
160

Journal of mathematics and computer Science 7 (2013) 160 - 170

Measuring the Failure Rate in Service-Oriented Architecture Using Fuzzy
Logic

Ali Yavari

Mazandaran University of Sciences and Technology, Mazandaran, Iran
yavari@ustmb.ac.ir

Maryam Musavi

Mazandaran University of Sciences and Technology, Mazandaran, Iran
maryam.musavi@ustmb.ac.ir

Hossein Momeni

Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
momeni@gau.ac.ir

Mahnaz Hamzehnia
Mazandaran University of Sciences and Technology, Mazandaran, Iran

mahnaz.hamzehnia@ustmb.ac.ir

Article history:

Received March 2013

Accepted Apri 2013

Available online May 2013

Abstract
Service-Oriented architecture is a developing method to creating distributed programs for flexible and

dynamic architecture and is highly suitable for expanding the distributing systems. The use of this

architecture has increased the design of software systems. Reliability is the main challenge of this

architecture. The fault tolerance mechanism is one of the existing mechanisms for creating reliable

services and failure rate measurement of the system is a challenge for fault tolerance. In this paper we

propose a method named Service-Oriented SysFailRate Measurement for measuring the failure rate of the

system in service-oriented architecture using fuzzy logic. In this system we used incomplete description

of a service, lack of integration, incorrect format, and being out of the pre-determined time out factors to

measuring the failure rate. Testing rests demonstrated that this approach is promising to significantly

improve measuring the failure rate in Service-Oriented architecture.

Keywords: Service-Oriented Architecture, Quality of Service, Fault Tolerance, Fuzzy logic.

1. Introduction

Service-oriented architecture is regarded as the most attractive approach to expanding the software
system which is used for creating very complex practical programs. Using this approach, practical

mailto:yavari@ustmb.ac.ir
mailto:momeni@gau.ac.ir

Ali Yavari, Maryam Musavi, Hossein Momeni, Mahnaz Hamzehnia / J. Math. Computer Sci. 7 (2013) 160 - 170

161

programs based on service-oriented architecture are made according to the service but are not
coded. Within the service-oriented architecture, a service is actually a function or a set of functions
or actions which a practical program conducts. In older systems which were not based on services,
these functions were automatically transformed into systems[1].

Today, service-oriented architecture is widely used as a flexible architecture for expanding dynamic
systems [2, 3].This system has feeble connections and dynamic configuration for expanding different
distributing systems[4]. The services are self-descriptive in this architecture [2, 5, 6]. Many of the
descriptions are kept in component called "service discovery" or "service registry". The service
applicant finds a service in "service register" based on its needs and then connects to the service for
execution. The structure of this architecture is divided into three components: (1) service provider
which is responsible for creating and designing the services, (2) service applicant who uses the
provided services, and (3) service register in which the service descriptions are classified. Taking into
account the increasing need for high-quality services in service-oriented architecture, it's better to
consider the dimensions of service quality in this architecture such as security, availability, and
reliability. These dimensions are among the most significant features for developing the fundamental
reliable systems [2, 5, 7]. Quality of service (QoS) means all components which mix to define quality
of service suggested by one service. Quality of service is essentially used in network's system and is a
concept which determines the quality of internet services [8]. In fact, reliability is the ability of a
system for preventing failure [9, 10]. The core of service-oriented architecture uses three
components: publishing, discovery, and binding. Accordingly, the occurred faults in this architecture
divide into fault occurred in publishing stage, discovery, and binding stage. These faults increase the
rate of failure for the system[1]. Fault tolerance mechanism is one of the existing mechanisms for
creating reliable services[4]. . In this paper we propose a method named Service-Oriented SysFailRate
Measurement for measuring the failure rate of the system in service-oriented architecture using
fuzzy logic. In this system we used incomplete description of a service, lack of integration, incorrect
format, and being out of the pre-determined time out factors to measuring the failure rate. The fuzzy
model consists of four modules. The fuzzification module is the first stage in working of any fuzzy
model, which transforms crisp input(s) into fuzzy values between range of 0 and 1. In this paper
NoComplS, NoCompoS, NoCFormat, and Tout are input variables for system and SysFailRate is output
variable. In the second stage, these values are processed in the fuzzy domain by interface engine
based on production rules supplied by the domain experts. During second stage, the fuzzy operators
are applied. In third stage implication process is applied and then all outputs are aggregated. In
fourth and final stage, the processed output is transformed from fuzzy domain to crisp domain by
defuzzification module. Testing rests demonstrated that this approach is promising to significantly
improve measuring the failure rate in Service-Oriented architecture.

