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Abstract 
The purpose of this paper is to provide a precise analysis of the �-th moment of the profile in random 

binary digital trees. We assume that the � input strings are independent and follow a (binary) Bernoulli 

model. In tries, the main difference with the previous analysis is that we have to deal with an 

inhomogeneous part in the proper functional equation satisfied by the �-th moment and in digital search 

trees with an inhomogeneous part in a proper functional-differential equation. We show that �-th moment 

of the profile (� � 2) is asymptotically of the same order as the expected value (� � 1). These results are 

derived by methods of analytic combinatorics. 

 

Keywords: Digital trees, Tries, Digital search trees, Profile, The �-th moment.  

1. Introduc�on 

Digital trees like tries or digital search trees are important in many computer science applications like 

data compression, pa ern matching or hashing (see [2], [4] and [5]). For example, the popular Lempel-

Ziv compression scheme is strongly related to digital search trees [20]. They are two classes of so-called log� trees and their construction is based on digital keys and not on the order structure of the keys as in 

the case of binary search trees [6]. 

    Digital trees have been widely studied in the literature (see [16], [19] and the references therein). The 

motivation of studying the profiles of such trees is multifold. However here we will concentrate on the �-
th moment of the profile in these trees.  

1.1. Binary tries 

 
    Tries are prototype data structures useful for many indexing and retrieval purposes. They were first 

proposed by de la Briandais [2] in the late 1950s for informa4on processing; Fredkin [10] suggested the 
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current name as it being part of retrieval. Tries are multiway trees whose nodes are vectors of 

characters or digits. Due to their simplicity and efficiency, tries found widespread use in diverse 

applications ranging from document taxonomy to IP addresses lookup, from data compression to 

dynamic hashing, from partial-match queries to speech recognition, from leader election algorithms to 

distributed hashing tables (see [12], [14], [16] and [19]). 

     Tries are natural choice of data structures when the input records involve a notion of digits (or 

alphabets). They are often used to store such data so that future retrieval can be made efficient. Given a 

sequence of � strings over the binary alphabet Σ � 
0,1
, we can construct a trie as follows. If � � 0, 

then the trie is empty. If � � 1, then a single (external) node holding the strings is allocated. If � � 2, 

then the trie consists of a root (internal) node directing strings to the two subtrees according to the first 

digit of each string, and strings directed to the same subtree are themselves tries (see [14], [16] and [19] 

for more details). Unlike other search trees such as digital search trees and binary search trees where 

records or keys are stored at the internal nodes, the internal nodes in tries are branching nodes used 

merely to direct records to each subtries, records being all stored in external nodes that are leaves of 

such tries [18]. Figure 1 shows a trie built on eight strings ��, . . . , �� (i.e., �� � 0. .., �� � 1. .., �� � 01. .., �� � 11. .., etc.) with internal (ovals) and external (squares) nodes.  

 

Figure  1: A trie built on eight strings ��, . . . , ��. 

    Trie provides a model for the analysis of several important algorithms, such as Radix Exchange Sort 

[14], and Extendible Hashing [10].  

1.2. Binary digital search trees 

 
      A binary digital search tree is built from a sequence of keys where each key is a string of binary digits. 

It is easiest for implementation that the keys the same length. The first key, or a pointer to it, is stored in 

the root node; a subsequent key is guided to the left or right subtree as whether its first bit is 0 or 1, 

respectively. In the subtrees the algorithm is repeated recursively, but if the subtree is at the level �, the �-th bit is used for branching. The process continues in the subtrees until an empty subtree is reached 

and that is where new key is adjoined. The process is very similar to the growth of binary search trees, 

only different in the branching method where the bits are used instead of ordinal values of the keys. The 

nodes containing of strings are called the internal nodes and the remaining nodes which are directly 
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a ached to nodes already exis4ng in the tree are called the external nodes [7], [8]. These trees have 

introduced by Coffman and Eve in 1970 and also are called Coffman-Eve sequence trees [3]. Figure 2 

shows a digital search tree built on eight strings ��, . . . , ��.  

 

Figure  2: A digital search tree built on eight strings ��, . . . , ��. 

    A main distinction between the algorithm for digital search trees and that for tries is that all the nodes 

of the digital tree hold keys, whereas in tries the keys reside only in leaves. Digital search tree provides a 

model for the analysis of several important algorithms, such as the Lempel-Ziv parsing algorithm [15], 

and Conflict Resolu4on [17]. 

