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Abstract 

To obtain the best domain of an elliptic boundary control problems, with and without 

abstacle, two approches are presented. The based measure method, apply a linearization 

technique and find the optimal domain and trajectory via a solution of finite linear method 

by using an optimization search technique. In the second one, by introducing the penalty 

function and then emplaying the finite element method the optimal domain for the same 

problem determind. The comparison between two methods is done via presenting some 

numerical simulations. 
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  1.   Introduction and Preliminaries 
Optimal shape design(OSD) theory, generally deals with finding the best domain for a system of 
differential equations and also perhaps its involved control variables. This kind of problems has 
applicated in many branch of sciences and engineering like aerospace, automotive industry, 
structural mechanics and etc. In this manner, many methods have been created specially for 
solving such problems; the level set method [7], mapping method [4], penalization approach [5], 
topology method [10] and the controllability approach [3] are some of these kind of methods. 
Also, based measure method, which we call the shape-measure method, is one of them that 
presents a linear treatment based on the properties of positive Radon measures; for instance in 
[2] the shape-measure method was presented for systems governed by elliptic equations in 
cartesian coordinates. In that paper the process of solution was achieved in two stages. First for 
a fixed domain, by using the density property and the idea of approximating a curve by broken 
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lines, the boundary of domain could be determined with fixed number of points (say M-
representation). Then unknown domain could be considered as a function of M variables. 

In this work, first, we extended and improved this method to solve the problems in the 
presence of obstacles. For this purpose, we impose the elliptic OSD problem some new 
constraint. Secondly, by using the penalty method and considering an initial domain, we employ 
the finite element approach to divide the domain into a finite number of triangles; next, on each 
of these triangles, we define two variables polynomials which are uniquely defined by their values 
at the three vertices of a triangle to replace the unknown domain by a piecewise linear arc. As 
will be explained in section 4, we specify the optimal domain for two cases of presence and 
abcence of obstacle. By presenting some examples, we compare the shape measure method with 
the penalty approach to dettermine the advantages of these two methods.  

 
2. General optimal shape problem 
Let 𝐷 ⊂ 𝑅2 be a bounded domain with a piecewise-smooth, closed and simple boundary ∂𝐷 
which consists of a fixed and a variable part. The free boundary part, Γis located between the 
two given points 𝐴 and 𝐵 (see figure1); as mentioned in [6], Γ can be approximated by line 
segments between the unknown corners 𝐴𝑖 ̓𝑠 with the fixed y-components 𝑌𝑖

, 𝑠  for 𝑖 = 1,2, … , 𝑀. 
 Definition 2.1. For the given functions 𝑓 ∈ 𝐶(𝐷 × 𝑅) and 𝑔 ∈ 𝐶(𝐷), the domain 𝐷 is called 
admissible if  

 Δ𝑢(𝑋) + 𝑓(𝑋, 𝑢) = 𝑔(𝑋), (1) 
 with the boundary condition 𝑢|∂𝐷 = 𝑣, has a bounded solution on 𝐷, where are the pair 𝑣: ∂𝐷 →
𝑅 and 𝑢: 𝐷 → 𝑅 are control and trajectory functions. 
Let 𝑓1: 𝐷 × 𝑈 → 𝑅 and 𝑓2: ∂𝐷 × 𝑉 → 𝑅, be two known continues functions. Then, in general, we 
study the following optimal shape design problem over the set of all admissible pairs of domains 
and controls (𝐷, 𝑢):  

 
𝑀𝑖𝑛: 𝐼(𝐷, 𝑣) = ∫

𝐷
𝑓1(𝑋, 𝑢(𝑋))𝑑𝑋 + ∫

∂𝐷
𝑓2(𝑠, 𝑣(𝑠))𝑑𝑠

𝑆. 𝑡𝑜:Δ𝑢(𝑋) + 𝑓(𝑋, 𝑢) = 𝑔(𝑋), 𝑢|∂𝐷 = 𝑣.
 (2) 

 

2.1. The obstacle problem 

To demonstrated the abilities of shape-measure method under the conditions of existing some 
obstacles, is another purpose of this paper. We consider an area in domain (presented in figure 
(2)) such that the solution of the above problem in this area is a fixed amount. One application 
field of this the problem is a specific speed in the exit area of a nozzle [11]. As a whole, the 
solution of the obstacle problem, is a function that minimizes the integral energy and other forms 
of objective functions like weight, press, displacement with extra constraint. 
Considering the elliptic system (2), the purpose obstacle problem in this paper is the 
determination of the optimal domain on set 𝐾 = {𝑢(𝑋) ∈ 𝐻1(𝐷), 𝑢|∂𝐷 = 𝑣, 𝑢 ≥ 𝜓}, where 
𝐻1(𝐷) is the sobolev space of order 1. Consuming the given set 𝑆 ⊂ 𝐷 is an area that 𝑢, should 
be the fixed function 𝜓 and in the other points the solution select amounts more than 𝜓 (see 
figure (2)).  