The article then continues as follows: the second section reviews the related literature; the third
section explores the issues of motivation; the fourth section recommends the new method; the fifth
section evaluates the method; and finally the discussion will follow.

2. Review of literature

In this section, first, the structure of service-oriented architecture and faults that occur in different
parts are briefly described. In addition, a definition of reliability and its features will be stated.

2.1. The structure of service-oriented architecture

Service-oriented architecture is a complex architecture for designing software systems and consists
of different components which connect via message. As a result, different faults may occur in
different parts which increase the failure rate of the system. Therefore, different faults which may

Ali Yavari, Maryam Musavi, Hossein Momeni, Mahnaz Hamzehnia / J. Math. Computer Sci. 7 (2013) 160 - 170

162

occur in this system should be identified to prevent failure and create the required services for
executing the fault tolerance mechanism[1]. Figure 1, clearly shows the faults in structure of this
architecture.

According to this figure faults of system are classified in three categories: faults related to Service
registry, service requester and Service provider [11-13].

Figure 1. Faults in service-oriented architecture[1, 14]

2.2. Dependability and its Structure

Quality of service can be defined and determined by means of different parameters. Figure 2 shows
this structure. These parameters are as follows:

 Availability: whether a web service is available and ready to use or not. It means a web service is
available at a special time.

 Accessibility: this parameter of quality shows the extent a web service can meet a demand or a
special work at a time. This quality is different from that of availability since a service may be
available but not accessible. For example, the primary request may be accepted but not
processed due to some other requirements.

 Reliability: this parameter shows the capability and quality of the service. One of its features is
the number of faults occurred at a given time. The other characteristic is probability which
shows whether a request has been made and sent correctly or not.

 Security: this parameter of quality shows the capability of different parts' security by using one
service. This factor can be influenced by other regular factors.

Serviceregistry

Service Requester

Service provider

NoCorrectServiceDescri
ption fault
NoCompleteServiceDes
cription fault
TimeOut fault

 Authorization fault
 Authentication fault
TimeOut fault

NoserviceFound fault
NoCompositeService
fault
NoCorrectFormat fault
TimeOut fault

Ali Yavari, Maryam Musavi, Hossein Momeni, Mahnaz Hamzehnia / J. Math. Computer Sci. 7 (2013) 160 - 170

163

Figure 2. The structure of Dependability

2.3. Fault, Error and Failure

Faults existing in software system cause error when they activate and this faults propagate in system
they will cause failure in software system. Figure 3 shows this relationship

 Fault: fault means a defect in a system. The existence of a fault in a system may or may not
lead to fault. For example, although the entrance of a system may include fault but it may
state conditions which have never caused such fault.

 Error: a mistake is the difference between the behaviour and the physical appearance of a
system. It occurs when parts of the system face unpredictable conditions. Observing the
mistakes is quite difficult without using mechanisms since they come out of inappropriate
conditions.

 Failure: it happens when a system shows a feature which is not compatible with its special
characteristics. A mistake may not necessarily lead to failure. For example, a system may
encounter an exception which can be controlled by means of tolerance techniques causing a
proper compatibility of the whole system's operations with the features of that exception [8,
9].

Figure 3.A chain of threats for reliability

3. Motivation
In fact, faults are parameters which affect the rate of system's failure. If such faults occur in this
architecture, the existing mechanisms for fault tolerance will be used to prevent the error and thus
decreasing the rate of system's failure. The Fuzzy method which states the relative validity or value of
something was used in this article to measure the rate of system's failure. The reason for using Fuzzy
Logic was finding the extent which this can be done exactly. The exact measurement of failure's rate can
help us in using the mechanisms of fault's tolerance. Previous researches did not address the point that

Dependability

Attributes:
Availability
Reliability

Safety
Confidentiality

Integrity
Maintainability

Threats:
Faults
Errors

Failures

Means
Fault Prevention
Fault Tolerance
Fault Removal

Fault Forecasting

Failure

Error

Failure Error Fault

Activation Propagation Causation

Ali Yavari, Maryam Musavi, Hossein Momeni, Mahnaz Hamzehnia / J. Math. Computer Sci. 7 (2013) 160 - 170

164

the rate of system's failure should be measured when faults occur. Nor did they pay attention to the
point that preventing which fault is preferred over others when several faults occur at the same time or
the failure's rate of which fault is more in the system. This can be done accurately by using Fuzzy Logic
and thus the rate of system's failure in service-oriented architecture can be obtained. To this, faults are
considered as the input parameters of Fuzzy method and failure's rate as the output of measurement
system. By giving different values to faults and comparing the outputs with each other, we can find out
that the failure's rate of which fault is more in the system.

