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Abstract 

In the most of the design optimization problems, we encounter uncertainties in design variables and problem 

parameters. In these problems, robustness and reliability of design are so important. Both robust design and 

reliability-based design approaches take into consideration these aspects. However, the individual application of 

them doesn’t ensure the stability of product during its life cycle. In this paper, we combine both robust design and 

reliability-based design approaches into one model and propose a genetic and reliability analysis combined 

algorithm to solve this kind of problem. Moreover, to increase the efficiency of the genetic algorithm, we use the 

design of experiment (DOE) to find the optimal levels of the parameters of this algorithm. The application of the 

proposed methodology is demonstrated using a numerical example. 

 
Keywords:  Reliability, robustness, multi-objective optimization, genetic algorithm, design of experiment 
 

   1.   Introduction. 

Deterministic optimization techniques have been successfully applied to a large number of product 
design problems. However, deterministic optimal designs are pushed to the limits of design constraint 
boundaries and leaving no room for uncertainties. The probability of failure of such designs is high 
because of impact of uncertainties existed in modeling, manufacturing phase and operation condition. 
Therefore, such designs obtained without considering uncertainties can be unreliable and might lead to 
failure of the product being designed [1]. 
Different approaches have been developed to consider uncertainties and optimize the designs under the 
uncertainties. Among them, robust design optimization (RDO) and reliability based design optimization 
(RBDO) are two major approaches. RDO is a method for improving the quality of product through 
minimizing the effect of variation without eliminating the sources of variation [2]. The robustness of 
performance is important in this approach. On the other hand, RBDO approach emphasizes on 
maintaining design feasibility at different reliability levels and in order to consider the uncertainties, the 
constraints are modeled as probabilistic [3,4]. 
Robust design, originally proposed by Taguchi (1993) to improve the quality of products by minimizing 
the effect of variation without eliminating the source of variation. The different approaches of robust 
design are divided into three main categories:  Taguchi’s experimental design technique [2], RSM-based 
RD [5] general optimization techniques and [6]. The main goal of all of them is optimizing the mean and 
minimizing the variance of performance function. In these problems, the accuracy and efficiency of 
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estimating the first two statistical moments of the performance function is so important. Analytically, 
the kth statistical moment of the performance function can be obtained using the following integration: 
 

𝐸({ℎ(𝑋)}𝑘) =  ∫ … . ∫ {ℎ(𝑋)}𝑘𝑓𝑋
∞

−∞

∞

−∞
(𝑋)𝑑𝑋                                                                                                                (1) 

 
Where fX(X) is a joint probability density function of the random parameter X. Calculating the statistical 
moments of performance function using Equation (1) is practically impossible. To estimate the statistical 
moments three methods, dimension reduction method (DRM), performance moment integration (PMI) 
and percentile difference method (PDM), have been recently proposed and compared based on 
accuracy and computational efficiency [7]. The PMI and PDM will require the same number of function 
evaluation if the same inverse reliability analysis method is used. If the number of design variables is 
low, DRM is efficient. However, by increasing the number of design variables PMI is more efficient than 
two other methods. PDM uses the difference of percentile performances in different reliability levels. 
Thus, when the performance function is non- monotonic, PDM may obtain wrong results. The efficiency 
and accuracy of PMI has been proved by solving some examples in [8]. Thus, we use this method to 
determine the statistical moments in this article.  
Du and Chen [9] classified the feasibility modeling techniques (design constraints) under uncertainty 
into two main categories: 

1. The method which require the probability and statistical analysis (the probabilistic feasibility 
formulation, Monte Carlo simulation, and moment matching formulation) 

2. The methods which  don’t require the probability and statistical analysis (the worst case 
analysis, the corner-space evaluation, and the variation pattern formulation) 

The probabilistic feasibility formulation without considering the computational burden is the ideal 
method to describe the robustness of feasibility of design and can ensure that the solution achieves an 
accurate level of constraint satisfaction.  
The main formulation of RBDO is as a minimizing an objective function subject to probabilistic 
constraints which ensures design feasibility under uncertainty: 
 

{

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓(𝑑،𝜇𝑋،μp)                                       

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜𝑃(𝐺𝑖(𝑑،𝑋،𝑃) ≥ 0) ≥ 𝑅𝑖𝑖 = 1،… ،𝑛

𝑑𝐿 ≤ 𝑑 ≤ 𝑑𝑈،𝜇𝑋
𝐿 ≤ 𝜇𝑋 ≤ 𝜇𝑋

𝑈

                                                                                                           (2) 

