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Abstract 

To save lives and alleviate suffering, the response to emergency must be timely, effective, appropriate, 

and well organized. Logistics can play a key role. This paper presents a multi-objective dynamic 

stochastic model for a complex logistical problem in disaster relief operations. Prior to the disaster 

onset, design decisions including the number and location of local distribution centers needed as well as 

their inventory levels for each type of emergency supply are made. After the disaster onset, the designed 

network will use to conduct daily operational decisions over a planning horizon that covers the disaster 

duration. The first objective function attempts to minimize the sum of the expected value of the total 

cost of the relief chain; at the same time the model aims to maximize the affected areas’ satisfaction 

levels through minimizing the sum of the maximum shortages in the affected areas. A case study is 

presented to illustrate the potential applicability of our model for disaster planning for earthquake 

scenarios in the megacity of Tehran. The results demonstrate the practicability of the proposed multi-

objective stochastic model.  

 

Keywords: Disaster relief logistics, stochastic programming, Multi-objective optimization. 

 
1 Introduction 

According to the EM-DAT, from 2000 to 2010 exactly 8351 disasters (e.g., Earthquake) occurred all over 

the world which, on average, amounts to more than two new disasters every day [1].The worldwide increasing 

trend in the number of large-scale natural disasters and the number of people reportedly affected, leading to a 

greater need for efficient disaster management. Quick response to the urgent relief needs right after natural 

disasters through efficient relief logistics is vital to the alleviation of disaster impact in the affected areas 

(AAs).Pre-positioning critical items in strategic locations and effective distribution of the items after a disaster 
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are considered to be useful tools to a quick response. An evident difficulty in creating an effective pre-

positioning plan is uncertainty about whether or not natural disasters will occur, and if they do, where and with 

what magnitude. Our goals in this paper are to determine: 

 the optimum number, location and size of relief distribution centers (RDCs) to be used, 

 the amount of inventory to be procured at various RDCs in the pre-disaster phase, and, 

 The transportation amount to be delivered the commodities to the AAs over a planning horizon under 

uncertain parameters. 

The objective functions of our proposed model are the minimizing of the maximum amount of shortages 

among the AAs, and the sum of pre- and post-disaster costs. The main contributions of this paper can be 

summarized as follows:  

 Achieving a model which contemplates the different sources of uncertainty.   

 Developing a new multi-objective dynamic stochastic model to tackle the disaster relief problem.  

 Considering disruption in a facility by a disaster.   

 Considering fair distribution to certain affected areas in the relief distribution process.  

 Applying the model to a real-world disaster relief chain. 

The rest of this paper is organized as follows. In Section 2, the relevant literature is reviewed. In Section 3, 

the general problem description statement is given and a multi-objective stochastic optimization model is 

developed to formulate the relief logistics problem. In Section 4, a solution method is presented. Then, the 

effectiveness of the proposed model is demonstrated by a case analysis and experimental results in Section 5. 

Our conclusions and future research plans are presented in the final section. 

 

2 Literature review 

Depending on whether uncertainty is taken into account or no, work reported in the literature of this problem 

can be classified into two major categories: deterministic or stochastic. In the deterministic case, it is assumed 

that all problem inputs like demand, supply and costs quantities are known in advance with certainty (e.g. [2], 

[3], [4]). 

The significance of uncertainty has motivated a number of researchers to address stochastic optimization in 

disaster relief planning involving distribution of emergency relief commodities by probabilistic scenarios 

representing disasters and their outcomes (see [5] - [9]). 

Reference [10] developed a two-stage stochastic optimization model to plan the allocation of budget to 

acquire and position relief assets. However, they did not consider the possibility of inventory being destroyed. 

Reference [11] Introduced stochastic optimization model for disaster preparedness and response to assist with 

decisions for the location and allocation of medical supplies. Reference [12] developed a two-stage, stochastic, 

mixed-integer program that determined the locations and quantities of various types of emergency 

commodities; their model also considered the transportation network availability following a disaster. 

Reference [7] proposed a two-stage stochastic model. The first stage determines the location of RDCs and the 

required inventory quantities for each type of relief items under storage, and the second stage determines the 

amount of transportation from distribution centers to AAs. 