4. Service-Oriented SysFailRate Measurement
Our proposed method makes use of linguistic variables of Fuzzy Logic for determining the rate of
system's failure. Fuzzy Logic is a method based on mathematics to work with lack of finality[15]. The
abbreviation for our recommended Fuzzy model to unify the method for determining the rate of
system's failure is called SysFailRate. SysFailRate is influenced by factors such as incomplete description
of a service, lack of integration, incorrect format, and being out of the pre-determined time out. These
factors are briefly named as NoComplS, NoCompoS, NoCFormat, and Tout respectively. Figure 4 shows
the total image of the recommended system.

The fuzzy model consists of four modules. Each module is one stage of presented system. The
fuzzification module is the first stage in working of any fuzzy model, which transforms crisp input(s) into
fuzzy values between range of 0 and 1. In this paper NoComplS, NoCompoS, NoCFormat, and Tout are
input variables for system and SysFailRate is output variable. In the second stage, these values are
processed in the fuzzy domain by interface engine based on production rules supplied by the domain
experts. During second stage, the fuzzy operators are applied. In third stage implication process is
applied and then all outputs are aggregated. In fourth and final stage, the processed output is
transformed from fuzzy domain to crisp domain by defuzzification module.

4.1. The Membership Functions for Parameters
The rate of system's failure is between 0 – 1 in this article and the membership functions for this output
variable are very low, low, medium, high, and very high. We used the Gaussian Membership for the
output variable (rate of system's failure). The function of Gaussian Membership is determined by two
parameters (c,σ) :

μ(𝑥) = 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝑥, 𝑐, 𝜎) = 𝑒− 1/2((𝑥−𝑐)/𝜎)2

(1)

Figure 4.The total image of the system

In the above formula, c is the center and σ determines the width of membership function. The range of

Ali Yavari, Maryam Musavi, Hossein Momeni, Mahnaz Hamzehnia / J. Math. Computer Sci. 7 (2013) 160 - 170

165

linguistic phrases for output variable (rate of system's failure) is shown in Table 1.

Table 1.The Range of Membership Function forSysFailRate

Range
Membership Function

0.00-0.23 VeryLow

0.20-0.43 Low

0.40-0.63 Medium

0.60-0.83 High

0.80-1.00 VeryHigh

It's worth mentioning that the overlapping of linguistic phrases increases the accuracy of measurements
in fuzzy system. Figure 5 shows membership functions for system failure rate.

Figure 5.Membership Functions for System Failure Rate(SysFailRate)

Three linguistic phrases were assigned for each input parameters of NoComplS, NoCompo,NoCFormat,
and Tout. Since we have three linguistic phrases for each parameter, we prevent repetition. For example,
for one of the parameters like NoComplS, these phrases are: low, medium, and high. The phrases and
their range will be the same for other three parameters. The phrases and their range are shown in Table
2.

Table 2.Membership Functions and Their Range for Input Parameters

Range Membership Function

0.00 – 0.36 Low

0.33 - 0.69 Medium

0.66 - 1.00 High

Ali Yavari, Maryam Musavi, Hossein Momeni, Mahnaz Hamzehnia / J. Math. Computer Sci. 7 (2013) 160 - 170

166

According to the above table, the covering range for Low equals 0.00 – 0.36, for Medium equals 0.33 –
0.69, and finally for High equals 0.66 – 1.00. Figure 6 indicates such parameters and their membership
functions. We used triangular membership function for these variables. A triangular membership
function is specified using three parameters [a,b,c] as follows:

μ(𝑥) = 𝑡𝑟𝑖𝑛𝑔𝑙𝑒 (𝑥, 𝑎, 𝑏, 𝑐) = {

0 𝑓𝑜𝑟 𝑥 ≤ 𝑎
(𝑥 − 𝑎)/(𝑏 − 𝑎) 𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑏
(𝑑 − 𝑥)/(𝑑 − 𝑐) 𝑓𝑜𝑟 𝑏 < 𝑥 ≤ 𝑐

0 𝑓𝑜𝑟 𝑐 ≤ 𝑥

 (2)

Figure 6. Membership Functions for Input variables.

Figure 6 shows the membership functions for input variables of fuzzy system. In this figure, (a) is the
membership function for NoComplS and (b), (c), and (d) are the membership functions for NoCompoS,
NoCFormat, and Tout respectively.

