

Contents list available at JMCS

Journal of Mathematics and Computer Science

JMCS

Journal of

Mathematics and Computer Science

Journal Homepage: www.tjmcs.com

Introducing a Novel Bivariate Generalized Skew-Symmetric Normal Distribution

Behrouz Fathi-Vajargah

Department of Statistics, University of Guilan, Rasht, Iran

fathi@guilan.ac.ir

Parisa Hasanalipour
Department of Statistics, University of Guilan, Rasht, Iran
p.hasanalipour116919@gmail.com

Article history:
Received April 2013
Accepted May 2013
Available online June 2013

Abstract

We introduce a generalization of the bivariate generalized skew-symmetric normal distribution [5]. We denote this distribution by $SGN_n(\lambda_1, \lambda_2)$. We obtain some properties of $SGN_n(\lambda_1, \lambda_2)$ and derive the moment generating function.

Keywords: Generalized-skew-normal distribution, $SGN_n(\lambda_1, \lambda_2)$, Conditional distribution.

1. Introduction

The skew-normal distribution introduced by Azzalini [2]. This density has been studied and generalized by some researchers. For example, Azzalini and Dalla Valle [4], Azzalini and Capitanio [3], Arellano-Valle [1], Jamalizadeh [7], Sharafi and Behbodian [8], Hasanalipour and sharafi [6] and Yadegari [9]. Fathi and Hasanalipour [5] considered a generalization of $SGN_2(\lambda_1,\lambda_2)$ distribution and they called it the bivariate generalized skew-symmetric normal distribution. Its probability density function is given by

$$f(x,y;\lambda_1,\lambda_2) = 2\phi(x)\phi(y)\Phi(\frac{\lambda_1 xy}{1 + \lambda_2 (xy)^2}), \qquad x,y \in R, \quad \lambda_1 \in R, \qquad \lambda_2 \ge 0$$
 (1)

This distribution denoted by $(X,Y) \sim SGN_2(\lambda_1,\lambda_2)$. In this paper, we introduce a new family of skew-normal distribution which generalizes (1) while preserving most of its properties. In section 2, we present the definition and some properties of $SGN_n(\lambda_1,\lambda_2)$ class and section 3, gives some important theorems about conditional distributions of $SGN_n(\lambda_1,\lambda_2)$.

2. A novel bivariate generalized skew-symmetric normal distribution

In this section, we define the $SGN_n(\lambda_1, \lambda_2)$ class and obtain some its properties.

2.1.
$$SGN_n(\lambda_1, \lambda_2)$$

Definition 1. Vector (X,Y) has $SGN_n(\lambda_1,\lambda_2)$ distribution if and only if for every $n \ge 1$ it has the following density

$$f_n(x,y;\lambda_1,\lambda_2) = c_n(\lambda_1,\lambda_2)\phi(x)\phi(y)\Phi^n(\frac{\lambda_1 x y}{\sqrt{1+\lambda_2(xy)^2}}), \qquad x,y \in R,$$
 (2)

where $\lambda_1 \in R$ and $\lambda_2 \ge 0$. The coefficient $c_n(\lambda_1, \lambda_2)$, which is a function of n and the parameters λ_1, λ_2 is given by

$$c_n(\lambda_1, \lambda_2) = \frac{1}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi(x) \phi(y) \Phi^n(\frac{\lambda_1 x y}{\sqrt{1 + \lambda_2 (xy)^2}}) dx dy},$$
(3)

with this properties:

1.
$$\lim_{\lambda_1 \to \infty} c_n(\lambda_1, \lambda_2) = 4$$
 for all $\lambda_2 \ge 0$

2.
$$c_n(-\lambda_1, \lambda_2) = c_n(\lambda_1, \lambda_2)$$

We denote this by $(X, Y) \sim SGN_n(\lambda_1, \lambda_2)$.

2.2. Some simple properties of $SGN_n(\lambda_1, \lambda_2)$

We now present some properties of this novel distribution.