Though these efforts have provided us different concepts for handling disaster relief operations efficiently, 

integrating strategic, tactical and operational decisions remains rare in the literature.  

 We present a new model that integrates location, inventory and allocation decisions. We consider a multi- 

commodity, multi-period, multi-modal transportation under uncertainty. Environmental uncertainty is 

described by discrete scenarios. The proposed model minimizes the sum of the maximum amount of shortages 

among the AAs in all periods and sum pre- and post-disaster costs. 
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3 Problem description 

Disaster relief logistics network considered in this paper consists of the set of RDCs and the set of AAs 

(Figure1). The relief items stored in RDCs, which are located prior to the disaster, are distributed to the 

demand points. RDCs are large facilities in which all types of relief items are stocked. They are established to 

satisfy the demand of the relief items in disaster areas. Thus, their locations as well as relief items flowing 

through them to demand points are related with the amount and site of the needs that occur in a scenario. 

(1) The capability of candidate RDCs may be partially disrupted by a disaster through damage to the roads 

and/or destruction to the facility. 

(2) The level of demand for the AA and the cost parameters are uncertain and depend on various factors 

including the disaster scenario and the impact of the disaster. To represent uncertain parameters, we 

make use of discrete scenarios from a set S of possible disaster situations. We assume that the 

probability distribution of scenarios can be devised by subject matter experts or disaster planners. 

(3)  Emergency supplies are divided in to two major categories: consumable and non-consumable items. 

Consumable items are items that are consumed regularly and whose demand occurs periodically over 

the planning horizon, such as water and food. Non-consumable items are critical items for which the 

demand occurs once at the beginning of the planning horizon, such as shelters and electricity devices. 

(4) The logistics plan involves a planning time horizon consisting of a given number of time periods 

because it deals with time-variant demand and supply. 

(5) An RDC can be opened in only one of three possible configurations with distinct storage capacity 

(small, medium, or large), subject to the associated setup cost. 

(6) Each RDC may be supplied by other RDCs (backup coverage). 
 

Figure 1: General schema of relief distribution chain 

 

3.1. Notation, Parameters, and Decision Variables 

Sets/ indices 

I Set of candidate RDCs indexed by i∈I 
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J Set of AAs by disaster indexed by j∈J 

S Set of possible scenarios indexed by s ∈S 

C Set of commodities indexed by c ∈ 1,2  

V  Set of transportation modes indexed by v V  

L Set of size of RDCs indexed by l ∈L 

T  Set of periods indexed by t T  

Parameters 

ilf
 

Fixed cost for opening a RDC of size l at location i 

ci
 

Procuring cost of a unit commodity c in RDC i 

cih  Inventory holding cost for a unit commodity c at RDC i 

cjh
 

Penalty of  a unit commodity c haven’t consumed in end of planning horizon at AA j 

lccap  Capacity of RDC of type l for commodity c 

sp  Occurrence probability of scenarios 

cist
 

Procuring cost of a unit commodity c in RDC i under scenario s in period t 

cijvstc
 Transportation cost of a unit commodity c from RDC i to AA j  under scenario s by mode v at period t 

cjst
 

Inventory shortage cost for a unit commodity c to AA j under scenario sin period t  

cjstd
 

Amount of demand for commodity c at AA j under scenario s, in period t 

cis  Fraction of stocked material of commodity c at RDC i that remains usable in scenario s (0 ≤ cis ≤1) 

cjst
 

Weight factor for commodity c in AA j, in scenario s and period t 

jst  Weight factor for AA j in scenario s and period t 

Variables 

ilZ  1 if RDC with capacity category l is located at candidate RDC i; 0 otherwise 

ciS  Amount of commodity c stored in RDC i 

cijvstX
 

Amount of commodity c transferred from RDC i by mode v to AA  j in scenario s and period t 

cistQ  Amount of commodity c procured for RDC i, in scenario s and period t 

cistI
 

Amount of inventory held at RDC i in scenario s and period t 

cjstI
 Amount of inventory held at AA j in scenario s and period t 

cjsW
 Amount of commodity c haven’t consumed in end of planning horizon at AA j under scenario s 

cjsB
 Amount of shortage commodity c in end of planning horizon at AA j under scenario s 

cjstb  Amount of shortage commodity cat AA j in scenario s and period t 

 

3.2. Mathematical Model 

 1

,

 . . .s cjst jst cjst
j J

s S c t

Min Z p Max b 




 
 

 (1) 
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s.t.   