1.3. Biased random binary digital trees 

 
   The profile of a digital tree is a parameter that represents the number of nodes (either internal or 

external) with the same distance to the root. It is a function of the number of strings stored in a tree and 

the distance from the root. Several, if not all, digital tree parameters such as height, size, depth, shortest 

path, and fill-up level can be expressed in terms of the (external and internal) profiles [7], [18]. 

      Throughout the paper, we write ��,��  to denote the number of external nodes (leaves) at distance � 

from the root; the number of internal nodes at distance � from the root is denoted by ��,��  in binary 

tries. For simplicity, we will refer to ��,��  as the external profile and ��,��  the internal profile. Also we 

write ��,��  and ��,��  for binary digital search trees. 

     The standard data model for digital trees is the Bernoulli probability distribution (infinitely long 

independent keys of independent bits). The probability model should ideally be unbiased. In practice 

this unbias is not guaranteed [1]. 

     In this paper we study the profiles of a binary digital tree built over � binary strings generated by a 

Bernoulli model. More precisely, we assume that the input is a sequence of � independent and 

identically distributed random variables, each being composed of an infinite sequence of Bernoulli 

random variables with mean �, where 0 � � � 1 is the probability of a "1" and � � 1  � is the 

probability of a "0". The corresponding digital tree constructed from these � bit-strings is called a 

random digital tree. We consider the Bernoulli model with unequal probabilities of symbols (biased 

model). More precisely, we assume that � � �. 
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    The purpose of this paper is to provide a precise analysis of the �-th moment of the profile in digital 

trees. In tries, the main difference with the previous analysis is that we have to deal with an 

inhomogeneous part in the proper functional equation satisfied by the �-th moment. Also in digital 

search trees we have to deal with an inhomogeneous part in a proper functional-differential equation 

satisfied by the �-th moment. However, we show that the �-th moment is asymptotically of the same 

order as the expected value in two cases. These results are derived by methods of analytic 

combinatorics such as generating functions, Mellin transform, Poissonization, the saddle point method 

and singularity analysis.  

2. Results on binary tries  

The probability generating function of ��,�� , !�,�� "#$ � %"#&',() $, satisfies the following recurrence 

rela4on [18]  

 !�,�� "#$ � ∑  
�+,- .

�
 j 1�+��2+!+,�2�� "#$!�2+,�2�� "#$,     � � 2, � � 1 (1) 

with initial conditions !-,�� "#$ � 1(� � 0), !�,-� "#$ � #, !�,�� "#$ � 1(� � 1) and !�,-� "#$ � 1(� � 1). 

From (1) one gets directly a recurrence rela4on for the exponen4al genera4ng func4ons  

3�"4, #$ �5  

�6-
!�,�� "#$ 4��!  

 of the form  

 3�"4, #$ � 3�2�"�4, #$3�2�"�4, #$ 8 "!�,�� "#$  !�,�2�� "#$$4, � � 1, 
with initial conditions 3-"4, #$ � 9: 8 4"#  1$. With the help of the initial conditions of !�,�� "#$ it 

follows that  

 3�"4, #$ � 9: 8 "9;:�4 8 9<:�4  4$"#  1$ 8 ��4�"#  1$� 

and  

 3�"4, #$ � 3�2�"�4, #$3�2�"�4, #$,    � � 2. (2) 

 The corresponding probability generating functions for the internal profile, !�,�� "#$ � %"#=',() $ satisfy 

the same recurrence (1) but with ini4al condi4ons !�,-� "#$ � #(� � 2), !�,�� "#$ � 1 for � > 1 and � � 0. Similarly to the external profile the exponential generating function  

3�"4, #$ �5  

�6-
!�,�� "#$ 4��!  

 satisfy  
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 3�"4, #$ � 3�2�"�4, #$3�2�"�4, #$,     � � 1, (3) 

 with initial condition 3-"4, #$ � #9:  "1 8 4$"#  1$. 
     Let ?�,�,@� � %A"��,�� $@B be the �-th moment of the external profile in binary tries. By taking the 

derivative of order � with respect to # and setting # � 1 from 3�"4, #$ we obtain for the exponential 

generating function  

��"@$"4$ �5  

�6-
?�,�,@� 4��!  

the following functional recurrence  

��"@$"4$ � 9<:��2�"@$ "�4$ 8 9;:��2�"@$ "�4$ 
                                             8∑  

@2�C,� ∑  
@2��,� D"E, �$��2�"C$"�4$��2�"�$ "�4$, � � 2 (4) 

with initial conditions �-"@$"4$ � 4 and  

 ��"@$"4$ � �49;: 8 �49<: 8 ∑  
@2�C,� ∑  

@2��,� F"E, �$��4�  4, 
where F"E, �$ G H. 