 
Where X and P are respectively the vector of random design variables and random design parameters, d 
is the vector of deterministic design variables, and f is the performance function (design objective). Gi 
represents the ith constraint function and Ri is the reliability level of this constraint. If the distribution of 
all variables X and parameters P be known, the probability of the above equation is computed exactly 
using the following integration: 
 

𝑃[gj(x،p) ≥ 0] = ∫ fxpdxdp
.

gj(x،p)≥0
                                                                                                                                 (3) 

 
In the above equation, fxp(x,p) is a joint probability density function of the  random variables and 
random parameters. However, it is practically difficult or impossible to calculate the numerical solution 
for the above equation. Thus, approximate procedures have been proposed to estimate this probability 
accurately and computationally efficiently. The available methods for reliability analysis can be classified 
into two categories: sampling methods such as Monte Carlo simulation, and optimization based 
methods [1] .The use of second methods is more affordable especially when the desired probability of 
failure is low. The main concept of this class of reliability assessment methods is to determine a point on 
the constraint boundary which is closest to the solution. This point is usually called the “Most Probable 
Point” (MPP) of failure [1].  
The first step to compute the MPP is transforming the random variables and parameters X=(x,p) into an 
independent standard normal space U by Rosenblatt Transformation as below: 
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Ui = ϕ
−1[FXi(Xi)]                                                                                                                                                     (4) 

 
Where ϕ-1 is the inverse of the standard normal distribution and F is a CDF of a general random variable 
X [10]. 
The MPP is located on the constraint boundary of the G_j(Ux,Up,d)=0 and has the minimum distance to 
origin. This minimum distance is called reliability index (β) [10]. If the constraint function in U space is 
linear, the relationship between βj (reliability index) and Rj (reliability level) is: 
 

Rj = {
ϕ(βj)                    if Rj ≥ .5

1 − ϕ(βj) = ϕ(−βj)      if  Rj < .5                
                                                                                             (5) 

 
Where ϕ() is the standard normal cumulative function. If the nonlinearity of Gj(U) isn’t large, by using 
the first order reliability method (FORM) the above relation is still a good approximation [11]. This 
method is based on linear approximation of constraint function at MPP. The problem of determining the 
MPP is an optimization problem and two major approaches, performance measure approach (PMA) and 
reliability index approach (RIA), have been proposed to find it [11,12]. 
In PMA approach, the following optimization problem has to be solved [13]: 
 

{
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐺𝑗(𝑈)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜 ∶  ‖𝑈‖ = βj
                                                                                                                                            (6) 

 
By solving the above problem, U* point is found on the circle of radius βj for which the function Gj(U) 
reaches the minimum value. Then, the original probabilistic constraint function is replaced with below 
equation: 
  
𝐺j(U

∗) ≥ 0                                                                                                                                                                  (7)                                                                                                                                                                  

 
In RIA approach, the following optimization problem has to be solved [12]: 
 

{
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒‖𝑈‖

subject to  Gj(U) = 0
                                                                                                                                              (8) 

 
After finding U* point, this point is used for replacing the original constraint by a constraint as follow: 
 
‖U‖ ≥ βj

r                                                                                                                                                                     (9) 

 
The PMA is more efficient and robust than the RIA [14]. Optimizing a complex objective function under 
simple constraint is much easier than optimizing a simple objective function under complex constraint 
[11]. Thus, we choose the PMA approach to consider probabilistic constraints. The MPPIR algorithm 
proposed in [13] is used to find the MPP. This algorithm is applicable for any types of performance 
functions of random variables following any continuous distributions.   
The individual application of RDO and RBDO doesn’t ensure the quality and reliability of a product 
during its life cycle. Therefore, the concepts of them are integrated in reliability-based robust design 
optimization approach in order to obtain both quality and reliability.  
 In this work, we propose an integrated framework for optimization under uncertainty that can be used 
for designing reliable and robust design. The fundamental development is the employment of a 
combined algorithm for finding optimum solutions of the RBRDO problems. Moreover, the design of 
experiment (DOE) is used to find the optimum levels of this algorithm’s parameters and increase the 
efficiency of it. After finding the reliable and robust Pareto optimal solutions, the decision makers could 
choose one or more of this points based on their criteria for implementation. 
The remainder of the paper is organized as follows. In section 2, we present RBRDO approach. In Section 
3, the methods to solve multi-objective optimization problem is reviewed and then we explain our 
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general methodology in Section4. Section 5 presents a numerical example solved by the methodology 
and its results. Our concluding remarks are given in the final section. 
 
