi- \tag{3.6}\\
& g(X, Z)(Y) \xi+(Y)(Z) X-(X)(Z) Y]
\end{align*}
$$

From (3.6) theorem (3.1) is obvious.

4. 3 dimensional Ricci semi-symmetric $(L C S)_{n}$ manifolds

Let us consider a 3 dimensional $(L C S)_{n}$ manifolds which satisfies the definition (2.1) therefore we may write

$$
(R(X, Y), S)(U, V)=R(X, Y) S(U, V)-S(R(X, Y) U, V)-S(U, R(X, Y) V)
$$

From above we get

$$
\begin{equation*}
S(R(X, Y) U, V)-S(U, R(X, Y) V)=0 \tag{4.1}
\end{equation*}
$$

Putting $X=\xi$ in (4.1) and using (2.10) and (2.7) we get
$2\left(\alpha^{2}-\rho\right) g(Y, U)(V)-S(Y, V)(U)+2\left(\alpha^{2}-\rho\right) g(Y, V)(U)-S(Y, U)(V)=0$
Let $\left\{e_{1}, e_{2}, \xi\right\}$ be an orthogonal basis of the tangent space at each point of 3-dimensional $(L C S)_{n}$ manifolds then by putting $Y=U=e_{i}$ in (4.2), we obtain

$$
\begin{equation*}
(V)\left[2\left(\alpha^{2}-\rho\right) g\left(e_{i}, e_{i}\right)-S\left(e_{i}, e_{i}\right)\right]=0 \tag{4.3}
\end{equation*}
$$

since $S\left(e_{i}, e_{i}\right)=\left[\frac{\tau}{2}-\left(\alpha^{2}-\rho\right)\right] g\left(e_{i}, e_{i}\right)$, therefore from (4.3), we get

$$
\left[3\left(\alpha^{2}-\rho\right)-\frac{\tau}{2}\right] g\left(e_{i}, e_{i}\right)=0
$$

Which implies $\tau=6\left(\alpha^{2}-\rho\right)$, since $g\left(e_{i}, e_{i}\right) \neq 0$
Therefore in view of theorem (3.1) , the manifold is of constant curvature. Then we state the following

Theorem 4.1 : A 3 dimensional Ricci semi-symmetric $(L C S)_{n}$ is a manifold of constant curvature

5. Locally \emptyset-symmetric 3 dimensional (LCS $)_{n}$ manifolds

On differentiating (3.6) covariantly with respect to W, we get

$$
\begin{aligned}
\left(D_{W} R\right)(X, Y) Z & \\
& =\frac{d \tau(W)}{2}[g(Y, Z) X-g(X, Z) Y] \\
& +\frac{d \tau(W)}{2}[g(Y, Z)(X) \xi-g(X, Z)(Y) \xi+(Y)(Z) X-(X)(Z) Y] \\
& +\left[\frac{\tau}{2}-3\left(\alpha^{2}-\rho\right)\right]\left[g(Y, Z)\left(D_{W}\right)(X) \xi-g(X, Z)\left(D_{W}\right)(Y) \xi\right. \\
& \left.+g(Y, Z)(X) D_{W} \xi-g(X, Z)(Y) D_{W} \xi\right]+\left(D_{W}\right)(Y)(Z) X-\left(D_{W}\right)(X)(Z) Y \\
& +(Y)\left(D_{W}\right)(Z) X-(X)\left(D_{W}\right)(Z) Y
\end{aligned}
$$

On account of X, Y, Z, W to orthogonal to ξ, then above equation becomes

$$
\begin{aligned}
\left(D_{W} R\right)(X, Y) Z & \\
& =\frac{d \tau(W)}{2}[g(Y, Z) X-g(X, Z) Y] \\
& +\left[\frac{\tau}{2}-3\left(\alpha^{2}-\rho\right)\right]\left[g(Y, Z)\left(D_{W}\right)(X) \xi-g(X, Z)\left(D_{W}\right)(Y) \xi\right]
\end{aligned}
$$

Using (2.12) we get

$$
\begin{aligned}
\left(D_{W} R\right)(X, Y) Z & =\frac{d \tau(W)}{2}[g(Y, Z) X-g(X, Z) Y] \\
& +\left[\frac{\tau}{2}-3\left(\alpha^{2}-\rho\right)\right][g(Y, Z) g(W, X) \xi+g(X, Z) g(W, Y) \xi]
\end{aligned}
$$

From above it follows that

$$
\emptyset^{2}\left(D_{W} R\right)(X, Y) Z=\frac{d \tau(W)}{2}[g(Y, Z) X-g(X, Z) Y]
$$

Therefore, we have following
Theorem 5.1 : A 3 dimensional $(L C S)_{n}$ manifolds is locally \emptyset - symmetric if and only if scalar curvature is constant.