Let I�"@$"4$ � 92:��"@$"4$ be the Poisson transform ��"@$"4$. Thus recurrence (4) translates into  

 I�"@$"4$ � I�2�"@$ "�4$ 8 I�2�"@$ "�4$ 
                8∑  

@2�C,� ∑  
@2��,� D"E, �$I�2�"C$ "�4$I�2�"�$ "�4$, � � 2 (5) 

where D"E, �$ G H, since � 8 � � 1. If � � 1, then  

 I�"�$"4$ � I�2�"�$ "�4$ 8 I�2�"�$ "�4$. 
This case analyzed by Park, Hwang, Nicodeme and Szpankowski [18]. If � � 2, then D"1,1$ � 2. If � � 3, 

then D"1,2$ � D"2,1$ � 3 and another D"E, �$ � 0 and so on.  

Lemma 1.  [18] Suppose 4 � K9LM, where K � 0 and |O| > P. Then  

 |��"�$"4$| > ��"�$"K$92QRMS  

uniformly for all � � �"�$ � 1 and some constant T U 0.  

Lemma 2.  Suppose 4 � K9LM, where K � 0 and |O| > P. Then  

                   |I�"@$"4$| > I�"@$"K$92QRMS  (6) 
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 for some constant T independent of K, � and O.  

Proof. By itera4ng the equa4on (5) we can represent I�"@$"4$ by  

 I�"@$"4$ � ∑  
�
ℓ,- .�  1   ℓ 1I�"@$"�ℓ��2�2ℓ4$ 

                8∑  
@2�C,� ∑  

@2��,� V"E, �$W�,C,�"4$ 
                8∑  

@2�C,� ∑  
@2��,� V"E, �$∑  

�2�+,� ∑  
+
ℓ,- .

�
 ℓ 1W�2+,C,�"�ℓ�+2ℓ4$, (7) 

where W�,C,�"4$ � I�2�"C$ "�4$I�2�"�$ "�4$ for � � 2 and again V"E, �$ G H. Now we can prove (6) by 

induc4on and Lemma 1.  

     It is clear that I�"@$"4$ can be represented as (see equa4on (5))  

I�"@$"4$ �5  

�(

L,�
4LXL,�"@$"4$, 

where XL,�"@$"4$ can be represented as a finite linear combinations of functions of the form 

exp
 ∑  ℓ\ ∑  ℓS �ℓ\�ℓS4
 with 0 > ℓ� 8 ℓ� > �. The proof of our result for the �-th moment of the 

profile relies on a precise analysis of the recurrence (5) for I�"@$"4$ that is based on the Mellin transform 

and analytic de-Poissonisation. Let 39]]^�
I�"@$"4$; �
 denote the Mellin transform [11]  

39]]^�
I�"@$"4$; �
 � `  

∞

- I�"@$"4$4a2�b4 

 with c"�$ U  2 for � � 1. Thus  

39]]^� dI�"@$"4$; �e �5  

�(

L,�
Γ"� 8 ^$fL,�"@$"�$,    � � 2, 

 where fL,�"@$"�$ can be represented as a finite linear combinations of functions of the form 


∑  ℓ\ ∑  ℓS �ℓ\�ℓS
2a and  

39]]^�
��"@$"4$; �
 � Γ"� 8 1$ .�2a 8 �2a 8 "� 8 1$ 5  

@2�

C,�
5  

@2�

�,�
D"E, �$��  11. 