 

3. Shape-Measure method 
The idea of using measures to determine the solution of optimal shape design problems was 
based on the embedding procedure which introduced by Rubio in [8]. The first attempt was 
sucssed in 1996 where the optimal shape was created in polar coordinates as a mathematical 
problem under special circumstances in [1]. Then the method was extended to determine the 
best domains for different systems and the verify of application like [11]. The method, which for 
simplicity we call shape measure, has many advantages like an automatic existence theorem, 
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ability of finding some how the global solution, and linearity. In this section we briefly explain 
this procedure and the reader can find more details in the other related literature. 
By multiplying two sides of (1) by the function 𝜑 ∈ 𝐻0

1(𝐷), and then, integrating over 𝐷 and using 
Green formula [13], the general differential equation (1) is converted to the following generalized 
problem:  

 ∫
𝐷

(𝑢Δ𝜑 + 𝜑𝑓)𝑑𝑋 + ∫
∂𝐷

𝑣(∇𝜑. 𝑛)𝑑𝑠 = ∫
𝐷

𝜑𝑔𝑑𝑋,    ∀𝜑 ∈ 𝐻0
1(𝐷); (3) 

 
Here, 𝐻0

1(𝐷) = {𝜑 ∈ 𝐻1(𝐷): 𝜑|∂𝐷 = 0}. 
We define two following positive linear functionals:  

𝑢(. ): 𝐹 → ∫
𝐷

𝐹(𝑋, 𝑢(𝑋))𝑑𝑋;   𝜐(. ): 𝐺 → ∫
∂𝐷

𝐺(𝑠, 𝜐(𝑠))𝑑𝑠.
 

Then, Riesz Representation Theorem [13] is applied to transfer (3) into the space of positive 
Radon measure 𝑀+(Ω) × 𝑀+(𝜔), where Ω = 𝐷 × 𝑈 and 𝜔 = ∂𝐷 × 𝑉 and 

 𝜇(𝐹) = ∫
Ω

𝐹𝑑𝜇 = ∫
𝐷

𝐹(𝑋, 𝑢(𝑋))𝑑𝑋, ∀𝐹 ∈ 𝐶(Ω); 

 𝜈(𝐺) = ∫
𝜔

𝐺𝑑𝜈 = ∫
∂𝐷

𝐺(𝑠, 𝑣(𝑠))𝑑𝑠, ∀𝐺 ∈ 𝐶(𝜔). 

We have added two set of constrains to the problem to ensure that the projection of 𝜇 and 𝜆 on 
(𝑥, 𝑦) plane and real line is a lebegue measure: 

 𝜇(𝜉) = ∫
𝐷

𝜉(𝑥, 𝑦)𝑑𝑥 = 𝑎𝜉 ,    ∀𝜉 ∈ C(Ω); 

 
 𝜗(𝜏) = ∫

∂𝐷
𝜏(𝑠)𝑑𝑠 = 𝑏𝑠, ∀𝜏 ∈ C(𝜔). 

Extending the underlying space, applying density properties in the involved spaces and using 
linear properties of atomic measures accompany with two stages of approximation, cause to find 
the nearly optimal solution via the following finite linear programming problem [2]:  

𝑀𝑖𝑛: 𝐼(𝐷, 𝑣𝐷
∗ ) = ∑𝑁

𝑛=1 𝛼𝑛𝑓1(𝑍𝑛) + ∑𝐾
𝑘=1 𝛽𝑘𝑓2(𝑍𝑘)

𝑆. 𝑡𝑜: ∑𝑁
𝑛=1 𝛼𝑛𝐹𝑖(𝑍𝑛) + ∑𝐾

𝑘=1 𝛽𝑘𝐺𝑖(𝑧𝑘) = 𝑐𝑖,    𝑖 = 1,2, . . . , 𝑀1;

∑𝑁
𝑛=1 𝛼𝑛𝜉(𝑍𝑛) = 𝑎𝑗 ,    𝑗 = 1,2, . . . , 𝑀2;

∑𝐾
𝑘=1 𝛽𝑘𝜏(𝑧𝑘) = 𝑏𝑘,    𝑘 = 1,2, . . . , 𝑀3.

𝛼𝑛 ≥ 0,    𝑛 = 1,2, . . . , 𝑁;

𝛽𝑘 ≥ 0,    𝑘 = 1,2, . . . , 𝐾.

(4) 

 Here, 𝐹𝑖 = 𝑢Δ𝜑𝑖 + 𝜑𝑖𝑓, 𝐺𝑖 = 𝑣(∇𝜑𝑖. 𝑛), 𝑐𝑖 = ∫
𝐷

𝜑𝑖𝑔, 𝑍𝑛 and 𝑧𝑘 are members of the dense 

subset of Ω and 𝜔 respectively, 𝑎𝑗 = 𝑎𝜉𝑗
, 𝑏𝑘 = 𝑏𝜏𝑘

, 𝛼𝑛 and 𝛽𝑘 are unknown coefficient. We 

remined that by the explained maner in [8], one construct the optimal trajectory and control 
functions via the obtianed optimal coeficients  from (4). Now, the shape measure method is 
applied in two steps. First for a given 𝐷 one can calculate the value of 𝐼(𝐷, 𝑣𝐷

