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Abstract 

    In this paper, we present a method for solving time varying fractional optimal control 

problems by Bernstein polynomials. Firstly, we derive the Bernstein polynomials (BPs) 

operational matrix for the fractional derivative in the Caputo sense, which has not been 

undertaken before. This method reduces the problems to a system of algebraic equations. 

The results obtained are in good agreement with the existing ones in open literatures and 

the solutions approach to classical solutions as the order of the fractional derivatives 

approach to 1. 
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1. Introduction  

 

    Although the optimal control theory is an area in mathematics which has been under 

development for years but the fractional optimal control theory is a very new area in 

mathematics. Recent contributions in this field were reported by several authors [1-4].    

 

 

    In this paper, we consider the time varying fractional optimal control problem as 

follows: 

 

  ,)()(
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subject to the dynamic constrain 
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,10,10),()()()()( 21   ttutatxtatxD                                                  )2(                                                                                                                  

 

and the initial condition 

 

,)0( 0xx                                                                                                                          )3(  

 

where )(tx  and )(tu  are the state function  and the control function, respectively. When 

1 , the above problem reduces to a standard optimal control problem. 

 

    The rest of this paper is as follows. In Section 2, we present some preliminaries in 

fractional calculus. In Section 3, BPs are introduced and then we approximate functions 

by using BPs and we show the properties of BPs by several Lemmas and corollaries. We 

make a new operational matrix for fractional derivative by BPs in Section 4. In Section 5, 

we apply BPs for solving time varying fractional optimal control problems. In Section 6, 

numerical examples are simulated to demonstrate the high performance of the proposed 

method. Finally, Section 7 concludes our work in this paper. 

 

2. Some preliminaries in fractional calculus 

 

    In this section, we give some basic definitions and properties of the fractional calculus 

which are used further in this paper. 

 

Definition 2.1. (See [5] ) We define  

    ,0)()()(00)()( 11 CtfandpwheretfttfandtfortftfC p  , and 

  CtftfC nn  )()( )(  where RNn  , . 

 

Definition 2.2. (See [5]) The Riemann-Liouville fractional integral operator of order 

0 , of a function 1,  Cf , is defined as  

),()(

,0,0,)()(
)(

1
)(

0

0

1

tftfI

tdxxfxttfI
t






 
 





                                                     )4(  

and for nCftnnn 1,0,,1   , the fractional derivative of )(tf  in the 

Caputo sense is defined as  

.)()(
)(

1
)()(

0

)(1


 




t
nnnn dxxfxt

n
tfDItfD 


                                          )5(  

 

Property 2.3. (See [6-8]) For 0,,1,  Cf   we have 

,
)1(

)1( 



 




 ttI                                                                                                )6(  

 

and for  nnn ,1  and 1,  
nCf  we see the following properties 
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),()(.1 tftfID                                                                                                       )7(  

,0,
!

)0()()(.2
1

0

)(  




 t
k

x
ftftfDI

n

k

k
k                                                                )8(  

.)()(.3 tfDItfD                                                                                                )9(  

 

3. Bernstein polynomials and their properties 

 

    The Bernstein polynomials (BPs) of mth-degree are defined on the interval ]1,0[ as 

follows: 

 

.,,1,0,)1()(, mixx
i

m
xB imi

mi 







                                                                      )10(  

 

Corollary 3.1. Set  )(,,)(,)( ,,1,0 xBxBxB mmmm   is a complete basis in Hilbert space 

]1,0[2L  and polynomials of degree m  can be expanded in terms of linear combination of  

),,1,0()(, mixB mi   as follows 





m

i

mii xBcxP
0

, .)()(                                                                                                      )11(  

 

Lemma 3.2. We can write ),()( xTAx mm   where A  is a matrix upper triangular,  

  Tm

m xxxT ,,,1)(   and  T

mm xBxBxBx )(,,)(,)()( 20  . 