 Also we can rewrite 39]]^�
I�"@$"4$; �
 as Γ"� 8 1$f�"@$"�$ where  

 f�"@$"�$ � f�,�"@$"�$ 8 ∑  
�(L,� "� 8 1$g "� 8 ^$fLh�,�"@$ "�$. 
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For a real number i with "log �;$2� � i � "]jk �<$2�, let  

 l � l"i$ � �
mno";/<$ log q�2rmno"�/;$rmno"�/<$2�s. (8) 

 Equivalently, i and l satisfy the equation  

 i � ;tuh<tu
;tumno\vh<tumno\w. 

Furthermore, we set  

 x"l$ � ;tu<tumno";/<$S
";tuh<tu$S , (9) 

 and we also use the abbreviations  

i- � 2
log 1� 8 log 1�

,   i� � 1
log 1�

,    i� � �� 8 ��
��log 1� 8 ��log 1�

. 

 It is natural to choose l � l�,� as the saddle point of the function  

 y"�$��2a � 9�mno�"a$2amno� 

which satisfies the equation  

 
�
mno� � ;tuh<tu

;tumno\vh<tumno\w, 
that is l � l�,� � l"�/log�$. Note also that on the line c"�$ � l there will be infinitely many saddle 

points  

 �+ � l 8 �zL+
mnovw ,        "� G H$ 

since |y"�+$| � y"l$. Consequently, the behavior of y"�$�{2a around � � �+ is almost the same as that 

of y"�$�{2a around � � l. This phenomenon gives a periodic leading factor in the asymptotics of 

��"@$"�$"��"@$"�$$ and then also in that of ?�,�,@� "?�,�,@� $.  
Lemma 3.  Let y"�$ � �2a 8 �2a and  

 X"�$ � |("}$"a$�"a$( . 
Suppose that i� 8 ~ > �/]jk� > i�  ~ (for some ~ U 0). Then  

 I�"@$"�$ � ��l�,� , ]jk;/<���� �"�',($(�tu',(��z�"�',($� �1 8 � q �√�s�, 
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 where  

 �"l, 4$ � ∑  +GH X"l 8 ^�+$�"l 8 ^�+ 8 1$92�+zL: (10) 

 is a non-zero periodic function with period 1 in 4 and �+ � 2�P/]jk"�/�$. 
     Furthermore, for |O| > P/2  ~ (for some ~ U 0), we have  

 I�"@$"�9LM$ � �"�',($(��z�"�',($�∑  |+|�+� X"l�,� 8 ^�+$�"l�,� 8 ^�+$"�9LM$2�',(2L@��2L�@� 
            � q1 8 �" �√�$s, (11) 

 where �- � �]jk�]jk"�/�$/"2P$.  
Proof. By the inverse Mellin transform  

 I�"@$"4$ � �
�zL �  

�hL∞�2L∞ Γ"� 8 1$f�"@$"�$42ab� 

                � �
�zL �  

�hL∞�2L∞ Γ"� 8 1$X"�$y"�$�42ab�, (12) 

 with l U  2 where  

 X"�$ � |("}$"a$�"a$( . 
The proof is completed quite iden4cal to that of Lemma 5 in [7] for the new func4on X"�$.  
Theorem 1.  Let ?�,�,@�  denote the �-th moment of the external profile in binary tries with 0 � � � � � 1. 

Let � and � be positive integers. Then the following assertions hold:   

1.  If i� 8 ~ > �
���� > i�  ~ (for some ~ U 0), then uniformly  

 ?�,�,@� � ��l�,�, ]jk;/<���� �"�',($(�tu',(��z�"�',($� q1 8 ���2�/��s, 
where �"l, 4$ is as (10).  

2.  If � � i��]jk� 8 ��i�x" 2$]jk��, where � � j""]jk�$\�$, then  

 ?�,�,@� �  ��f�"@$" 2$�"�$ �1 8 � ��h|�|��������, 
where � is the normal distribution function .  

3.  If 
�

���� � i� 8 ~ (for some ~ U 0), then uniformly  
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 ?�,�,@� �  ��f�"@$" 2$�1 8 �"�2�$� 
for some � U 0.  

Proof. The asymptotics for ?�,�,@�  accomplish by the analytical de-Poissonization which requires to 

compute the Cauchy integral  

 ?�,�,@� � �!
�zL �  |:|,� 9:I�"@$"4$ �:

:'�\. 
Lemma 3 and Lemma 2 complete the range i� 8 ~ > �

mno� > i�  ~. For range 
�
mno� � i� 8 ~ we can be 

handled in a similar way. First one has to shift the path of integration to the line c"�$ � l �  2. The 

integrand has a polar singularity at � �  2, thus we have  

 I�"@$"4$ �  X" 2$4�y" 2$� 

               8 �
�z�  

∞2∞
42aΓ"l 8 ^� 8 1$X"l 8 ^�$y"l 8 ^�$�b�. 