∗ ) by solving (4). In 
this manner, the suboptimal control function,𝑣𝐷

∗ , can be identified as the way as described in [1]. 
In general, for an unknown domain 𝐷, we approximate its variable part with 𝑀 segment lines (as 
mentioned in section 2, figure 2). Consequently, to identify a representative domian set 
approximately, one can determine the finite number of corners. Thus the vector function 𝐽: 𝐷 →
𝐼(𝐷, 𝑣𝐷

∗ ) can be identified as a function of 𝑀 variable in which for any given domain 𝐷, 𝐽(𝐷) can 
be calculated by solving (4). Therefore, one can obtain the optimal pair of domain and its related 
optimal control by optimizing J(D) with a suitable search techniques. The following theorem will 
show that the obtained domain and control is optimal. 
Theorem 3.1. Let the search algorithm give the global minimizer 𝐷∗ for 𝐽; then the obtained pair 
of domain and its related optimal control obtained by (4), (𝐷∗, 𝑣𝐷∗

∗ ), is the optimal solution of (1) 
(see the prove in [2]).  
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Figure 1: The domain D in general form                Figure 2: An admissible domain D under  

                                                                      the assumptions of the presence of obstacle 
 

4. Penalty approach method 
In this section, we state the method of solving problem (2) by using penalty function and finite 
elements method. First, we transfer the problem into a problem with zero boundary condition. 
Then, to ensure that this problem has a solution, instead of solving it in space 𝑉 = 𝐻0

1(𝐷), we 
demonstrate it on the closed and convex subspace of 𝑉 which is displayed by 𝐾. To apply penalty 
method for solving this problem, first, we must remind some needed definitions for introducing 
a generalized form of it. For an unknown domain 𝐷 as shown in figure (1) assume that 𝜈 ∈

𝐻1/2(∂𝐷) and 𝑓(𝑥, 𝑢) is a linear function respect to 𝑢; since (by the trace theorem 

Error! Reference source not found.) there exists 𝛾: 𝐻1(𝐷) → 𝐻1/2(∂𝐷), (where 𝐻1/2(∂𝐷) is the 
sobolev space in ∂𝐷 with fractional derivative) we have a function 𝐺 ∈ 𝐻1(𝐷) such that 𝛾𝐺 = 𝜈. 
Thus, we can set 𝑢 = 𝑤 + 𝐺 in equation (1), where 𝑤 solves the problem with homogeneous 
Dirichlet boundary conditions:  

 {
Δ𝑤 + 𝑓(𝑋, 𝑤) = 𝑔(𝑋) − Δ𝐺 − 𝑓(𝑋, 𝐺)   𝑖𝑛 𝐷

𝑤 = 0    𝑜𝑛 ∂𝐷,
 (5) 

is  each  𝑝 ∈ 𝐻0
1(𝐷),       The corresponding weak formulation of 

(5) for 
 ∫

𝐷
Δ𝑤. 𝑝𝑑𝐴 + ∫

𝐷
𝑓(𝑋, 𝑤). 𝑝𝑑𝐴 = ∫

𝐷
𝑔(𝑋). 𝑝𝑑𝐴 − ∫

𝐷
Δ𝐺. 𝑝𝑑𝐴 − ∫

𝐷
𝑓(𝑋, 𝐺). 𝑝𝑑𝐴;  

 
by using Green theorem [13] we have:  

 ∫
𝐷
Δ𝑤. 𝑝𝑑𝐴 = ∫

𝐷
∇𝑤. ∇𝑝𝑑𝐴 − ∫

∂𝐷

∂𝑤

∂𝑛
. 𝑝𝑑𝑠 = ∫

𝐷
∇𝑤. ∇𝑝𝑑𝐴. 

 Since 𝑝 ∈ 𝐻0
1(𝐷) thus 𝑝 = 0 on ∂𝐷, and we have:  

 ∫
𝐷
Δ𝐺. 𝑝𝑑𝐴 = ∫

𝐷
∇𝐺. ∇𝑝𝑑𝐴. 

 Thus, a weak formulation of problem (5) is obtained as:  

 
∫

𝐷
∇𝑤. ∇𝑝𝑑𝐴 + ∫

𝐷
𝑓(𝑋, 𝑤). 𝑝𝑑𝐴

= ∫
𝐷

𝑔(𝑋). 𝑝𝑑𝐴 − ∫
𝐷

∇𝐺. ∇𝑝𝑑𝐴 − ∫
𝐷

𝑓(𝑋, 𝐺). 𝑝𝑑𝐴.
 (6) 

 We set:  
 𝑎(𝑤, 𝑝) = ∫

𝐷
∇𝑤. ∇𝑝𝑑𝐴 + ∫

𝐷
𝑓(𝑋, 𝑤). 𝑝𝑑𝐴, (7) 

 and  
 ℓ(𝑝) = ∫

𝐷
𝑔(𝑋). 𝑝𝑑𝐴 − ∫

𝐷
∇𝐺. ∇𝑝𝑑𝐴 − ∫

𝐷
𝑓(𝑋, 𝐺). 𝑝𝑑𝐴. (8) 

