The Journal of Mathematics and Computer Science Available online at http://www.TJMCS.com

Journal of Mathematics and Computer Science Vol .1 No.2 (2010) 123-127

The commuting graphs on groups D_{2n} and Q_n

J. Vahidi ^{1,2}, A. Asghar Talebi ³

¹Shomal University, Amol, Iran

²Mahmoudabad Technical College

³University of mazandaran, babolsar, Iran

<u>j.vahidi@umz.ac.ir</u>

a.talebi@umz.ac.ir

Received: Sep 2009, Revised: Dec 2009

Online Publication: Apr 2010

Abstract

Given group G, the commuting graph of G, is defined as the graph with vertex set G - Z(G), and two distinct vertices x and y are connected by an edge, whenever they commute, that is xy = yx. In this paper we get some parameters of graph theory, as independent number and clique number for groups D_{2n} , Q_n .

Keywords: independent number, clique number, generalized quaternion group

1 Introduction

Given a finite group G, and a subset X of G, the commuting graph associated with X is $\varphi(X,G)$, a graph with vetex set X, and two distinct vertices x, y are adjacent, whenever xy = yx. Many authors have studied $\varphi(G,X)$ for different choices of G and X. In [4] and [5], Segev and Seits apply the commuting graph, with G a nonabelian simple group and $X = G - \{1\}$. The non-commuting graph of a group G, denoted by $\Delta(G)$, is the complement of $\varphi(X,G)$, with X = G - Z(G). There are some papers on non-commuting graphs of a group, for instance see [1, 3]. In this work we consider the commuting graph $\varphi(X,G)$, with G, a non-abelian finite group and X = G - Z(G), and we denote $\varphi(X,G)$ by $\Gamma(G)$. In this paper we obtain *independent number*, *clique number* and minimum size of a vertex cover of non-commuting graphs on dihedral and *generalized quaternion groups*. The graph -teoretic notation and terminology are standard; see [2] for example.

The rest of this paper is organized as follows: The section 2 contains some notations and preliminaries. In section 3 we get *independent number*, *clique number* and minimum size of a vertex cover.

2 Notations and preliminaries

We consider simple graphs which are undirected, with no loops or multiple edges. For a graph Γ , we denote the vertex set and the edge set of Γ by $V(\Gamma)$ and $E(\Gamma)$, respectively. We denote the number of vertices Γ by $n(\Gamma)$. The degree of a vertex v in Γ , is denoted by $d_{\Gamma}(v)$, is the number of edges incident to v and if the graph is understood, then we denote $d_{\Gamma}(v)$ by d(v). A graph Γ is regular if the vertices of graph Γ are of the same degree. A subset X of the vertices of Γ is called a clique, if the induced subgraph of X is a complete graph. The maximum size of a clique in a graph Γ is called the clique number of Γ and denoted by w(G). A subset X of the vertices of Γ is called an independent set if the induced subgraph on X has no edges. The independence number of Γ is the maximum size of an independent set of vertices and is denoted by $\alpha(\Gamma)$. A vertex cover of a graph Γ is a set $Q \subseteq V(\Gamma)$ that contains at least one endpoint of every edge. The minimum size of a vertex cover is denoted by $\beta(G)$. Two graphs $\Gamma_1 = (V_1, E_1)$ and $\Gamma_2 = (V_2, E_2)$ are said to be isomorphic(is denoted $\Gamma_1 \cong \Gamma_2$) whenever there exists one-to-one onto mapping $\phi: V_1 \to V_2$ such that, for all $u, v \in E_1$ we have: $\{u, v\} \in E_1$ if and only if $\{\phi(u), \phi(v)\} \in E_2$. The wreath product of two graphs Γ_1 and Γ_2 , written $\Gamma_1[\Gamma_2]$, is given as follows: The vertices of $\Gamma_1[\Gamma_2]$ are all pairs $\{x, y\}$ where $x \in V(\Gamma_1)$ and $y \in V(\Gamma_2)$ and edges of $\Gamma_1[\Gamma_2]$ are the pairs $\{\{(x_1, y_1), (x_1, y_2)\} : \{y_1, y_2\} \in E(\Gamma_2)\}$ together with $\{\{(x_1, y_1), (x_2, y_2)\} : \{x_1, x_2\} \in E(\Gamma_1)\}$.