In fact, for accurately measuring the system failure rate which is the main aim of this research, we
consider the effect of five parameters (NoComplS, NoCompo,NoCFormat, and Tout) simultaneously and
parallel. In fuzzy systems, all rules are considered and operated simultaneously and parallel. In this
article, the first parameter which is incomplete service has three linguistic phrases and thus three
membership functions. Likewise, we have the same conditions for the following three parameters.
Therefore, we have 34 = 81 fuzzy rule some of which are showing inTable 3.

Table 3.Fuzzy Rules for Proposed System

Rule

NoComplS

Is

NoCompoS

is

NoCFormat

Is

Tout

is

SysFailRate

Is

1 Low Low Low Low VeryLow

2 Low Low Low Medium Low

3 Low Low Low High Medium

4 Low Low Medium Low Low

5 Low Low Medium Medium Low

6 Low Low Medium High Medium

Ali Yavari, Maryam Musavi, Hossein Momeni, Mahnaz Hamzehnia / J. Math. Computer Sci. 7 (2013) 160 - 170

167

7 Low Low High Low Medium

8 Low Low High Medium Medium

...

79 High High High Low VeryHigh

80 Low Low High Medium VeryHigh

81 Low Low High High VeryHigh

5. Evaluation
 In this study, we introduced a method for estimating the system failure rate using fuzzy logic. We used
MATLAB software using Microsoft Windows 7 on a computer with AMD Atlon 3.2 GHz processor, 4
Gigabyte main memory. The results showed an accurate estimation. As an example, we assigned input
values equal to 0.981 for NoComplS, 0.78 for NoCompoS, 0.861 for NoCFormat, and 0.712 for Tout. The
output value of the system which is the system failure rate was found to be 0.867, while this case is
considered as a fundamental fault regarding the input values in traditional and non-fuzzy systems(Figure
8). In our recommended system however, this case is stated as a system failure rate of 0.867 which
indicates a high accuracy on the part of the system. Having this exact amount, the expert can decide on
the way to treat this case.

As another example show in Figure 9, the systems was evaluated in a case in which NoComplS was
assigned with a value equals 0.123, and values equal to 0.178, 0.286, and 0.312 were assigned for
NoCompoS, NoCFormat, and Tout respectively. the final output of the system which is obtained by
processing the incisions made on membership functions, equals 0.114.

Figure 8.An example of system that NoComplS= 0.981, NoCompoS=0.78, NoCFormat= 0.861 and Tout=0.712

Ali Yavari, Maryam Musavi, Hossein Momeni, Mahnaz Hamzehnia / J. Math. Computer Sci. 7 (2013) 160 - 170

168

Figure 9.An example of system that NoComplS= 0.123, NoCompoS=0.178, NoCFormat= 0.286 and Tout=0.312

6. Evaluating Previous Studies
In [4], fault tolerance algorithm was introduced for creating reliability in service-oriented architecture.
The idea of redundancy and integration were used in this study to prevent and keep faults constant.
Fault tolerance can be repeatedly created in time and space. For operating the redundancy technique,
components such as "checker", "converter", and "comparator" are used. In this article, whenever, a
factor which causes fault occurs, one of the components of "checker", "converter", and "comparator" or
a combination of all will be used according to the type of fault to prevent the fault. In [2], the error
tolerance mechanism was analysed to model the services in service-oriented architecture. To do this, the
Meta Model of service-oriented architecture was developed. This is a method which supports the error
tolerance. A few components were added to the Meta Model for this purpose. A Meta Model and a
number of Graph rules were recommended to observe the services and their relationship to identify the
fault. In [16], faults were classified and fault injection was used to create reliability and test the system.
[17] explains the framework of error tolerance and makes use of a common network based on JXTA18
Protocol to solve the problem. Taking into account the increasing protocols and to support Meta
structure codes, the layer approach has been used[18]. Confirmation and mechanism of fault recognition
are based on row theory to recognize or identify the services unable to perform the administrative
requests. It has also provided a source for service model and a source of fault tolerance control centre
from ESP19 based on our fault recognition mechanism. [19]the mechanism of fault recognition was
discussed and it was mentioned that this mechanism is based on row theory to recognize the services
unable to perform the requests. The mechanism of fault tolerance has also improved the mechanism for
measuring the performance and can prove the accuracy of this mechanism.