 Notice that 𝑔(𝑋), 𝐺 and 𝑓(𝑋, 𝐺) are known. 
The finite element method provides a natural framework for finding finite-dimensional 

approximation of weak solution of elliptic boundary value problems 
Error! Reference source not found.. Set 𝑉 = 𝐻0

1(𝐷) and 𝑎(. , . ) is: 
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a) continuous on 𝑉 × 𝑉 (i.e. ∃𝑀 = 𝑐𝑜𝑛𝑠𝑡 > 0    |𝑎(𝑢, 𝑝)| ≤ 𝑀 ∥ 𝑢 ∥∥ 𝑝 ∥ ∀𝑢, 𝑝 ∈ 𝑉),  
Since by using Schwarz inequality [13], we have:  

 
| ∫

𝐷
∇𝑢. ∇𝑝𝑑𝐴 + ∫

𝐷
𝑓(𝑋, 𝑢). 𝑝𝑑𝐴| ≤ | ∫

𝐷
∇𝑢. ∇𝑝𝑑𝐴| + | ∫

𝐷
𝑓(𝑋, 𝑢). 𝑝𝑑𝐴|

≤ ({∫
𝐷

|∇𝑢|2𝑑𝐴}
1

2)({∫
𝐷

|∇𝑃|2𝑑𝐴}
1

2) + ({∫
𝐷

|𝑓(𝑋, 𝑢)|2𝑑𝐴}
1

2)({∫
𝐷

|𝑝|2𝑑𝐴}
1

2)  

where𝑓(𝑋, 𝑢) is a bounded function . 
b) v-elliptic on 𝑉 (i.e. if 𝑎(𝑢, 𝑢) ≥ 0, then ∃𝑚 > 0    ∀𝑝 ∈ 𝑉𝑎(𝑝, 𝑝) ≥ 𝑚 ∥ 𝑝 ∥2); 
if ∫

𝐷
𝑓(𝑋, 𝑝). 𝑝𝑑𝐴 is positive then : 

 ∫
𝐷

∇𝑝. ∇𝑝 𝑑𝐴 + ∫
𝐷

𝑓(𝑋, 𝑝). 𝑝 𝑑𝐴 ≥ ∫
𝐷

∇𝑝. ∇𝑝 𝑑𝐴 =∥ 𝑝 ∥2. 

 and if ∫
𝐷

𝑓(𝑋, 𝑝). 𝑝𝑑𝐴 is negative then : 

 | ∫
𝐷

∇𝑝. ∇𝑝 𝑑𝐴 + ∫
𝐷

𝑓(𝑋, 𝑝). 𝑝 𝑑𝐴| ≥ | − 𝑐 ∫
𝐷

𝑝𝑑𝐴| ≥ 𝑐| ∫
𝐷

𝑝 𝑑𝐴| = 𝑐 ∥ 𝑝 ∥1
2. 

 For a given N-dimensional subspace 𝑉𝑁 ⊆ 𝑉, consider the problem 
 
 𝑤𝑁 ∈ 𝑉𝑁,    𝑎(𝑤𝑁, 𝑝) = ℓ(𝑝)    ∀𝑝 ∈ 𝑉𝑁; 

by considering the above assumptions, Lax-Milgram Lemma guarantees the existence of an 
unique solution 𝑤𝑁 for this problem (for more detail see [6]). 

Definition 4.1. A triple (𝑉, 𝑎, ℓ), where 𝑎(. , . ) is a bilinear form and ℓ ∈ 𝑉 ′ (𝑉 ′ is the dual space of 
𝑉), will be called an abstract linear elliptic equation on 𝑉. An element 𝑤 ∈ 𝑉, which satisfying  

 
 𝑎(𝑤, 𝑝) = ℓ(𝑝),    ∀𝑝 ∈ 𝑉, (9) 

 will be called a solution of (𝑉, 𝑎, ℓ). 
Remark 4.2. If 𝑎(. , . ) is symmetric on 𝑉 × 𝑉 i.e. 𝑎(𝑤, 𝑝) = 𝑎(𝑝, 𝑤) for any 𝑤, 𝑝 ∈ 𝑉, then (9) is 
equivalent to find 𝑤 ∈ 𝑉 such that 𝐽(𝑤) ≤ 𝐽(𝑝) for any 𝑝 ∈ 𝑉, where 𝐽(𝑝) = (1/2)𝑎(𝑝, 𝑝) −
ℓ(𝑝) is a quadratic functional (see [9]). 
Definition 4.3. A triple (𝐾, 𝑎, ℓ), where 𝑎(. , . )is a bilinear form and ℓ ∈ 𝑉′,  will be called an 
abstract linear elliptic inequality on 𝐾. We also call an element 𝑤 ∈ 𝐾 the solution if the 
inequality  

 𝑎(𝑤, 𝑝 − 𝑤) ≥ ℓ(𝑝 − 𝑤) (10) 
 holds for any 𝑝 ∈ 𝐾 ([9]). 
Theorem 4.4. If 𝑎(. , . ) is a symmetric function on 𝐾, ∀𝑤, 𝑝 ∈ 𝐾, then (10) is equivalent to the 
problem of finding a minimizer 𝑤 of 𝐽 over 𝐾: 