 Thus the leading term of I�"@$"4$ is  42�f�"@$" 2$. It is not difficult to show that X" 2$ � 0, since  

 y"�$� � ∑  
�+,- .� � 1 "�

+��2+$2a. 
By de-Poissonisation this term is proposed as leading term of ?�,�,@�  if 4 � �. For the remaining integral 

we set 4 � �9LM and obtain  

 �  
∞2∞
42aΓ"l 8 ^� 8 1$X"l 8 ^�$y"l 8 ^�$�b� � � q�tu�"�$(√� s 

uniformly for |O| > O-"O- � P/2$ and  3 > l >  2 ~"3 U 2$. If we choose l sufficiently close to  2 we obtain  

 I�"@$"�9LM$ �  ��f�"@$" 2$9�LM�1 8 �"�2�$� 
for some � U 0. Hence from Lemma 2 and analy4c de-Poissonisation we get the result in this range. 

     For another range we move the line of integration to the saddle point  

 c"�$ � l �  2  �
�rS�"2�$mno�8 � q �

S
mno�s 

and proof is completed just similar to [18].  

Theorem 2.  Let ?�,�,@�
 denote the �-th moment of the internal profile in binary tries with 0 � � � � � 1. 

Let � and � be positive integers. Then the following assertions hold:   
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 1.  If i� 8 ~ > �
���� > i-  ~ (for some ~ U 0), then uniformly  

 ?�,�,@� � 2�  ��l�,�, log;/<���� �"�',($(�tu',(��z�"�',($� q1 8 ���2�/��s, 
where �"l, 4$ is is a non-zero periodic func3on with period 1 in 4.  

2.  If � � i-�]jk� 8 ��i-x"0$]jk��, where � � j""]jk�$\�$, then  

 ?�,�,@� � 2��" �$ �1 8 � ��h|�|��������. 
3.  If i- 8 ~ > �

���� > i�  ~ (for some ~ U 0), then uniformly  

 ?�,�,@� � ��l�,�, ]jk;/<���� �"�',($(�tu',(��z�"�',($� q1 8 ���2�/��s. 
4.  If � � i��]jk� 8 ��i�x" 2$]jk��, where � � j""]jk�$\�$, then  

 ?�,�,@� �  �
�;<�"�$��f�"@$" 2$"�� 8 ��$ �1 8 � ��h|�|��������. 

5.  If 
�

���� � i� 8 ~ (for some ~ U 0), then uniformly  

 ?�,�,@� �  �
�;< ��f�"@$" 2$�1 8 �"�2�$� 

for some � U 0.  

Proof. The analysis uses exactly the same methods of proof of Theorem 1. The Poisson transform 

I�"@$"4$ is given by  

I�"@$"4$ � 2�  12P^`  

�hL∞
�2L∞ "� 8 1$Γ"�$y"�$�42ab�, 

where l U 0. There is a second phase transition due to the additional polar singularity at l � 0.  

Remark 1. The results stated in Theorem 1 and Theorem 2 are not op3mal. For example, the range 

i� 8 ~ > �
���� > i�  ~ can be weakened to  

 i�"log�  logloglog�  ��$ > � > i�"log�  ���log�$, 
where �� is any sequence tending to infinity [6, 18]. Thus the �-th moment of the internal profile is 

asymptotically equivalent to 2� for � > i-"]jk�  ���]jk�$. Also when � � i�"]jk� 8 ���]jk�$, 
then ?�,�,@� ~ y" 2$?�,�,@� /�� as it was for the expected value [18].  
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Remark 2. For � � 1,  

 f�"�$"�$ � "�2a 8 �2a  1$"�2a 8 �2a$�2�, 
 X"�$ � ;t h<t 2�

;t h<t  , 
 39]]^�
I�"�$"4$; �
 � Γ"� 8 1$"�2a 8 �2a  1$, 
 39]]^�
I�"�$"4$; �
 � Γ"� 8 1$"�2a 8 �2a  1$"�2a 8 �2a$�2�. 