2. Reliability- based robust design optimization 
 
As mentioned before, it is obvious that the values of both RDO and RBDO approaches have to be 
combined in an integrated model to develop RBRDO approach. This approach ensures both reliability 
and robustness during the life cycle of products [15]. 
 In RBRDO, the mean and variation of performance function are simultaneously minimized subject to 
probabilistic constraints. A typical RBRDO problem is as follows:  
 

{

minimizef(μobj, σobj)

subjecttoP(Gi(d, X, P) ≥ 0) ≥ Rii = 1,… , n

dL ≤ d ≤ dU, μX
L ≤ μX ≤ μX

U

                                                                                                  (10) 

 
The RBRDO is a multi-objective optimization problem. In the most work done such as Du [13] and Sherali 
[16] the weighed sum of mean and standard deviation are considered as an objective function. 
However, this method doesn’t usually lead to satisfactory results [17]. The following section provides an 
overview of the methods to deal with more than one objective function. 
 
3. Multi objective optimization technique 
 
 If there is more than one objective function, it is very unlikely to find a setting for decision variables 
which could optimize all the objective functions simultaneously. Hence, in this situation one should 
search for no dominated solutions known as Pareto optimal solutions. Finding a set of solutions which 
are close to the true Pareto solutions and diverse enough to represent the entire spread of the Pareto 
optimal set, are two principal goals of multi-objective optimization [18]. Genetic algorithm (GA) is well 
suited to solve multi-objective optimization problems. A multi-objective GA can find a set of multiple 
non-dominated solutions in a single run. The ability of GA to simultaneously search different regions of a 
solution space makes it possible to find a diverse set of solutions for difficult problems. In addition, most 
multi-objective GA does not require the user to prioritize, scale, or weigh objectives. Therefore, GA has 
been the most popular heuristic approach to multi-objective design and optimization problems. One of 
well-known and frequently-used GA algorithm is non-dominated sorting genetic algorithm II (NSGAII). In 
NSGA II, Pareto dominance relation and a diversity maintenance mechanism are used as the primary 
fitness evaluation criterion [19]. 

 
4. Proposed methodology 
 
The details of the combined algorithm of NSGA II and reliability analysis are discussed in this section. At 
first, the variables, objective functions, constraints functions, and the distribution function of variables 
are determined. Then, the problem is formulated based on RBRDO approach. At last, the combined 
algorithm composed of seven steps as below is used. 
 
Step 1: In the first step the main parameters such as population size, the number of generations as 
stopping criterion, probability of crossover, probability of mutation, distribution index for crossover, 
distribution index for mutation, and reliability levels for each constraint are defined. 
 
Step 2: The first population is initialized randomly. Then for each chromosome (individual) the objective 
functions are calculated and the feasibility of it will be assessed. To probe the feasibility of each 
chromosome, the PMA approach mentioned before is used. Every probabilistic constraint is converted 
to deterministic ones at MPP point (gj(uMPP)). Then, if the constraint isn’t satisfied, the constraint 
violation (CV) is calculated for every individual as follows: 
𝐶𝑉 = ∑ |ui(x)| , ui = min{gi(x), 0}

𝑛
𝑖=1                                                                                               (11) 
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Step3: The initialized population is sorted and to every individual of population a non-domination rank 
based on their objective values and the CV is assigned. 
Until the stopping criterion isn’t satisfied the following steps are done. 
 
Step4: Binary tournament selection based on crowded comparison operator is used to select parents for 
reproduction. 
 
Step5: The genetic operators (crossover and mutation) are done to generate an offspring population of 
parent population. For this population, as step 2 the objective functions are calculated and feasibility is 
assessed.  
Step6: The combined population of parent population and offspring population is sorted and a non-
domination rank and crowding distance are assigned to each of the chromosomes.  
 
Step 7: The first N best solutions based on their ranks and crowding distances are chosen and replaced 
to initial population.  
 