 
 𝑤 ∈ 𝐾:    𝐽(𝑤) ≤ 𝐽(𝑝),    ∀𝑝 ∈ 𝐾; 

(see [9] for proof). 
Now we describe the penalty approach; for this purpose, we use penalty function and transfer 
inequality (10) to an equality one in 𝑉 that is equal to the problem in 𝐾. We follow 
Error! Reference source not found. and present the following definition: 
 Definition 4.5. Let 𝑗: 𝑉 → ℝ1 be a functional satisfying: 
(i) 𝑗(𝜈) ≥ 0    ∀𝜈 ∈ 𝑉 that 𝑗(𝜈) = 0 iff 𝜈 ∈ 𝐾; 
(ii) 𝑗 is convex, weakly lower semicontinuous on 𝑉; 
(iii) 𝑗 ∈ 𝑐𝑘, 𝑘 ≥ 1, (k times continuously differentiable on 𝑉). 
Now, we define problem (𝑃𝜀) by:  

 (𝑃𝜀) {
𝐹𝑖𝑛𝑑𝑢𝜀 ∈ 𝑉𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡

𝐽𝜀(𝑢𝜀) ≤ 𝐽𝜀(𝜈)    ∀𝜈 ∈ 𝑉,
 (11) 

 where 𝜀 > 0 is a penalty parameter tending to zero and 
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 𝐽𝜀(𝜈): = 𝐽(𝜈) +
1

𝜀
𝑗(𝜈). (12) 

(𝑃𝜀) is an optimization problem on 𝑉 (see[6]). 
 Proposition: If 𝑢𝜀 ∈ 𝑉 solves (𝑃𝜀), then  

 𝐽𝜀
′(𝑢𝜀 , 𝜈) = 0    ∀𝜈 ∈ 𝑉, (13) 

 where  

 𝐽𝜀
′(𝑢𝜀 , 𝜈) = lim

𝑡→0

𝐽𝜀(𝑢𝜀+𝑡𝜈)−𝐽𝜀(𝑢𝜀)

𝑡
, (14) 

 is the derivative of 𝐽𝜀 at 𝑢𝜀 in the direction of 𝜈. Taking into account (12),  (13) and (14) is 
equivalent to  

 

 𝑎(𝑢𝜀 , 𝜈) +
1

𝜀
𝑗′(𝑢𝜀 , 𝜈) = ℓ(𝜈)    ∀𝜈 ∈ 𝑉. (15) 

 Proof: Define 𝐽𝜀(𝜈): = 𝐽(𝜈) + (1/𝜀)𝑗(𝜈) where 𝐽(𝜈) = (1/2)𝑎(𝜈, 𝜈) − ℓ(𝜈); thus we have: 
 

𝐽𝜀(𝑢𝜀 + 𝑡𝜈) = 𝐽(𝑢𝜀 + 𝑡𝜈) +
1

𝜀
𝑗(𝑢𝜀 + 𝑡𝜈)

 =
1

2
𝑎(𝑢𝜀 + 𝑡𝜈, 𝑢𝜀 + 𝑡𝜈) − ℓ(𝑢𝜀 + 𝑡𝜈) +

1

𝜀
𝑗(𝑢𝜀 + 𝑡𝜈)

=
1

2
𝑎(𝑢𝜀 , 𝑢𝜀) +

𝑡

2
𝑎(𝑢𝜀 , 𝜈) +

𝑡

2
𝑎(𝜈, 𝑢𝜀) +

𝑡2

2
𝑎(𝜈, 𝜈)

−ℓ(𝑢𝜀) − 𝑡ℓ(𝜈) +
1

𝜀
𝑗(𝑢𝜀 + 𝑡𝜈)

=
1

2
𝑎(𝑢𝜀 , 𝑢𝜀) + 𝑡 × 𝑎(𝑢𝜀 , 𝜈) +

𝑡2

2
𝑎(𝜈, 𝜈)

−ℓ(𝑢𝜀) − 𝑡ℓ(𝜈) +
1

𝜀
𝑗(𝑢𝜀 + 𝑡𝜈);

 

  
then 

𝐽𝜀(𝑢𝜀) =
1

2
𝑎(𝑢𝜀 , 𝑢𝜀) − ℓ(𝑢𝜀) +

1

𝜀
𝑗(𝑢𝜀), 

 and 

 
𝐽𝜀(𝑢𝜀+𝑡𝜈)−𝐽𝜀(𝑢𝜀)

𝑡
= 𝑎(𝑢𝜀 , 𝜈) +

𝑡

2
𝑎(𝜈, 𝜈) − ℓ(𝜈) +

1

𝜀

𝑗(𝑢𝜀+𝑡𝜈)−𝑗(𝑢𝜀)

𝑡
. (16) 

  
If we give limit from both side of equation (16) as 𝑡 → 0, we have : 

 

 0 = 𝐽′(𝑢𝜀 , 𝜈) = 𝑎(𝑢𝜀 , 𝜈) − ℓ(𝜈) +
1

𝜀
𝑗′(𝑢𝜀 , 𝜈); (17) 

 thus  

 𝑎(𝑢𝜀 , 𝜈) +
1

𝜀
𝑗′(𝑢𝜀 , 𝜈) = ℓ(𝜈). 