1.
$$SGN_n(0, \lambda_2) = \phi(x)\phi(y)$$
, for all $\lambda_2 \ge 0$.

2.
$$SGN_1(\lambda_1, 0) = 2\phi(x)\phi(y)\Phi(\lambda_1 xy)$$
.

3.
$$X \mid \{Y = y\} = c_n(\lambda_1 y) \phi(x) \Phi^n(\frac{\lambda_1 x y}{\sqrt{1 + \lambda_2 (xy)^2}}) \sim GBSN_n(\lambda_1 y)$$
 [6].

4.
$$Y \mid \{X = x\} = c_n (\lambda_1 x) \phi(y) \Phi^n \left(\frac{\lambda_1 x y}{\sqrt{1 + \lambda_2 (xy)^2}}\right) \sim GBSN_n (\lambda_1 x)$$
 [6].

5. If
$$(X,Y) \sim SGN_n(\lambda_1,\lambda_2)$$
, then $(-X,Y) \sim SGN_n(-\lambda_1,\lambda_2)$, $(X,-Y) \sim SGN_n(-\lambda_1,\lambda_2)$ and $(-X,-Y) \sim SGN_n(\lambda_1,\lambda_2)$ [1].

6.
$$\lim_{\lambda_1 \to \infty} f_n(x, y; \lambda_1, \lambda_2) = 4\phi(x)\phi(y) I_{\{x > 0, y > 0\}}$$

7.
$$\lim_{\lambda_1 \to -\infty} f_n(x, y; \lambda_1, \lambda_2) = 4\phi(x)\phi(y) I_{\{x < 0, y < 0\}}$$

8.
$$\lim_{\lambda_1 \to \infty} \{ f_{X|Y}(x, y; \lambda_1, \lambda_2) + f_{X|Y}(x, y; -\lambda_1, \lambda_2) \} = 2\phi(x)$$
.

9.
$$\lim_{\lambda_1 \to \infty} \{ f_{Y|X}(x, y; \lambda_1, \lambda_2) + f_{Y|X}(x, y; -\lambda_1, \lambda_2) \} = 2\phi(y)$$
.

2. Some theorems about conditional distributions of $SGN_n(\lambda_1, \lambda_2)$

Theorem 1. If $X,Y,Z_1,...,Z_n$ are i.i.d. N(0,1) distribution then we have:

$$(X,Y)\left|\left\{Z_{(n)} \leq \frac{\lambda_{1}XY}{\sqrt{1+\lambda_{2}(XY)^{2}}}\right\} \sim SGN_{n}(\lambda_{1},\lambda_{2})$$

$$(4)$$

Where $Z_{(n)} = \max\{Z_1, ..., Z_n\}$.

Proof: Suppose
$$A = (Z_{(n)} \le \frac{\lambda_1 XY}{\sqrt{1 + \lambda_2 (XY)^2}})$$
. Then, we write

$$\begin{split} f_{(X,Y)|A}(x,y|A) &= \frac{P(A|X=x,Y=y)f(x,y)}{P(A)} \\ &= \frac{P(Z_{(n)} \leq \frac{\lambda_1 XY}{\sqrt{1 + \lambda_2 (XY)^2}} |X=x,Y=y)\phi(x)\phi(y)}{P(Z_{(n)} \leq \frac{\lambda_1 XY}{\sqrt{1 + \lambda_2 (XY)^2}})} \end{split}$$

$$= \frac{P(Z_{1} \leq \frac{\lambda_{1}xy}{\sqrt{1 + \lambda_{2}(xy)^{2}}}, ..., Z_{n} \leq \frac{\lambda_{1}xy}{\sqrt{1 + \lambda_{2}(xy)^{2}}})\phi(x)\phi(y)}{P(Z_{1} \leq \frac{\lambda_{1}XY}{\sqrt{1 + \lambda_{2}(XY)^{2}}}, ..., Z_{n} \leq \frac{\lambda_{1}XY}{\sqrt{1 + \lambda_{2}(XY)^{2}}})}$$

$$= c_{n}(\lambda_{1}, \lambda_{2})\phi(x)\phi(y)\Phi^{n}(\frac{\lambda_{1}x y}{\sqrt{1 + \lambda_{2}(xy)^{2}}})$$