Adding the reliability analysis increases the time of computation of algorithm. Therefore, it is needed to 
determine the optimum levels of main parameters of NSGA II. In [20] an extensive parametric study was 
conducted by varying one design parameter at a time. The parameters considered independent which 
not a correct hypothesis is and it is needed to consider the interaction between them. Moreover, the 
number of experiments is increased by investigating the more numbers of factors. When performing an 
experiment, varying the levels of the factors simultaneously rather than one at a time is efficient in 
terms of time and cost, and also allows for the study of interactions between the factors. 
The probability of crossover, probability of mutation, distribution index for crossover, and distribution 
index for mutation are the parameters which we want to determine the best levels of them to obtain 
the Pareto optimal solutions in reasonable time. Factorial designs are suitable for simultaneous studying 
and determining the effects of several factors. 
As mentioned before, convergence to the Pareto optimal solutions and maintenance of diversity in 
solutions of the Pareto optimal set are two goals in a multi-objective optimization approach. Two 
performance metrics have been proposed to evaluate each of the two goals [19]. Therefore, these 
metrics are considered as response variables and we want to find the factor settings of algorithm that 
minimize these responses variables.  
The average distance between non-dominated solutions found and the known Pareto optimal solutions 
is used as the first response variables (Y1). This distance is computed as below: 
 

di = minj=1
n √∑ (

fk(i)−fk(j)

fk
max−fk

min)
2

m
k=1                                                                                                                       (12) 

Where n is the numbers of Pareto optimal solutions, m is the numbers of objective functions, fkmax   is 
the maximum of the kth objective function ,and fkmin  is  the minimum of the kth objective function 
among all the Pareto points. 
The spread metric is used for evaluating diversity among the non-dominated solutions. The smaller this 
metric the better diverse set of non-dominated solutions. Therefore, the second response variable (Y2) is 
defined as below: 
 

Y2 =
df+dl+∑ |di−d̅|

N−1
i=1

df+dl+(N−1)d̅
                                                                                                                                           (13) 

 
Where df and dl are the Euclidean distances between the extreme solutions and the boundary solutions 
of the obtained non-dominated solutions, di is Euclidean distance between consecutive solutions in the 
obtained non-dominated solutions, and đ is the average of all distances. 
The desirability function approach is used to identify the combination of input variables settings that 
optimize two response variables. In this approach, each response is transformed to a scaled free value 
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mi that is called desirability (Equation 14). It changes from 0 to 1. The total desirability (D) is obtained by 
compositing all desirabilites (Equation 15). Then, the optimal input variable settings are identified by 
maximizing the composite desirability [21]. 
Desirability function for the smaller-the-better case is as following: 
 

{
 
 

 
 0                 ŷi(x) > yi

max

[
yi
max−ŷi(x)

yi
max−yi

target]
ri
yi
target

≤ ŷi(x) ≤  yi
max

1                          ŷi(x) < yi
target

                                                                                                                      (14) 

 

D = (∏(mi
wi))

1
W⁄                                                                                                                                                                     (15) 

 
Where ri is the weight of desirability function, wi is the importance degree of ith response variables, and 
w is the sum of the weights of all response variables.  
After optimization stage, the Pareto solutions are obtained and the decision makers have to choose the 
best ones based on their criteria. By solving the multi-objective optimization problem for different levels 
of reliability, we gain useful information.  
 
5. Numerical example 
 
As an example, the following mathematical problem in Chen et al. [22] is used: 
 

{

min f(x) = (x1 − 4)
3 + (x1 − 3)

4 + (x2 − 5)
2 + 10

st: g(x) = x1 + x2 − 6.45 ≥ 0                              
1 ≤ x1 ≤ 10
1 ≤ x2 ≤ 10

                                                                                                     (16) 

 
All random variables are statistically independent and have normal distribution with standard deviation 
of 0.4. The corresponding reliability-based robust design optimization problem is formulated as below: 
 

{

min f(x) = (x1 − 4)
3 + (x1 − 3)

4 + (x2 − 5)
2 + 10

st: g(x) = x1 + x2 − 6.45 ≥ 0                              
1 ≤ x1 ≤ 10
1 ≤ x2 ≤ 10

                                                                                                     (17) 

 
In order to investigating the four parameters of algorithm, the factorial design 24 with 16 runs were 
performed. The upper and lower levels of parameters and the results of simulation were shown in table 
1 and table 2, respectively. 
After determining the upper levels, target values, the weights, and the importance of response 
variables, we used the Minitab Response Optimizer to help identify the combination of parameter 
settings that jointly optimize the composited desirability of responses.  
The results are shown in table 3. The individual desirability for Y1 and Y2 are 0.90645 and 0.62098, 
respectively. To obtain the composite desirability (0.75026) for both variables, the levels of factors have 
to be set at the values shown under “Global Solution” section of table 3. 
 