Again from theorem (4.1) , manifold is Ricci semi symmetric and we have seen that scalar curvature $\tau=6\left(\alpha^{2}-\rho\right)$ that is $\tau=$ constant . therefore from theorem (5.1), we state the following

Theorem 5.2: A 3 dimensional Ricci semi symmetric $(L C S)_{n}$ manifold is locally \emptyset - symmetric.

6. 3-dimensional $(L C S)_{n}$ manifolds with parallel Ricci tensor

In view of definition (2.3) , let us the 3 dimensional $(L C S)_{n}$ manifolds with parallel Ricci tensor , then we have

$$
\begin{equation*}
S(\emptyset X, \emptyset Y)=\left[\frac{\tau}{2}-\left(\alpha^{2}-\rho\right)\right] g(\emptyset X, \emptyset Y) \tag{6.1}
\end{equation*}
$$

Using (2.3) ,we get

$$
\begin{equation*}
S(\emptyset X, \emptyset Y)=\left[\frac{\tau}{2}-\left(\alpha^{2}-\rho\right)\right][g(X, Y)+(X)(Y)] \tag{6.2}
\end{equation*}
$$

Differentiating (6.2) , covariantly along Z, we get

$$
\begin{equation*}
\left(D_{Z} S\right)(\emptyset X, \emptyset Y)=\frac{d \tau(Z)}{2}[g(X, Y)+(X)(Y)]+\left[\frac{\tau}{2}-\left(\alpha^{2}-\rho\right)\right]\left[(Y)\left(D_{Z}\right) X+\right. \tag{6.3}
\end{equation*}
$$ $\left.(X)\left(D_{Z}\right) Y\right]$

Using the definition (2.3) in (6.3) and taking a frame field, we get $d \tau(Z)=0$ for all Z. therefore we have

Theorem 6.1 : If a 3 dimensional $(L C S)_{n}$ manifolds has parallel Ricci tensor, then scalar curvature τ is constant.

Also using theorem (5.2) and theorem (6.1) , we have the following
Theorem 6.2 : A 3 dimensional $(L C S)_{n}$ manifolds with - parallel Ricci tensor is locally \varnothing summetric..

10. ACKNOWLEDGEMENTS

The author is grateful to referee for his valuable suggestion for improvement of the paper.

References

[1] A. A. Shaikh, On Lorentzian almost para contact manifold with a structure of the concircular type, Kyungpook Math. J., 43 (2003), no -2, 305-314.
[2] A. A. Shaikh, Some results on $(L C S)_{n}$ manifolds, J. Korean Math. Soc. 46 (2009) no 3, 449-461.
[3] A. A. Shaikh, T. Basu, S .Eyasmin, On the existence of \emptyset recurrent $(L C S)_{n}$ manifolds, Extracta Mathematicae, 231 (2008), 305-314.
[4] A. A. Shaikh, U.C De, On three dimensional lorentzian para Saskian manifolds, Soochow J. Math. 26 (2000) no-41, 359-368.
[5] K. Yano, M. Kon, Structure on manifolds, Series in pure Math. word sci. (1984) no-3.
[6] T. Takahashi, Sasakian \emptyset symmetric spaces, Tohoku. Math. J. 29 (1977) , 99-113.
[7] U. C. De, S. Mallick, On almost pseudo concircularly symmetric manifolds, Journal of mathematics and computer science, vol-4 (2012) pp 317-330.
[8] A. Prakash, \phi pseudo W4 flat LP Sasakian manifolds, Journal of mathematics and computer science vol-3(2011) pp 301-305.

