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Abstract

In this paper, we present a method for solving time varying fractional optimal control
problems by Bernstein polynomials. Firstly, we derive the Bernstein polynomials (BPs)
operational matrix for the fractional derivative in the Caputo sense, which has not been
undertaken before. This method reduces the problems to a system of algebraic equations.
The results obtained are in good agreement with the existing ones in open literatures and
the solutions approach to classical solutions as the order of the fractional derivatives
approach to 1.

Keywords: Time varying fractional optimal control problems, Bernstein polynomials,
operational matrix, Caputo derivative.

1. Introduction
Although the optimal control theory is an area in mathematics which has been under

development for years but the fractional optimal control theory is a very new area in
mathematics. Recent contributions in this field were reported by several authors [1-4].

In this paper, we consider the time varying fractional optimal control problem as
follows:

Minimize (x(t) u(t) I x2(t) +u?(t) dt, @

subject to the dynamic constraln
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D*x(t) = a, (t) x(t) +a,(t)u(t), 0<t<1l, O<a<l, 2
and the initial condition
X(0) =X, , 3

where x(t) and u(t) are the state function and the control function, respectively. When
a =1, the above problem reduces to a standard optimal control problem.

The rest of this paper is as follows. In Section 2, we present some preliminaries in
fractional calculus. In Section 3, BPs are introduced and then we approximate functions
by using BPs and we show the properties of BPs by several Lemmas and corollaries. We
make a new operational matrix for fractional derivative by BPs in Section 4. In Section 5,
we apply BPs for solving time varying fractional optimal control problems. In Section 6,
numerical examples are simulated to demonstrate the high performance of the proposed
method. Finally, Section 7 concludes our work in this paper.

2. Some preliminaries in fractional calculus

In this section, we give some basic definitions and properties of the fractional calculus
which are used further in this paper.

Definition 2.1. (See [5] ) We define
C, = {f (t)‘ f(t)>0 fort>0and f(t)=t"f (t) wherep> x and f,(t) e C[O,oo)}, and

Cl={f®|f @ C, | where neN, ueR.

Definition 2.2. (See [5]) The Riemann-Liouville fractional integral operator of order
a>0,ofafunction f eC , u>-1,isdefined as

o 1 t a-1

| f(t)_mjo(t—x) f(x)dx, a>0,t>0, @
1°F(t) = f(t),

and for n-1<a<n,neN,t>0, f €C"}, the fractional derivative of f(t) in the
Caputo sense is defined as

D f(t)= "D (t) = —

I'n-a)

| ;(t — )™ £ O (%) dx. (5)

Property 2.3. (See [6-8]) For f €C,, u>-1, a, >0 we have

[t — I(y+1)

syt ©

andfor n-1<a<n,neNand f eC}, u>-1 we see the following properties
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1. DU1°f(t) = f (1), 7)
2. 1D f (t) = f(t)—zf“)(o*)’%, t>0, ®)
3. D/ f(t)= 17D (1). 9)

3. Bernstein polynomials and their properties

The Bernstein polynomials (BPs) of mth-degree are defined on the interval [0,1]as
follows:

Biym(x):(;njx‘(l—x)mi, i=0,1---,m. (10)

Corollary 3.1. Set {Boym(x),Bl,m(x),---,Bm‘m(x)} is a complete basis in Hilbert space
L*[0,1] and polynomials of degree m can be expanded in terms of linear combination of
B, n(x) (1=0,1,---,m) as follows

PO = ¢, B, o (%), )

Lemma 3.2. We can write ®_(x)=AT,_(x), where A is a matrix upper triangular,

T, () =L x...x"]" and @, (x) =[B,(X),B,(X).....B, (¥)]" .

Proof. Using binomial expansion of (1—x)™", we have

t0-([eacn-(Te ST
ST e o

Therefore we can write

D, (x) = AT, (X), (12)

o ™M i<
where A= ( . J)_m.+l and a,,; ;,, = i\ j-i = ibj=0,1,...m o

i,j=1
0 i> ],
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Lemma 3.3. (see [9]) Let LZ[O,l] be a Hilbert space with the inner product
<f,g >:I:f(x)g(x)dx, and yeL?[0,1]. Then, we can find the unique vector

c=|[c,,c,,--,c,]" such that

Y00 = 36, B () =" 0, (4. B

Corollary 3.4. In lemma 3.3, we have ¢’ =< f ,®_>Q™, such that

<f.@,>=[ f(0®,(X) dx=[< f By, ><f,B, > <fB,,>]|and
Q=(Q, )im;ll is as follows
: )
) i .
Qi+l,j+l=IoBi,m(X) Bj,m(X)dX: , L,J=0L---m. (14)

2m
(2m +1)(. j

I+ ]
Lemma 3.5. Suppose that c.,, is an arbitrary vector. The operational matrix of

product é(mﬂ)x(mﬂ) using BPs can be given as follows:

D, (NP, (X)) =D, (X)C. (15)
Proof. From (12) we have

c'd ()P, (X)" =c"D_(x) (Tm(x)T A ): [cT®m(x),x(cTQ>m(x)),..., xm(cTCDm(x))]AT

=|:ici Bi’m(x)’iCiXBixm(X)""’iCiXmBi,m(X)j| AT.