We point out that if we set i � �/log�, then we can rewrite  

 "�2� 8 �2�$��2� � �rmno";tuh<tu$2�. 
Thus, for i- � i � i� the behavior of ?�,�,@�  and ?�,�,@�

 is governed by a power of � depending on the 

ratio i � �/log�. The maximum exponent is obtained for  

 i � �
¡ � �

;mno\vh<mno\w, 
where ¢ � �log �; 8 �log �< denotes the entropy of the Bernoulli source. Actually, the �-th moment of 

the number of nodes at level � � �
¡ log� is of order �/�log�. 

3. Results on digital search trees 

Let ��,��  denote the external profile in digital search trees generated by a Bernoulli model with 

parameter � U �. It is clear that �-,-� � 1 and ��,-� � 0"� � 1$ and the probability generating function 

of the external profile, !�,�� "#$ � %"#&',(£ $, satisfies the following recurrence rela4on [8]  

 !�,�� "#$ � ∑  
�2�+,- .

�  1
     � 1 �+��2�2+!+,�2�� "#$!�2�2+,�2�� "#$ (13) 

 with initial conditions !-,�� "#$ � 1 for � � 1, !-,-� "#$ � #, !�,-� "#$ � 1 for � � 1. 

      The exponential generating function  

¤�"4, #$ �5  

�6-
!�,�� "#$ 4��!  

 fulfills the following functional recurrence  

 
¥
¥:¤�"4, #$ � ¤�2�"�4, #$¤�2�"�4, #$,   � � 1 (14) 
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with initial conditions ¤�"0, #$ � 1"� � 1$ and ¤-"4, #$ � 1 8 #"9:  1$. Let ?�,�,@� � %"A��,�� B@$ be 

the �-th moment of the external profile. By taking the derivative of order � with respect to # and setting # � 1 we obtain for the exponential generating function  

%�"@$"4$ �5  

�6-
?�,�,@� 4��!  

 the following functional recurrence  

 %�′"@$"4$ � 9<:%�2�"@$ "�4$ 8 9;:%�2�"@$ "�4$ 
                8∑  

@2�C,� ∑  
@2��,� D"E, �$%�2�"C$"�4$%�2�"�$ "�4$, (15) 

 where D"E, �$ G H and %-"@$"4$ � 9:  1. 

For example, 

a) if � � 1, then D"1,1$ � 0. This case analyzed by Drmota and Szpankowski [7, 8], 

b) if � � 2, then D"1,1$ � 2. This case analyzed by Kazemi and Vahidi-Asl [13], 

c) if � � 3, then D"1,2$ � D"2,1$ � 3 and another D"E, �$ � 0 and so on. 

   Let Δ�"@$"4$ � 92:%�"@$"4$ be the Poisson transform %�"@$"4$. It is clear that  

 "Δ�"@$"{$$′ � 92¦%�′"@$"{$  Δ�"@$"{$. 
Thus recurrence (15) translates into  

 Δ�′"@$"4$ 8 Δ�"@$"4$ � Δ�2�"@$ "�4$ 8 Δ�2�"@$ "�4$ 
                  8∑  

@2�C,� ∑  
@2��,� D"E, �$Δ�2�"C$ "�4$Δ�2�"�$ "�4$, � � 1 (16) 

with initial conditions Δ�"@$"0$ � 0"� � 1$ and Δ-"@$"4$ � 1  92:, since � 8 � � 1. 

   It is easy to show that  

 Δ�"@$"4$ � ∑  ℓ\ ∑  ℓS i"ℓ�, ℓ�$exp
 ∑  L ∑  + F"^, �$�ℓ§�ℓ�4
 
with ℓL , ℓ+ � 0 and i"ℓ�, ℓ�$, F"^, �$ G H. We can express  

 39]]^�
Δ�"@$"4$; �
 � �  
∞- Δ�"@$"4$4a2�b4 �  Γ"�$f�"@$"�$, 

 where  

 f�"@$"�$ � ∑  ℓ\ ∑  ℓS i"ℓ�, ℓ�$
∑  L ∑  + F"^, �$2a�2ℓ§a�2ℓ�a
. 
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Thus, f�"@$"�$ can be considered an en4re func4on. Then (16) translates into  