, ,

.cis ci cjivst cist cijvst cist

j i I v j i I v

S X Q X I
   

      , , , 1i I c C s S t      (3) 

( 1)
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j i I v j i I v

I X Q X I

   
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  ( 1)1
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 

        
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l
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i I   (13) 
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i I   (14) 
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, ,

i I j J v V s S c C

t T l L

     

   (15) 

The first objective function minimizes the maximum total amount of weighted unsatisfied demand in 

demand points. The second objective function minimizes the expected total cost. The costs include the 

preparedness phase cost (associated with setup, procurement and holding) and the response phase cost 

(associated with transportation, inventory holding, and shortage).Constraint (3) is a control balance equation 

for t=1 and each RDC. Similar to constraint (3), constraint (4) is a control balance equation for t>1.Constraints 

(5) and (6) are inventory balance equation for AAs. constraints (5) is written for non-consumable items while 

unsatisfied (backordered) demand is considered, but constraints (6) is written for consumable items and 

unsatisfied  demand is not considered. The capacity limits of RDCs are represented by (7) and (8).Constraint 

(9) guarantees that a RDC could transfer commodity to other nodes only if there exist either another RDC or 

an AA on that node. Constraint (10) prevents RDCs from transferring commodity to demand points where no 

RDC has been opened. Constraint (11) indicates that an RDC could transfer commodity to its own area only if 

its demand points are affected. Constraint (12) is a control balance equation for each AA. Constraint (13) 



M. Khorsi, A. Bozorgi-Amiri, B. Ashjari/ J. Math. Computer Sci.    7 (2013) 63 - 72 
 

68 
 

prevents more than one RDC from being placed at any nodes. Finally, feasible regions for variables are 

enforced by constraints (14) and (15). 

 

3.3. Linear Model 

As can be observed first objective function and constraints (5), (6) and (12) conclude non-linear terms that 

linearization as follows: The linear equivalent equations for first objective function could be rewritten with the 

help of an auxiliary variable 0cstB  as follows: 

1

,

.s cst

s c t

MinZ p B   (16) 

s.t. . .cst cjst jst cjstB b   , , ,c C j J s S t T      (17) 

0cstB   , ,c C s S t T     (18) 

Constraint (5) could be transformed to linear terms with the help of integer variables as follows: 

  ( 1)1
1 2cist cist cist cis t cist cistcis t

I G G d b I b
       (19) 

1cist ciivst

v

G X  , 2, ,i J c s S t T      (20) 

1 .cist il

l

G M Z   , 2, ,i J c s S t T      (21) 

1 (1 )cist ciivst il

v l

G X M Z     , 2, ,i J c s S t T      (22) 

,

2cist cjivst

j i I v

G X
 

   , 2, ,i J c s S t T      
(23) 

2 (1 )cist il

l

G M Z   , 2, ,i J c s S t T      
(24) 

,

2cist cjivst il

j i I v l

G X M Z
 

    , 2, ,i J c s S t T      
(25) 

4 Solution Procedure  

To solve multi-objective optimization problems, three major methods are known: The a priori methods, the 

a posteriori method and the interactive methods [13].In the a priori method, the decision maker expresses 

his/her preferences before the solution process, and the multi-objective optimization problem is transformed 

into a single objective problem. Subsequently, a classical single-objective optimization algorithm is used to 

find the optimum. The a priori methods can create a representative subset of the Pareto set which in most cases 

is adequate. The a posteriori method is in the basis of optimizing all objective functions, simultaneously. In 

this method, first the efficient solutions of the problem (Pareto set) are generated. Then, at the end of the 

search process, the decision maker involves, in order to select among Pareto set, the most preferred one. In the 

last method (the interactive methods), the phase in which the decision maker involves in the decision-making 

process expressing his/her preferences are interchanged with phase of calculation and the process usually 

converges, after a few iterations, to the most preferred solution. The decision maker successively drives the 

search with his answers towards the most preferred solution. In this paper, we applied ε-constraint method. In 

this method, one of the objective functions is selected as the main objective to be optimized, and other 

objective functions are transformed into constraints by considering an upper bound for each of them.The 

problem is stated as follows: 