3 The commuting graph of groups D_{2n} and Q_n

Throughout this section, let $D_{2n} = \langle a, b : b^2 = a^n = 1, b^{-1}ab = a^{-1} \rangle$ and $Q_n = \langle c, d : d^4 = c^{2^{n-1}} = 1, d^2 = c^{2^{n-2}}, d^{-1}cd = c^{-1} \rangle$ denote the dihedral group and generalized quaternion group, respectively.

Let $[G:Z(G)]=m(m\geq 4)$, and $T=\{1,x_1,x_2,...,x_{m-1}\}$ be a transversal of Z(G) in G. It is clear that every two element of the coset $x_iZ(G)$, $1\leq i\leq m-1$, commute, thus, every two elements of these cosets are adjacent. We associate to the commuting graph $\Gamma(G)$ of a group G, the induced subgraph $\Gamma^u(G)$ as follows: The vertex set of $\Gamma^u(G)$ is $T-\{1\}=\{x_1,x_2,...,x_{m-1}\}$, and two vertices x_i and x_j , $1\leq i,j\leq m-1$ are adjacent, if and only if $x_ix_i=x_ix_i$.

Theorem 1. Let G be a non-abelian group. Then $\Gamma(G) \cong \Gamma^u(G)[K_l]$, such that l = |Z(G)|.

Proof. Let $Z(G) = \{a_1, a_2, ..., a_l\}$ and $T = \{1, x_1, x_2, ..., x_m\}$ be a transversal of Z(G) in G. Then the set of cosets $x_i Z(G) = \{x_i a_1, x_i a_2, ..., x_i a_l\}$, $1 \le i \le m-1$, parties $V(\Gamma(G))$. Let $V(K_l) = \{1, 2, ..., l\}$. Then map $\varphi : V(\Gamma(G)) \to V(\Gamma^u(G)[K_l])$, $x_i a_j \to (x_i, j)$, $1 \le i \le m-1$, $1 \le j \le l$ is a isomorphism, and this completes the proof.

Lemma 1. [2] Let Γ is a graph. Then $\alpha(\Gamma) + \beta(\Gamma) = n(\Gamma)$.

Lemma 2. Let G be a non-abelian finite group. Then

$$w(\Gamma(G)) = w(\Gamma^u(G))|Z(G)|.$$

Proof. Let A is a clique on $\Gamma^u(G)$, such that $|A| = w(\Gamma^u(G))$. Then for each two cosets xZ(G) and yZ(G) such that $x, y \in A$, if $a \in xZ(G)$ and $b \in yZ(G)$, then a and b are adjacent.

Hence $X = \bigcup_{x \in A} xZ(G)$ is a clique and $|X| = |A||Z(G)| = w(\Gamma^u(G))|Z(G)|$. Thus $w(\Gamma(G)) \ge w(\Gamma^u(G))|Z(G)|$. Now let A' is a clique of $\Gamma(G)$, such that $|A'| = w(\Gamma(G))$. If $A' \cap x_i Z(G) \ne \emptyset$, $1 \le i \le m-1$, then $x_i Z(G) \subseteq A'$. Hence there exists $x_{i_1}, x_{i_2}, ..., x_{i_k} \in T \setminus \{1\}$ such that $A' = \bigcup_{j=1}^k x_{i_j} Z(G)$. It is clear that |A'| = k|Z(G)|, Also, the set $\{x_{i_1}, x_{i_2}, ..., x_{i_k}\}$ is a clique on $\Gamma^u(G)$. Thus $k \le w(\Gamma^u(G))$ and it follows that

$$w(\Gamma(G)) = |A'| \le w(\Gamma^u(G))|Z(G)|.$$

Hence $w(\Gamma(G)) = w(\Gamma^u(G))|Z(G)|$.