For random number generation, it is more efficient to use single variant of this result, namely to put

$$Z = (Z_1, Z_2) = \begin{cases} (X, Y) & Z_{(n)} \le \frac{\lambda_1 XY}{\sqrt{1 + \lambda_2 (XY)^2}} \\ (-X, -Y) & Z_{(n)} > \frac{\lambda_1 XY}{\sqrt{1 + \lambda_2 (XY)^2}} \end{cases}$$
(5)

This make an important point for $SGN_n(\lambda_1, \lambda_2)$ distribution, comparing with acceptance-rejection method simulation of independent normal distribution.

Theorem 2. If $(X,Y) \sim SGN_n(\lambda_1,\lambda_2)$, then $(X^2|Y) \stackrel{L}{\rightarrow} \chi^2_{(1)}$ as $\lambda_1 \rightarrow \infty$, where $\chi^2_{(1)}$ shows chi-square random variable with one degree of freedom.

Proof: Let $(X^2|Y) = Z$. The density of Z is

$$\begin{split} f_{Z}(z,y;\lambda_{1},\lambda_{2}) &= \frac{1}{\sqrt{z}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z}{2}} c_{n}(\lambda_{1}y) \left[\frac{\Phi^{n}(\frac{\lambda_{1}\sqrt{z}y}{\sqrt{1+\lambda_{2}zy^{2}}}) + \Phi^{n}(\frac{-\lambda_{1}\sqrt{z}y}{\sqrt{1+\lambda_{2}zy^{2}}})}{2} \right] \\ &= f_{\chi^{2}_{(1)}}(z) \left[a_{n}(z,y;\lambda_{1},\lambda_{2}) \right]; \qquad z > 0 \end{split}$$

with

$$a_{n}(z,y;\lambda_{1},\lambda_{2}) = c_{n}(\lambda_{1}y) \left[\frac{\Phi^{n}(\frac{\lambda_{1}\sqrt{z}y}{\sqrt{1+\lambda_{2}zy^{2}}}) + \Phi^{n}(\frac{-\lambda_{1}\sqrt{z}y}{\sqrt{1+\lambda_{2}zy^{2}}})}{2} \right]$$

Since $c_n(\lambda_1 y) \to 2$ as $\lambda_1 \to \infty$, we conclude that $a_n(z,y;\lambda_1,\lambda_2) \to 1$, as $\lambda_1 \to \infty$. Therefore, the density $f_Z(z,y;\lambda_1,\lambda_2)$ converges to the distribution of $\chi^2_{(1)}$, as $\lambda_1 \to \infty$. Hence, the distribution of Z converges to the distribution of $\chi^2_{(1)}$, i.e. $Z = (X^2 | Y) \xrightarrow{L} \chi^2_{(1)}$.

Theorem 3. If $(X,Y) \sim SGN_n(\lambda_1,\lambda_2)$ and $Z \sim N(0,1)$, then $\frac{|X|}{Y}$ and |Z| are identically distributed, i.e, $\lim_{\lambda_1 \to \infty} \frac{|X|}{Y} \xrightarrow{D} |Z| \sim HN(0,1)$, where HN(0,1) denotes the standard half-normal distribution.