 The relationship between 𝑢𝜀 and the solution 𝑤 of (10) is given by following theorem: 
Theorem 4.6. It holds 𝑢𝜀 → 𝑤 in 𝑉 as 𝜀 → 0 (see[6]).  
If we define the penalty functional "𝑗" by 𝑗(𝑦) = (1/2) ∫

Γ
(𝑦−)2𝑑𝑠, where 𝑦− = (1/2)(|𝑦| − 𝑦), 

then condition in definition (5.3) are satisfied (see[6]) and  
 𝑗(𝑦, 𝑝) = − ∫

Γ
𝑦−𝑝𝑑𝑠. (18) 

 We solve problem (9) on 𝐾, since 𝐾 is closed and convex subset of 𝑉 and we enure that the 
problem has one solution in this set, i.e. find 𝑢 ∈ 𝐾 such that :  

 𝑎(𝑢, 𝑦 − 𝑢) ≥ ℓ(𝑦 − 𝑢);    ∀𝑦 ∈ 𝐾, (19) 
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 where  
 

𝑎(𝑢, 𝑦 − 𝑢) = ∫
𝐷

∇𝑢. ∇(𝑦 − 𝑢)  𝑑𝐴 + ∫
𝐷

𝑓(𝑋, 𝑢). (𝑦 − 𝑢)  𝑑𝐴;

ℓ(𝑦 − 𝑢) = ∫
𝐷

𝑔(𝑥). (𝑦 − 𝑢)  𝑑𝐴 − ∫
𝐷

∇𝐺. ∇(𝑦 − 𝑢)  𝑑𝐴 − ∫
𝐷

𝑓(𝑥, 𝐺). (𝑦 − 𝑢)  𝑑𝐴.
 

 By using the penalty functional (18) the penalized form of problem (9) can be written as finding 
𝑢𝜀 ∈ 𝑉 such that :  

 𝐽𝜀(𝑢𝜀) ≤ 𝐽𝜀(𝑦)    ∀𝑦 ∈ 𝑉, (20) 
 where  

 𝐽𝜀(𝑦) = 𝐽(𝑦) + (1/2𝜀) ∫
Γ

(𝑦−)2𝑑𝑠 (21) 

and 

 
𝐽(𝑦) = (1/2) ∫

𝐷
∇𝑢. ∇𝑦𝑑𝐴 + ∫

𝐷
𝑓(𝑋, 𝑢). 𝑦𝑑𝐴 − ∫

𝐷
𝑔(𝑥). 𝑦𝑑𝐴

− ∫
𝐷

∇𝐺. ∇𝑦𝑑𝐴 − ∫
𝐷

𝑓(𝑥, 𝐺). 𝑦𝑑𝐴.
 

 We solve problem (21) by applying approximation finite element method and penalty function 
(more detail of finite element method in [6]) and definition:  

 𝐷(𝛼) = {(𝑥1, 𝑥2) ∈ ℝ2|0 < 𝑥1 < 𝛼(𝑥2), 0 < 𝑥2 < 1}, (22) 
 where 𝛼 is a positive lipschitz function defined in [0,1] and  

 Γ(𝛼) = {(𝑥1, 𝑥2) ∈ ℝ2|𝑥1 = 𝛼(𝑥2), 𝑥2 ∈ (0,1)} 
is the unknown boundary. Then we solve problem (21) by the objective function 𝐼(𝐷, 𝑢) 
mentioned in (2). Thus, problem (21) is equivalent to  

 {
𝐹𝑖𝑛𝑑𝑢𝜀(𝛼) ∈ 𝑉(𝛼)    𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡

𝑎(𝑢𝜀(𝛼), 𝑝) +
1

𝜀
(𝜌(𝑢𝜀(𝛼), 𝑝)𝛼 = ℓ(𝑝);    ∀𝑝 ∈ 𝑉(𝛼),

 (23) 

 where  

 (𝜌(𝑦), 𝑝)𝛼 = − ∫
1

0
𝑦−(𝛼)𝑝(𝛼)𝑑𝑥2 

Now, we can minimize 𝐼 with respect to constraint (23) by finite element method. For applying 
this method, we state unknown function 𝑢𝜀(𝛼) as follow:  

 𝑢𝜀(𝛼) = ∑𝑛
𝑗=1 𝑥𝑗𝜙𝑗(𝑥) 

where 𝑛 is the amount of the node in triangulation and 𝜙𝑗(𝑥1, 𝑥2) = 𝑎𝑥1 + 𝑏𝑥2 + 𝑐 is the 

courant basis function. Since relation (23) satisfied for all 𝑝 ∈ 𝑉(𝛼) = 𝐻0
1(Ω(𝛼)), we set 𝑝 =

𝑢𝜀(𝛼) and we transfer the problem into homogeneous boundary condition, thus, 𝑢𝜀(𝛼) ∈
𝐻0

1(Ω(𝛼)). We state problem (23) as follow:  
 