7. Conclusion
Service-oriented architecture has a new developing method for creating distributed systems. It has a
flexible and dynamic structure and for this reason it is suitable for expanding the distributing systems. In
this paper we presented an effective and accurate method for measuring the system failure rate using
fuzzy logic. This method include four stage and developed by Mamdaniinference[20, 21]. The system
failure rate can be measured by using factors including incomplete service description, lack of service

Ali Yavari, Maryam Musavi, Hossein Momeni, Mahnaz Hamzehnia / J. Math. Computer Sci. 7 (2013) 160 - 170

169

integration, incorrect format and time out, in fact this factors are inputs of proposed system. Testing
rests demonstrated that this approach is promising to significantly improve measuring the failure rate in
Service-Oriented architecture.

References
[1] A. Maurizio, et al., Service oriented architecture: challenges for business and academia, In Hawaii
International Conference on System Sciences, Proceedings of the 41st Annual. IEEE (2008).

[2] F. Mahdian, et al. Considering Faults in Service-Oriented Architecture: A Graph Transformation-Based
Approach. In Computer Technology and Development, ICCTD'09. International Conference on, IEEE,
(2009).

[3] T. Erl, Service-oriented architecture, Prentice Hall, (2004).

[4] F. Mahdian and V. Rafe, Different models of dependable services in Service-Oriented Architecture, In
Advanced Computer Theory and Engineering (ICACTE), 3rd International Conference on, IEEE, (2010).

[5] F. Mahdian, et al. Modeling Fault Tolerant Services in Service-Oriented Architecture, in Theoretical
Aspects of Software Engineering, TASE. Third IEEE International Symposium on, IEEE, (2009).

[6] D. Krafzig, K. Banke and D. Slama, Enterprise SOA: service-oriented architecture best practices.
Prentice Hall PTR, (2005).

[7] M. Rosen, et al., Applied SOA: service-oriented architecture and design strategies, Wiley, (2012).

[8] N. Looker, et al. Pedagogic data as a basis for web service fault models, in Service-Oriented System
Engineering, SOSE. IEEE International Workshop, IEEE, (2005).

[9] A. Avizienis, et al., Basic concepts and taxonomy of dependable and secure computing.Dependable
and Secure Computing, IEEE Transactions, (2004) 1(1): p. 11-33.

[10] S. Bistarelli and F. Santini, Soft Constraints for Dependable Service Oriented Architectures.
Architecting Dependable Systems VI, (2009) p. 76-97.

[11] M.A.C. Bhakti and A.B. Abdullah, towards an autonomic Service Oriented Architecture in
computational engineering framework, in Information Sciences Signal Processing and their Applications
(ISSPA), 10th International Conference on, (2010).

[12] M.A.C. Bhakti and A.B. Abdullah, towards self-organizing service oriented architecture, in Innovative
Technologies in Intelligent Systems and Industrial Applications, CITISIA. IEEE, (2009).

[13] Z.M.S. Almasslawi and D.M.S. Almasslawi, A new ontology for fault tolerance in QoS-enabled service
oriented systems, in Computer Science and Automation Engineering (CSAE), IEEE International
Conference on, IEEE (2011).

[14] A.M. Karande, V.N. Chunekar and B. Meshram, Working of web services using BPEL workflow in SOA.
Advances in Computing, Communication and Control, (2011) p. 143-149.

[15] L.A. Zadeh, Fuzzy logic = computing with words, Fuzzy Systems, IEEE Transactions on, (1996) 4(2): p.
103-111.

[16] S. Bruning, S. Weissleder and M. Malek, A fault taxonomy for service-oriented architecture, in High
Assurance Systems Engineering Symposium, HASE'07. 10th IEEE, IEEE, (2007).

[17] S. Hall and G. Kotonya, An adaptable fault-tolerance for SOA using a peer-to-peer framework, in e-
Business Engineering, ICEBE. IEEE International Conference on, IEEE, (2007).

[18] H. Chen and C. Zhang, A Queueing-Theory-Based Fault Detection Mechanism for SOA-Based
Applications, in E-Commerce Technology and the 4th IEEE International Conference on Enterprise
Computing, E-Commerce, and E-Services. CEC/EEE 2007. The 9th IEEE International Conference on, IEEE,
(2007).

[19] Y. Shuo and H. Chen, An Improving Fault Detection Mechanism in Service-Oriented Applications
based on Queuing Theory. International Symposium on Service-Oriented System Engineering, SOSE'08,

Ali Yavari, Maryam Musavi, Hossein Momeni, Mahnaz Hamzehnia / J. Math. Computer Sci. 7 (2013) 160 - 170

170

IEEE, (2008).

[20] J. Jang, Fuzzy inference systems, Upper Saddle River, NJ: Prentice-Hall, (1997).

[21] P.J. King and E.H. Mamdani, The application of fuzzy control systems to industrial processes.
Automatica, (1977) 13(3): p. 235-242.