Now, we approximate all functions x* B n(X) interms of @ _(x). Thus we define

Ch :[e,?,i VB e ,eQ‘,i]T,then by (14) we can write
X“B, () ~e, @, (%), ik=01,..,m.
So, we get
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€= Q’l(j Ol(xk Bi (x))CDm (x) dx)

:Qilli-" oleBi,m(X) Bo,m(x)dX’J.oleBi,m(X) Bl,m(x)dx"“’j:XkBi'm(X) Bm'm(X)dXT

Q i 0 1 m .
= ] 1oy I} |,k=0,1,...,m.
2m+k+1| (2m+k 2m+k 2m+k
(i+k j (i+k+1j (i+k+mj

Then, we have

j=0

where V,,,(k =0,1,...m) is an (m+1)x(m+1) matrix that has vectors e, ; (i=0,1,...,m)

for each column’s. If we define C =[V,c,V,c,...,V, c], then we get
c'® ()P, (x)" =D _(x)"C A", (16)

and therefore we obtain the operational matrix of product C =C AT.

4. BPs operational matrix for fractional derivative

In this section, we obtain the operational matrix for the fractional derivative. We can
write

D“d)m(t)=#t“‘“‘l*d)fﬂ)(t), 0<t<l, 17)

'h-a)
where * denotes the convolution product.
By (12) we obtain

Da@m(t)=ﬁA(t”_“‘l*Tn(]”)(t))= AD"T, (t) = AD“1, D°t, ..., D“t"]|", (18)
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0 j:O,...,’_a—‘_l’
h Dt = ' i :
where Mt"“ j:]_a—‘,...,m.
I'(j+1l-a)
Therefore we have

DT, (t) =T, (19)
where = and T are a (m+1)x(m+1) diagonal matrix and a (m+1)x1 matrix,

respectively as follows:
r'(j+1)

= (= \n+ ~ ———— i,j=|al|...mandi=j,
=, Za=1T(+1-a) o] (20)
0 otherwise,
~ [~ 0 i=0,....|a|-1,
and T =(T) z{ti“ e ( r]] . (21)

Now, we approximate t'™* (i = |_a—\,...,m) with respect to BPs by using (13). Therefore,
we can write

t ~PT®_(t), (22)

where P, (i=[a|,...,m) isavector (m+1)x1. So, we have
P =Q‘1U Olt‘—“ (I)m(t)dtj=Q‘1U ;ti‘“BO’m(t)dt ,_[Olti‘“Bl,m(t)dt,..., j:ti—“Bm(t)dt}T
=Q'P,

P =[Po Py Pl 23)

mir(i+ j—a+1)

Ci=[al],...m and j=0,1,..m (24
jIfGem-a+2) [a]...m and (24)

D Lia
Py=] B 0dt=

Now, we suppose P is an (m+1)x(m+1) matrix that has vector zero in |_a—| first
column and vector P, in (i+1)th column’s for i=[a],...,m.

Finally, from (17)-(24), we obtain
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D@, (t)~D, @, (1),
where

D ~AXPT,

a

is called the Bernstein polynomials operational matrix of fractional derivative.

6. BPs for solving time varying fractional optimal control problems

Using Lemma 3.3, we can approximate the functions as follows:

x(t) = ¢ @, (1),
u(t) ~b"@,, (1),
a(t) ~a @),
a,(t) = a; @, (t),

where c,b,a,,a, e R™V*.
by (25) and (27) we can write
D“x(t) ~c"D,®, (t).
Therefore, the problem (1)-(3) reduce to the following problem:
Minimize %j:cTcpm O (1) c+b @ (), (1) bdt,
subject to the dynamic constrain
¢'D,®,{t)=a @, )P, ) c+a,®, ()P, ) b,
and the initial condition
c'®d_(0)=x,.

Now, using Corollary 3.4 for (32) we can write
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Minimize J@Jﬁ=%cTUj®maymﬂoTm)c+%bTUj®mameafde

=ECTQC+1bTQb >
2 2
Also by Lemma 3.5 for (33) we have
¢'D,®, () =d, 1) Ac+®, ()" Ab. (36)

Now, by using tau method [10] we can generate algebraic equations from (36) as follows
G,(cb)=[ (D, ~cTAT ~b" Al )0, (B, (®dt=0, j=0,...m-1, (37)

and from (34) we set G, =c'®_(0) —X,.