Min ( )jZ x   

(26) 

 
. .s t ( )   ;    k kZ x k j� x X     
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5 Case Study 

Tehran, the capital of Iran with a population of more than 12 million, is built on a network of faults with 

high risk to earthquake. According to the earthquake scenarios developed under the JICA-CEST project, 

Tehran has high seismic potential with many active faults, the most significant are the Mosha fault (with about 

68 km length), Rey fault (with about 26 km length) and North of Tehran fault (with about 58 km 

length)[14].Four earthquake model scenarios were developed based on active faults: (1) the Ray Fault (RF); 

(2) the Mosha Fault (MF); (3) the North Tehran Fault (NTF); and (4) a floating earthquake not identifiably 

linked to a particular fault, namely, Floating Fault (FF).We assume the relative probabilities of MF, NTF, RF 

and FF earthquakes are 0.158, 0.352, 0.412, and 0.079, respectively.  

We consider 22 municipal districts of Tehran, which potentially are at risk of earthquake and 22point with 

low vulnerability as candidate areas for the construction of RDCs were considered (Figure 2).Emergency 

relief items categorize into two main groups: consumable item e.g. food and water and non-consumable items 

e.g. shelter. Each consumable item consists of 2 MREs and 3 liter water per person per day. Each shelter can 

be consumed for 3 people. The various parameters listed in Table 1, 2 and 3. 

 

Figure 2. Map of case study: 22 potential AAs and 10 potential RDCs Potential RDC 

 

Table 1: Facility setup cost 
 

 

 

 

 

 

 

Table2: Unit procurement cost, transportation cost and commodity volume 

 

 

 
 

The planning horizon is set to 3 days. The penalty cost for unmet demand is estimated to be 20, 15 and 10 

times, respectively for first, second and third days the post-disaster procurement cost of the corresponding 

commodity, and the holding cost is estimated according to the current procurement cost. For this problem, 

only one transportation mode is used which is trucking. Demand for relief items at each demand point for a 

given scenario are estimated on the basis of the population density multiplied by the vulnerability probability 

of the demand points.  
 

3 3(10 )lccap m  3(10 $)jlf  Size 
Non-Con Con    

9 21 5000 Small 

14.4 33.6 8000 Medium 

21.6 50.4 12000 Large 

Commodity ci ($/unit) cv  (m3/unit) Transport. ($/unit-km) 
Con 2.5 0.065 0.75 

Non-Con 20 0.12 1.8 
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Table 3: Demand of consumable commodity (103 units) 
Faults model   Faults model  

FF MF  NTF RF DPs  FF MF  NTF RF DPs 

27264 3095 7722 37058 12  9581 1174 14032 2719 1 

9551 599 2614 10312 13  16138 627 11914 8812 2 

18495 1265 4191 22968 14  11902 944 10290 5187 3 

27765 1841 7177 50973 15  21804 2444 15277 6777 4 

17507 1140 4213 29732 16  12973 313 12217 5768 5 

15955 935 3433 28547 17  6828 570 3144 6517 6 

13052 631 2622 24546 18  10902 831 4337 12817 7 

6512 131 1466 16472 19  12173 786 4750 14610 8 

14207 584 2797 30188 20  8000 158 1880 9755 9 

4524 104 1761 4776 21  15778 373 3701 21983 10 

1906 41 1540 651 22  18654 1520 5128 31635 11 

 

5.1. Results 

In this section, we present computational results. The results were obtained using GAMS/Cplex on 2.3 GHz 

Laptop computer with 4GB of RAM under Windows 7. To solve the multi-objective model with ε-constraint 

method, first objective function is regarded as the most important objective function that it aims to minimize 

unsatisfied demand. The total cost of the pre-disaster phase is approximately 9 milliard dollars. The expected 

value of total cost for the post-disaster phase in this solution is about 23 milliard dollars. The expected value 

of the sum of maximum shortage for all AAs in this solution is 5.5 million units. Table 4 shows that nine 

RDCs are opened and distributed widely across the network. Figure 3 graphically shows the total cost as a 

function of the possible number of opened RDCs. According to Figure 3, the best value of total cost is 

obtained when number of RDCs is equal to 9, and 10. 
 