 f�h�"@$ "�$  f�h�"@$ "�  1$ � y"�$f�"@$"�$ 8 ��"@$"�$, � � 0, f-"@$"�$ � 1, (17) 

where for � � �,  

 ��"@$"�$ � ∑  
@2�C,� ∑  

@2��,� ¨"C,�$Γ"a$ �  
∞- Δ�"C$"�4$Δ�"�$"�4$4a2�b4  

              > �2a ∑  
@2�C,� ∑  

@2��,� ¨"C,�$Γ"a$ �  
∞- Δ�"C$"4$Δ�"�$"4$4a2�b4 

             � �2a ∑  
@2�C,� ∑  

@2��,� ¨"C,�$
�zL Γ"a$�  

QhL∞Q2L∞ 39]]^n
Δ�"C$"4$; ª
39]]^�
Δ�"�$"4$; �  ª
bª. 
 With the same considera4on of [8], 39]]^�
Δ�"@$"4$; �
 > «Γ"�$y"�$� for some constant «. Thus  

 |��"@$"�$| > « ′�2a ∑  
@2�C,� ∑  

@2��,� ¨"C,�$
�zL Γ"a$ 

                   . �  
QhL∞Q2L∞ |Γ"ª  1$||Γ"�  ª  1$| 

                   � "y"c"ª$  1$y"c"�  ª$  1$$�bª 

                  > «"�, �$y"T  1$��, c"ª$ � T � c"�  ª$ 
                  � «"�, �$y"c"�$/2  1$��. 

By the above discussion ��"@$"�$ � �"y"c"�$$/2  1$��. Just similar to [13], it turns out the 

inhomogeneous part in (17) is rela4vely small. This suggests that the asympto4cs of the �-th moment 

should be of the same order of magnitude as for the expected value.  

Theorem 3.  Let ?�,�,@�  denote the �-th moment of the external profile in digital search trees with 

0 � � � � � 1. If � and � are positive integers with 
�

���\v8 ~ >
�

���� > �
���\w ~ (for some ~ U 0), then 

uniformly  

 ?�,�,@� � ¬�l�,� , log;/<���� �"�',($(�tu',(��z�"�',($� q1 8 ���2�/��s, (18) 

 where l�,� � l"�/]jk�$ and ¬"l, 4$ is a non-zero periodic function with period 1 in 4 and given by  

 ¬"l, 4$ � ∑  +GH X"l 8 ^�+$Γ"l 8 ^�+$92�+zL: , �+ � 2�P/log"�/�$. 
Theorem 4.  Let ?�,�,@�

 denote the �-th moment of the internal profile in digital search trees with 

0 � � � � � 1. Let � and � be positive integers such that �/]jk� satisfies "]jk �;$2� � �/]jk� �
"]jk �<$2�. Then the following assertions hold:   
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1.  If 
�

���\v8 ~ >
�

���� > i-  ~ (for some ~ U 0), then uniformly  

 ?�,�,@� � 2�  ¬�l�,� , ]jk;/<���� �"�',($(�tu',(��z�"�',($� q1 8 ���2�/��s. 
2.  If � � i-�]jk� 8 ��i-x"0$]jk��, where � � j""]jk�$\�$, then  

 ?�,�,@� � 2��" �$ �1 8 � ��h|�|�������� 

where � is the normal distribution function.  

3.  If i- 8 ~ > �
���� > �

���\w  ~ (for some ~ U 0), then uniformly  

 ?�,�,@� � ¬�l�,� , ]jk;/<���� �"�',($(�tu',(��z�"�',($� q1 8 ���2�/��s 

with the same function ¬"l, 4$ as in Theorem 3.  

     We state a very short outline of the proofs: First we have to obtain an explicit solution for 

f�"@$"�$"f�"@$"�$$ of (17) which is the most difficult part. Then we have to find proper asympto4cs for 

f�"@$"�$"f�"@$"�$$ and to invert then Mellin transform of Δ�"@$"4$"Δ�"@$"4$$. This leads us to an infinite 

number of saddle points (cf. also [8]). The final step will be to show that the Poisson transform of 

Δ�"@$"�$"Δ�"@$"�$$ is asymptotically equal to ?�,�,@� "?�,�,@� $. The reader is referred to [8] and [13] for a 

detailed discussion of the above mentioned tools that belong to analytic combinatorics. 
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