 

Proof. Using binomial expansion of imx  )1( , we have 
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Therefore we can write 

 

),()( xTAx mm                                                                                                           )12(  
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Lemma 3.3. (see [9]) Let  1,02L  be a Hilbert space with the inner product 


1

0
)()(, dxxgxfgf , and  1,02Ly . Then, we can find the unique vector 

 T

mcccc ,,, 21   such that 

.)()()(
0

, xcxBcxy m

T
m

i

mii 


                                                                                   )13(  

  

Corollary 3.4. In lemma 3.3, we have  ,, 1 Qfc m

T  such that 

  
1

0
,,1,0 ,,,,,,)()(, mmmm

T

mm BfBfBfdxxxff  and 

  1

1,,






m

jijiQQ  is as follows 
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)()(
1

0
,,1,1 mji

ji

m
m

j

m

i

m

dxxBxBQ mjmiji 






























                                 )14(  

 

Lemma 3.5. Suppose that 1)1( mc  is an arbitrary vector. The operational matrix of 

product  )1()1(
ˆ

 mmC  using BPs can be given as follows: 

 

.ˆ)()()( Cxxxc T

m

T

mm

T                                                                                      )15(  

 

Proof. From (12) we have 
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Now, we approximate all functions )(, xBx mi

k  in terms of )(xm . Thus we define  

 

 Tm

ikikikik eeee ,

1

,

0

,, ,,,  , then by (14) we can write  

 

.,,1,0,,)()( ,, mkixexBx mikmi

k   

 

So, we get 
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Then, we have 
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where ),1,0(1 mkVk   is an )1()1(  mm  matrix that has vectors ike ,  ),,1,0( mi   

for each column’s. If we define  cVcVcVC m,,, 21  , then we get 

 

,)()()( TT

m

T

mm

T ACxxxc                                                                                  )16(  

 

and therefore we obtain the operational matrix of product .ˆ TACC   

 

  

4. BPs operational matrix for fractional derivative 

 

   In this section, we obtain the operational matrix for the fractional derivative. We can 

write 

,10),(
)(

1
)( )(1 


  ttt

n
tD n

m

n

m




                                                            )17(  

 

where   denotes the convolution product.  

 

By (12) we obtain 
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where    

 

 






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
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Therefore we have 

 

,
~~

)( TtTD m                                                                                                                )19(  

 

where 
~

 and T
~

 are a )1()1(  mm  diagonal matrix and a 1)1( m  matrix, 

respectively as follows: 
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and     

 
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




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
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




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                                                                     )21(  

 

Now, we approximate   ),,( mit i    with respect to BPs by using (13). Therefore, 

we can write 

 

),(tPt m

T

i

i                                                                                                              )22(  

 

where iP ,   ),,( mi   is a vector 1)1( m . So, we have 
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Now, we suppose P  is an )1()1(  mm  matrix that has vector zero in    first 

column and vector iP   in (i+1)th column’s for   mi ,, .  

 

Finally, from (17)-(24), we obtain 
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),()( tDtD mm  
                                                                                                  )25(  

 

where  

 

,
~ TPAD                                                                                                                )26(  

 

 is called the Bernstein polynomials operational matrix of fractional derivative. 

 

 

6. BPs for solving time varying fractional optimal control problems 

 

Using Lemma 3.3, we can approximate the functions as follows: 

 

),()( tctx m

T                                                                                                             )27(  

),()( tbtu m

T                                                                                                             )28(  

),()( 11 tata m

T                                                                                                            )29(  

),()( 22 tata m

T                                                                                                           )30(  

                                                                                                                                                                           

where 1)1(

21 ,,,  mRaabc . 

 

by (25) and (27) we can write 

 

).()( tDctxD m

T  
                                                                                                    )31(  

 

Therefore, the problem (1)-(3) reduce to the following problem: 
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dtbttbcttcMinimize T

mm

TT

mm

T
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subject to the dynamic constrain 
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m

T                                                    )33(    

                                                                                                                                           

and the initial condition 

 

.)0( 0xc m

T                                                                                                                 )34(  

 

Now, using Corollary 3.4 for (32) we can write 

 



Mohsen Alipour, Davood Rostamy/ J. Math. Computer Sci.   6 (2013) 292 - 304 

 

 299 
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Also by Lemma 3.5 for (33) we have  
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Now, by using tau method [10] we can generate algebraic equations from (36) as follows 
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and from (34) we set 0)0( xcG m

T

m  . 

Finally, the problem (1)-(3) has been reduced to a parameter optimization problem which 

can be stated as follows: 
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subject to the system of algebraic equations 
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For solving the above problem we use the Lagrange multipliers method. So, we define 

Lagrange function for the problem (38) and (39) as follows: 
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where T

m ],,[ 0   is the unknown Lagrange multiplier. Now, we consider the 

necessary conditions for the extremum and obtain the following systems of algebraic 

equations  
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Equations (41)-(43) can be solved for bc,  and   by Newton’s iterative method. Then, 

we get the approximate value of the state functions )(tx and the control functions )(tu  

from (27) and (28), respectively. 