Table 4: Amount of storage relief commodities in RDCs (105 units) 
RDC Size Con. Non-Con. 

6 Large 7.7538 1.8 

7 Large 7.7538 1.8 

8 Large 7.7538 1.8 

9 Medium 5.2308 1.1667 

13 Large 7.7538 1.8 

14 Small 3.2308 0.75 

16 Medium 5.2308 1.1667 

18 Medium 5.2308 1.1667 

19 Medium 5.2308 1.1667 
 

  
Figure 3: Total cost versus the number of 

selected RDCs 

Figure 4: Efficient frontier for the maximum shortages 

against total cost 
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To show the conflict there exists between the objective functions, the efficient frontiers are given in Figure 

4.  As can be seen, there is a significant conflict between total cost of relief chain and satisfaction level. As the 

unsatisfied demand increases, the total cost is reduced. Therefore, it is obvious that there are tradeoff 

situations for users to determine what decrements of the maximum shortage are desired. 

In any case, the choice of the penalty cost parameters remains an important task for the decision maker. 

Figure 5 shows satisfaction level resulting from using different penalty cost parameters of 2, 5, 10, and 20 

times its procurement cost for the four scenarios. As can be seen the considerable increase in satisfaction level 

can be achieved through the increase of penalty costs (except for the MF scenario where the demand is lower 

than in other scenarios). As the analysis shows, the appropriate choice also depends on the available budget: if 

the budget is not tight, higher levels of penalty costs are preferable in order to maximum satisfaction level. 

 

 
Figure 5: Satisfaction level with increased penalty for unmet demand 

 

6 Conclusions and Future Directions 

In this paper, we propose a new humanitarian relief logistics model which helps to build up an optimal pre-

disaster plan while considering the post-disaster decisions. We formulated the problem as a multi-objective 

stochastic nonlinear program. The model helps to determine the locations of RDCs, the relief item inventory at 

the RDCs, the assignment and amount of relief item flows between the RDCs and demand points, and the 

amount of unsatisfied demand also called shortage corresponding to each demand point, item, scenario, and 

day. The proposed model highlighted two significant issues of supply chain as the objective; customer 

satisfaction and total cost. In our model, the cost parameters as well as demand and supply are subject to 

uncertainty. Furthermore, the model considers uncertainty in the locations where those demands might arise as 

well as the possibility that some of the pre-positioned supplies at RDC might be partially destroyed by the 

disaster. Uncertainty is represented by a set of discrete scenarios.  Finally, model transformed into a linear one 

then multi-objective model was solved as a single- objective problem by applying ε-constraint method. To 

demonstrate the effectiveness of the proposed model, a case study based on a specific disaster scenario is 

presented. The interaction between the design objectives has been shown. This way of generating different 

possible configurations will help the decision-maker determine the best design according to the selected 

objectives. Sensitivity analysis is also performed to validate the model. 

A number of extensions are possible for this model: (1) Aggregating this model with other assumption such 

as routing can be an interesting development. (2) For larger problems, solution times and hence computational 

0

0.2

0.4

0.6

0.8

1

1.2

RF NTF MF FF

S
st

is
fa

c
ti

o
n

 L
e
v
e
l

2

5

10

20



M. Khorsi, A. Bozorgi-Amiri, B. Ashjari/ J. Math. Computer Sci.    7 (2013) 63 - 72 
 

72 
 

burden of model analysis would increase. Therefore, future research would include the development of 

heuristic approaches that find near-optimal solutions for this model. 
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