Finally, the problem (1)-(3) has been reduced to a parameter optimization problem which
can be stated as follows:

Find cand b which
e 1. 1.,
Minimize J(c,b)zgc Qc+5b Qb, (38)

subject to the system of algebraic equations
G,(c.b)=0, j=0,...,m (39)

For solving the above problem we use the Lagrange multipliers method. So, we define
Lagrange function for the problem (38) and (39) as follows:

L(c,b,/l):%CTQc+%bTQb+Zm:/11 G,(c,b), (40)
j=0

where A1 =[4,,...,4,]"is the unknown Lagrange multiplier. Now, we consider the

necessary conditions for the extremum and obtain the following systems of algebraic
equations

aL_

=0, 41
o (41)
oL
= oo, 42
o (42)
oL
<o, 43
) (43)
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Equations (41)-(43) can be solved for c,b and A4 by Newton’s iterative method. Then,
we get the approximate value of the state functions x(t)and the control functions u(t)
from (27) and (28), respectively.

7. Numerical examples

To demonstrate the applicability and to validate the numerical scheme, we apply the
present method for the following examples.

Example 1. Consider the following time invariant problem [1, 2]
Minimize J = [* x2(t) +u?(t) dt
=), X O+utOd,

subject to the system dynamics

D“x(t) = —x(t) + u(t),

with initial condition

x(0) =1.

For this problem we have the exact solution in the case of a = 1 as follows

x(t) = cosh(v'2t) + Bsinh(+/21),
u(t) = (1+~/2 B)cosh(~/2t) + (v/2 + B)sinh(v/21),

_ cosh(+/2) + /2 sinh(~/2)
V2 cosh(+/2) +sinh(+/2)

where

Figures 1 and 2 show the state and the control variables, respectively, as a function of
time for m =5, for different values of « . These figures show that as « approaches close
to 1, the numerical solutions for both the state and the control variables approach to the
analytical solutions for o =1 as expected. In Figures 1 and 2, only the numerical results
for o =1 are presented. This is because, for « =1 the analytical and the numerical
results overlap. In Figs. 3 and 4, we see the absolute error of obtained results for m =10
and a =1. Also, in Table 1 and 2, the absolute error of x(t) for when « =1 and

m =4, 5 is demonstrated and is compared with [1].
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Fig 1. Approximate solutions of x(t) for m =5and different values of « and exact
solution for =1 in example 1.

Fig 2. Approximate solutions of u(t) for m =5and different values of « and exact
solution for & =1 in example 1.
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Fig 3. Plot of absolute error function x(t) for « =1 and m=10 in example 1.
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Fig 4. Plot of absolute error function u(t) for &« =1 and m =10 in example 1.

Table 1. Absolute error x(t) for & =1, m =4 and different values t in example 1.

t m=4 [1] Present Method m = 4

0 0.0000899 0
0.1 0.0000477 0.00001560360486785317
0.2 0.0000325 0.000026407578959108946
0.3 0.0000774 0.000036101485012540735
0.4 0.0000213 3.899031830290056x10°°
0.5 0.0000643 0.00003810091250144865
0.6 0.000103 0.00004946576317460538
0.7 0.000112 0.000010110645709493493
0.8 0.0000914 0.000055108397533421005
0.9 0.0000941 0.00005539673693399916

Table 2. Absolute error x(t) for &« =1, m=5 and different values t in example 1.

t [1] m=5 Present Method m =5

0 0.00000625 0
0.1 0.0000134 1.2376247904288817x10°"
0.2 0.0000212 2.1260006768386575x10°°
0.3 0.0000324 1.787127701380342x10°®
0.4 0.0000473 2.6023598275193294x10°®
0.5 0.0000620 1.8611311257688001x10°®
0.6 0.0000749 1.6945524689004898x10°°
0.7 0.0000888 3.600201665232561x10°
0.8 0.000107 1.4930994740591785x10°7
0.9 0.000131 5.091619992403373x10°
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Example 2. This example considers a time varying fractional optimal control problem [1,
2]. Find the control u(t) which minimizes the performance index J given in Example 1

subject to the following dynamical system
D*x(t) =t x(t) +u(t),

with initial condition

x(0) =1.

Figs. 5 and 6 show the state x(t) and the control u(t) as functions of t for different

values of « . These figures show that as « approaches close to 1, the numerical solutions
for both the state and the control variables approach to the solutions for o =1 as
expected. The numerical solution obtained with the proposed method for fractional orders
of a matches those found in the literature.
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Fig 6. Approximate solutions of u(t) for m =5and different values of « in example 2.
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8. Conclusion

In this work, by Bernstein polynomials we obtained operational matrices of the product
and fractional derivative. Then we reduced the time varying fractional optimal control
problem to a system of algebraic equations that can be solved easily. We saw that the
obtained results in examples were in good agreement with the exact solution and
approximate solution of other methods. Also, we observed that the solutions for the
fractional optimal control problems approach to the solutions for standard optimal control
problems as the order of the fractional derivative approaches to 1.
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