 

 

7. Numerical examples 

 

   To demonstrate the applicability and to validate the numerical scheme, we apply the 

present method for the following examples. 

 

Example 1. Consider the following time invariant problem [1, 2] 
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subject to the system dynamics 
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with initial condition 

 

.1)0( x  

 

For this problem we have the exact solution in the case of α = 1 as follows 

 

,)2sinh()2()2cosh()21()(

,)2sinh()2cosh()(

tttu

tttx








 

 

where   .
)2sinh()2cosh(2

)2sinh(2)2cosh(




   

 

Figures 1 and 2 show the state and the control variables, respectively, as a function of 

time for 5m , for different values of  . These figures show that as   approaches close 

to 1, the numerical solutions for both the state and the control variables approach to the 

analytical solutions for 1  as expected. In Figures 1 and 2, only the numerical results 

for 1  are presented. This is because, for 1  the analytical and the numerical 

results overlap. In Figs. 3 and 4, we see the absolute error of obtained results for 10m  

and 1 . Also, in Table 1 and 2, the absolute error of )(tx  for when 1  and 

5,4m  is demonstrated and is compared with [1].  
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Fig 1. Approximate solutions of )(tx  for 5m and different values of  and exact 

solution for 1  in example 1. 

 

 

 
Fig 2. Approximate solutions of )(tu  for 5m and different values of  and exact 

solution for 1  in example 1. 

 

 

 
Fig 3. Plot of absolute error function )(tx  for 1  and 10m  in example 1. 
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Fig 4. Plot of absolute error function )(tu  for 1  and 10m  in example 1. 

 

 

Table 1. Absolute error )(tx  for 4,1  m  and different values t  in example 1. 

t  4m  [1]  Present Method 4m  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.0000899 

0.0000477 

0.0000325 

0.0000774 

0.0000213 

0.0000643 

0.000103 

0.000112 

0.0000914 

0.0000941 

0 

0.00001560360486785317 

0.000026407578959108946 

0.000036101485012540735 

3.899031830290056×10-6 

0.00003810091250144865 

0.00004946576317460538 

0.000010110645709493493 

0.000055108397533421005 

0.00005539673693399916 

 

 

 

 

Table 2. Absolute error )(tx  for 5,1  m  and different values t  in example 1. 

t  [1] 5m  Present Method 5m  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.00000625 

0.0000134 

0.0000212 

0.0000324 

0.0000473 

0.0000620 

0.0000749 

0.0000888 

0.000107 

0.000131 

0 

1.2376247904288817×10-7 

2.1260006768386575×10-6 

1.787127701380342×10-8 

2.6023598275193294×10-6 

1.8611311257688001×10-6 

1.6945524689004898×10-6 

3.600201665232561×10-6 

1.4930994740591785×10-7 

5.091619992403373×10-6 
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Example 2. This example considers a time varying fractional optimal control problem [1, 

2]. Find the control )(tu  which minimizes the performance index J  given in Example 1 

subject to the following dynamical system 

 

,)()()( tutxttxD   

 

with initial condition 

 

.1)0( x  

 

Figs. 5 and 6 show the state )(tx  and the control )(tu  as functions of t  for different 

values of  . These figures show that as   approaches close to 1, the numerical solutions 

for both the state and the control variables approach to the solutions for 1  as 

expected. The numerical solution obtained with the proposed method for fractional orders 

of    matches those found in the literature. 
 

 

Fig 5. Approximate solutions of )(tx  for 5m and different values of   in example 2. 

 

 
Fig 6. Approximate solutions of )(tu  for 5m and different values of   in example 2. 
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8. Conclusion 

 

    In this work, by Bernstein polynomials we obtained operational matrices of the product 

and fractional derivative. Then we reduced the time varying fractional optimal control 

problem to a system of algebraic equations that can be solved easily. We saw that the 

obtained results in examples were in good agreement with the exact solution and 

approximate solution of other methods. Also, we observed that the solutions for the 

fractional optimal control problems approach to the solutions for standard optimal control 

problems as the order of the fractional derivative approaches to 1. 
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