Proof: We know that |Z| has density $2\phi(z)$ $I_{\{z>0\}}$. The density $W=\frac{|X|}{Y}$ is

$$\begin{split} f_{W}(w) &= f_{X|Y|}(w) + f_{X|Y|}(\neg w) \\ &= c_{n}(\lambda_{1}y)\phi(w)\Phi^{n}(\frac{\lambda_{1}w y}{\sqrt{1 + \lambda_{2}(wy)^{2}}}) + c_{n}(\lambda_{1}y)\phi(\neg w)\Phi^{n}(\frac{-\lambda_{1}w y}{\sqrt{1 + \lambda_{2}(wy)^{2}}}) \\ &= c_{n}(\lambda_{1}y)\phi(w)\left[\Phi^{n}(\frac{\lambda_{1}w y}{\sqrt{1 + \lambda_{2}(wy)^{2}}}) + \Phi^{n}(\frac{-\lambda_{1}w y}{\sqrt{1 + \lambda_{2}(wy)^{2}}})\right] \\ &= \phi(w)[b_{n}(w, y; \lambda_{1}, \lambda_{2})] \end{split}$$

Now, we can show that $b_n(w,y;\lambda_1,\lambda_2)\to 2$ as $\lambda_1\to\infty$, then $\lim_{\lambda_1\to\infty}W=2\phi(w)$ for w>0 and we have

$$\lim_{\lambda \to \infty} \frac{|X|}{Y} \xrightarrow{D} |Z|.$$

Theorem 4. The moment generating function $(X,Y) \sim SGN_n(\lambda_1,\lambda_2)$ is

$$M_{X,Y}(t_{1},t_{2}) = c_{n}(\lambda_{1},\lambda_{2})e^{\frac{t_{1}^{2}+t_{2}^{2}}{2}} E\left\{E\left\{\Phi^{n}\left(\frac{\lambda_{1}WK}{\sqrt{1+\lambda_{2}(WK)^{2}}}\right)\right\}\right\}$$

where $W \sim N(t_1, 1), K \sim N(t_2, 1)$.

Proof:

$$\begin{split} M_{X,Y}(t_{1},t_{2}) &= E(e^{t_{1}X+t_{2}Y}) \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c_{n}(\lambda_{1},\lambda_{2})e^{t_{1}x+t_{2}y} \phi(x)\phi(y)\Phi^{n}(\frac{\lambda_{1}x \ y}{\sqrt{1+\lambda_{2}(xy)^{2}}})dx \ dy \\ &= c_{n}(\lambda_{1},\lambda_{2})e^{\frac{t_{1}^{2}+t_{2}^{2}}{2}}E\left\{E\left\{\Phi^{n}(\frac{\lambda_{1}WK}{\sqrt{1+\lambda_{2}(WK)^{2}}})\right\}\right\}. \end{split}$$

References

- [1] R. B. Arellano-Valle, H. W. Gomez and F. A. Quintana, A new class of skew-normal distribution. Commun. Stat Theory Methods, 33(7), 1465-1480 (2004).
- [2] A. Azzalini, A class of distributions which includes the normal ones. Scand J Stat. 12,171-178 (1985).
- [3] A. Azzalini and A. Capitanio, Statistical application of the multivariate skew-normal distribution. J. R. Statist. Soc B, 61,579-602 (1999).
- [4] A. Azzalini and A. Dalla-Valle, The multivariate skew-normal distribution. Biometrika 83, 715-726 (1996).
- [5] B. Fathi and P. Hasanalipour, Simulation and theory of bivariate generalized skew-symmetric normal distribution. Under review **(2012).**
- [6] P. Hasanalipour and M. Sharafi, A new generalized Balakrishnan skew-normal distribution. Statistical Papers, 53, 219-228 **(2010).**

- [7] A. Jamalizadeh, J. Behboodian and N. Balakrishnan, A two-parameter generalized skew-normal distribution. Statistics and Probability Letters. 78, 1722-1726 **(2008).**
- [8] M. Sharafi, J. Behboodian, The Balakrishnan skew-normal density. Statistical Papers. 49, 769-778 (2008).
- [9] I. Yadegari, A. Gerami and M.J Khaledi, A generalization of the Balakrishnan skew-normal distribution. Statistics and Probability Letters. 78, 1165-1167 (2008).