Table 1. The lower and upper level of parameters 

Parameter  Lower level  Upper level 

probability of crossover 0.5 1 

distribution index for crossover 50 50 

probability of mutation 0.1 0.5 

distribution index for mutation 50 300 
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Table 2. The results of simulation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. The result of optimizing two response variables 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After setting the parameters of algorithm at these levels, the problem was solved for three different 
reliability levels for probabilistic constraint with β equal to 1.28 (90%), 3 (99.875%), and 4 (99.875%). 
Figure.1 presents the reliable and robust Pareto optimal solutions for different reliability levels 
(β=1.285, 3, 4). As we see, by increasing the level of reliability the value of objective functions increase 
and the Pareto solutions move inside feasible objective space. Hence, compromise must be made 
between reliability and performance. The points inside the circle are less sensitive to the level of 

Run 
Factor Response variable 

A B C D Y1 Y2 

1 0.5 5 0.5 300 0.014747 0.66125 

2 1 50 0.1 300 0.003231 1.05879 

3 1 5 0.1 300 0.000252 0.53099 

4 1 5 0.5 300 0.000378 0.42447 

5 0.5 50 0.5 50 0.000227 0.51696 

6 1 50 0.1 50 0.015631 0.53981 

7 0.5 50 0.5 300 0.022947 0.7169 

8 1 5 0.1 50 0.000632 0.5048 

9 0.5 50 0.1 50 0.000933 0.7757 

10 0.5 5 0.5 50 0.001246 0.5801 

11 1 50 0.5 300 0.017622 0.86159 

12 1 5 0.5 50 0.004267 0.4543 

13 0.5 50 0.1 300 0.018391 0.77419 

14 0.5 5 0.1 50 0.003109 0.62815 

15 1 50 0.5 50 0.00521 0.58566 

16 0.5 5 0.1 300 0.011385 0.70673 

Response Optimization  
 

Parameters      Goal       Lower    Target        Upper     Weight      
Importance 
Y1                   Min             0              0          0.023          1                1 
Y2                   Min             0              0          1.060          1                1 
 

Global Solution 

A            =      1.0 
B            =      5.0 
C            =      0.5 
D            =     50.0 
 
Predicted Responses 

Y1           =  0.00215،  desirability =  0.90645 
Y2           =  0.40176،  desirability =  0.62098 
 
Composite Desirability =  0.75026 

 



Ameneh Forouzandeh Shahraki, Rassoul Noorossana / J. Math. Computer Sci.    7 (2013) 54 - 62 
 

61 

 

reliability and the decision maker has to pay attention to them during choosing some points for 
implementation.  
To confirm the probability of constraint satisfaction of obtained results, Monte Carlo simulation by ten 
thousand sample size is done. A normal distribution, whose mean is fixed at the Pareto optimal solution 
and the standard deviation at the 0.4, was used. The probability of the constraint satisfaction at the four 
Pareto optimal points which chosen uniformly are summarized in Table 4. 
 
 

Fig.1. The Pareto optimal set at different reliability level 

 

 
 

Table. 4 Monte Carlo simulation results for two levels of reliability. 

β=1.285 (90%) 

Points (x1،x2)=(5.01,2.24) (x1،x2)=(5.01,2.63)  (x1،x2)= ( 5, 3.01) (x1،x2)=(5.55,3.45) 

Probability of 
constraint 

satisfaction (%) 
94.402 98.36 99.73 100 

β=3 (99.865%) 

Points (x1،x2)=(6.02,2.12)  (x1،x2)=(5.5,2.56) (x1،x2)=(5.14,3.0)  (x1،x2)=(5.55,3.45) 

Probability of 
constraint 

satisfaction (%) 
99.866 99.88 99.898 100 

 
 
6. Conclusions 
 
In this paper, we combined three concepts of robust design, reliability based design and multi-objective 
optimization in order to optimization under uncertainty. Then, we described a new algorithm which is a 
combined of NSGA II and reliability analysis to determine the Pareto optimal solutions of RBRDO 
problems. Moreover, the design of experiments is used to determine the optimal levels of algorithm’s 
parameters in order to increasing the efficiency and decreasing the computational cost of reliability 
analysis. Here, the design variables considered independent which this assumption is not correct in 
some problems. Therefore, we can extend our approach to be applicable for more design problems. 
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