∫
𝐷

∇𝑢𝜀 . ∇𝑢𝜀𝑑𝐴 + ∫
𝐷

𝑓(𝑋, 𝑢𝜀). 𝑢𝜀𝑑𝐴 +
1

𝜀
(𝜌(𝑢𝜀 , 𝑢𝜀))𝛼

= ∫
𝐷

𝑔(𝑋). 𝑢𝜀𝑑𝐴 − ∫
𝐷

∇𝐺. ∇𝑢𝜀𝑑𝐴 − ∫
𝐷

𝑓(𝑋, 𝐺). 𝑢𝜀𝑑𝐴

⇒ ∑𝑛
𝑖=1 𝑥𝑖 ∑𝑛

𝑗=1 𝑥𝑗 ∫
𝐷

∇𝜙𝑖. ∇𝜙𝑗𝑑𝐴 + ∑𝑛
𝑖=1 𝑥𝑖 ∑𝑛

𝑗=1 𝑥𝑗 ∫
𝐷

𝑓(𝑋, 𝜙𝑖). 𝜙𝑗𝑑𝐴 +
1

𝜀
𝐷(𝑥(𝛼))

= ∑𝑛
𝑖=1 𝑥𝑖 ∫

𝐷
𝑔(𝑋). 𝜙𝑖𝑑𝐴 − ∑𝑛

𝑖=1 𝑥𝑖 ∫
𝐷

∇𝐺. ∇𝜙𝑖𝑑𝐴 − ∑𝑛
𝑖=1 𝑥𝑖 ∫

𝐷
𝑓(𝑋, 𝐺). 𝜙𝑖𝑑𝐴

 

 where  

 𝐷(𝑥(𝛼)) = −
ℎ

𝜀
(0,0, . . . ,0, (𝑥𝑛−𝐷(ℎ)+1

− )2, . . . , (𝑥𝑛
−)2), 

ℎ is the distance between two 𝑥2 coordinate of consecutive nodes that assume is equal and 𝐷(ℎ) 
is the amount of nodes that have lied on Γ(𝛼). we set :  

 

𝐴(𝛼) = ∫
𝐷

∇𝜙𝑖. ∇𝜙𝑗𝑑𝐴 + ∫
𝐷

𝑓(𝑋, 𝜙𝑖). 𝜙𝑗𝑑𝐴;

𝐹(𝛼) = ∫
𝐷

𝑔(𝑋). 𝜙𝑖𝑑𝐴 − ∫
𝐷

∇𝐺. ∇𝜙𝑖𝑑𝐴 − ∫
𝐷

𝑓(𝑋, 𝐺). 𝜙𝑖𝑑𝐴  

 Thus we solve problem in matrix form as follow:  
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 {
𝐹𝑖𝑛𝑑  𝑥(𝛼) ∈ 𝑅𝑛 𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡

𝐴(𝛼)𝑥(𝛼) +
1

𝜀
𝐷(𝑥(𝛼)) = 𝐹(𝛼),

 (24) 

 where 𝑥(𝛼) are unknowns. In this paper, we use penalty function method and finite element 
method to solve obstacle optimal shape problems and we present numerical example that are 
solved by this method and compare conclusion by the shape measure method. 

 
5.Numerical results 
For the numerical simulations, The fixed part of the domain 𝐷 ⊂ 𝑅2 is supposed to be a union of 
three segments: part of the line 𝑦 = 0 between the points (0,0) and 𝐴 = (1,0); part of the line 
𝑥 = 0 between the points (0,0) and (0,1), and part of the line 𝑦 = 1 between the points (0,1) and 
𝐵 = (1,1). The variable (free boundary) part is a curve Γ with the initial and final points 𝐴 and 𝐵 
respectively, so that ∂𝐷 is a simple and closed curve (see figure (1) and (2)). In the following we 
present three example on this domain to obtain the optimal unknown boundary and its related 
control for the described elliptic system in (2). In the first, one, no obstacle is existed on domain 
and the second constrains an obstacle. Both are solved by the two described methods in sections 
3 and 4 and the obtained optimal results are compare. 
 
 Example 5.1. To use the shape measure method, we assumed M=5, Y1=0.2, Y2=0.35, Y3=0.5, 
Y4=0.65, Y5=0.8 and 𝑓1(𝑋, 𝑢) = (𝑢 − 0.1)2 and 𝑓2(𝑠, 𝑣) = 0. Then, as explained in section 3, by 
selecting 𝑀1 = 3, 𝑀2 = 5, 𝑀3 = 5 the related approximated relax problem like (4) is constrained 
with is constraint and 𝛼𝑛 are variables. We select N=550 nodes 𝑍𝑛 = (𝑥𝑛, 𝑦𝑛, 𝑢𝑛) in Ω and K=110 
nodes 𝑍𝑘 = (𝑠𝑘, 𝑣𝑘) in 𝜔 .For this example we chose . The variables are supposed to satisfy 0 ≤
𝑋𝑚 ≤ 2, 𝑚 = 1,2, . . . ,5. We used Nelder-Mide algorithm for find the optimal domain. In applying 
shape measure method, we solve linear programming problem and performance time is 15 
minute. The optimal value of cost function was obtained 0.002810581141213.The optimal 
domain is presented in figure (3). 
By solving the above problem with penalty method and using finite element method, we solve 
nonlinear programming problem (24) and obtain the optimal vector 𝑋; then, the unknown 
boundary Γ(𝛼) is obtained by the optimal component of vector 𝑋 (coefficient of courant basis 
function) that lie on Γ(𝛼)). The optimal value of objective function is 𝐼 = 0.03554 and optimal 
shape is presented in figure (4). In this method performance time is 30 minute. The value of 
objective function in shape measure method is less than that one in penalty approach. 
In following examples we solve optimal shape design for obstacle problem with shape measure 
method and finite element method. 
 
Example 5.2. In this example in addition to constraint (2), we have constrains 𝑢|∂𝐷 = 𝑣 and 𝑢 ≥
0 too. In domain 𝑆 which here is a circle with the center (1/2,1/2) and radius 1/4, function 𝑢 is 
equal to zero and in domain 𝐷 − 𝑆, 𝑢 ≥ 0. Region𝑆 is completely in 𝐷; therefore, we add 
condition 0.7 ≤ 𝑥𝑚 ≤ 2 to the constrains of the problem and for the points which are in 𝑆, 𝑢 =
0 and for those which are in 𝐷 − 𝑆, 𝑢 ∈ (0,1). For the penalty method, we also add the 
constraints0.7 ≤ 𝑥𝑚 ≤ 2. In order to satisfy condition 𝑢 = 0 in domain 𝑆, for the nodes which 
are in this domain, we set 𝑥𝑗 = 0. For the rest nodes, we set ∑𝑛

𝑗=1 𝑥𝑗𝜑𝑗 ≥ 0. Additionally, since 

domain 𝐷 is in the first quarter of plane, therefore, 𝑥1 ≥ 0 and 𝑥2 ≥ 0. We use this quality to 
specify the sign of 𝜑𝑗. 

The obtained numerical results by using shape measure method is : 
the optimal value of 𝐼(𝐷, 𝑣) = 0.565997500; 
the value of the variables in the final step: 

𝑋1 = 0.0624, 𝑋2 = 0.7375, 𝑋3 = 0.8091, 𝑋4 = 0.7885, 𝑋5 = 0.0275. 
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the optimal domain is presented in figure(5). We solve this problem by finite element method, 
the optimal value of objective function is 𝐼 = 0.45698 and the obtianed optimal shape is 
presented in figure(6). 
In this example, the performance time of the program is less than that of penalty method; 
however, in the latter method, the value of objective function is less than one in the former 
method. 
  
Example 5.3. In this example, we want that the square 𝐶 = [1/4,3/4] × [1/4,3/4] be in the 
optimal domain; so, we add constraint 0.7 ≤ 𝑥𝑚 ≤ 2 to the problem. Besides, we set 𝑔(𝑥, 𝑦) =
1, where the points are in 𝐷 ∩ 𝐶; otherwise, 𝑔(𝑥, 𝑦) = 0. We consume that the function 𝑔(𝑋) 
(the fixed control function) is defined as: 

 

 𝑔(𝑥, 𝑦) = {
1    𝑖𝑓(𝑥, 𝑦) ∈ 𝐷 ∩ 𝐶

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

 Where 𝐶 is the square [
1

4
,

3

4
] × [

1

4
,

3

4
] and 𝑢|∂𝐷 = 0, 𝑓1 = (𝑢 − 0.1)2 and 𝑓2 = 0. We use the initial 

values 𝑋𝑚 = 1.1, 𝑚 = 1,2, . . . ,8, as a given domain for starting algorithm. We solved this problem 
by shape measure method and obtain 𝐼 = 0.85045. The optimal shape is presented in figure(7). 
We solved this problem by using finite element method and obtain 𝐼 = 0.4141, the optimal 
shape is presented in figure(8). Average performance time by finite element method is 150 
minute and the number of operation is 5000. In shape measure method, average performance 
time is 120 minute and the number of operation is 4378. 
 
6.conclusion 

 
In this paper, shape measure method and penalty method were studyed used for determining 
the optimal shape design with and without obstacle problem. 
In penalty method, the preciseness of the method depends on the triangulation and the number 
of points. The more number of these points, the closer the obtained solution will be to the exact 
solution of the problem. In addition, solving the nonlinear programming is dependent on the 
initial value of the variable and we may obtain the local minimum using specific initial value; 
moreover, number request of operations and performance time are high. In shape measure 
method, the number of constraint and the dimension of the problem are finite and the more 
number of these constrains, the more exact will be the method. Also, we obtain the 
approximation solution by solving a linear programming problem which is simply solvable. 
performance time and number of operations are less than finite element method and obtained 
solutions are very close to solution obtained by finite element method.  

  
Figure  3: Optimal domain by shape  Figure  4:Optimal domain by 

             measuremethod for example 5.1                                                           finite element Method In example 5.1 
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Figure  5: Optimal domain by shape measure                      Figure  6: Optimal domain by finite element  

                  Approach for example 5.2                                                                          method in  example 5.2 
 

 
 
 
 
 
 
 
 

 
 

  
Figure  7: Optimal domain with shape measure                  Figure  8:Optimal domain with finite element  
                    method in example 5.3                                                      method for example 5.3 
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