Lemma 3. Let G be a non-abelian finite group. Then

$$\alpha(\Gamma(G)) = \alpha(\Gamma^u(G)).$$

Proof. If A is an independent set on $\Gamma(G)$, then $|A \cap x_i Z(G)| \leq 1$, $x_i \in T \setminus \{1\}$, because every two elements of a coset $x_i Z(G)$, $x_i \in T \setminus \{1\}$ are adjacent. For an independent set A of $\Gamma(G)$, we associate an independent set A' of $\Gamma^u(G)$ contain elements x_i of $T \setminus \{1\}$ such that $A \cap x_i Z(G) \neq \emptyset$. Since $|A \cap x_i Z(G)| \leq 1$, |A| = |A'|. Thus $\alpha(\Gamma(G)) \leq \alpha(\Gamma^u(G))$. On the other hand, $\alpha(\Gamma^u(G)) \leq \alpha(\Gamma(G))$, because $\Gamma^u(G)$ is a subgraph of $\Gamma(G)$. Hence $\alpha(\Gamma(G)) = \alpha(\Gamma^u(G))$.

Lemma 4. Let G be a non-abelian finite group. Then

$$\beta\big(\Gamma(G)\big) = \beta\big(\Gamma^u(G)\big) + (m-1)(|Z(G)|-1).$$

Proof. By lemma 2, we have:

$$\beta(\Gamma(G)) = (m-1)|Z(G)| - \alpha(\Gamma(G))$$

$$= (m-1)|Z(G)| - \alpha(\Gamma^{u}(G))$$

$$= (m-1)|Z(G)| + \beta(\Gamma^{u}(G)) - (m-1)$$

$$= \beta(\Gamma^{u}(G)) + (m-1)(|Z(G)| - 1)$$

Now by [6. Lem 3.2] we get the following lemma.

Lemma 5. For every odd n, two graphs $\Gamma(D_{2n})$ and $\Gamma^u(D_{2(2n)})$ are isomorphic.

Proposition 1. For every even natural number n, the following holds:

$$(i) w(\Gamma^u(D_{2n})) = \frac{n}{2} - 1$$

$$(ii)\;\alpha \left(\Gamma^u(D_{2n})\right)=\frac{n}{2}+1$$

$$(iii) \beta \left(\Delta^u \left(D_{2n} \right) \right) = \frac{n}{2} - 2$$

Proof. (i) We have $Z(D_{2n}) = \left\{1, a^{\frac{n}{2}}\right\}$ and the set $T = \left\{1, a, a^2, \dots, a^{\frac{n}{2}-1}, b, ba, \dots, ba^{\frac{n}{2}}\right\}$ is a transversal of $Z(D_{2n})$ in D_{2n} . The set $A = \left\{a^i : 1 \le i \le \frac{n}{2} - 1\right\}$ is a clique of $\Gamma^u(D_{2n})$ and if B be a clique of $\Gamma^u(D_{2n})$, then $B \subseteq A$. Thus $|A| = \frac{n}{2} - 1 = w(\Gamma^u(D_{2n}))$.

(ii) For any j that $1 \le j \le \frac{n}{2} - 1$, the set $A_j = \left\{ a^j, b, ba, \dots, ba^{\frac{n}{2}} \right\}$ is an independent set of $\Gamma^u(D_{2n})$ and each two elements of the set $\left\{ a^i : 1 \le i \le \frac{n}{2} - 1 \right\}$ are adjacent. Thus, for any j that $1 \le j \le \frac{n}{2} - 1$, $\left| A_j \right| = \alpha \left(\Gamma^u(D_{2n}) \right) = \frac{n}{2} + 1$. Finally, the relation (iii) get from (ii) and Lemma 2.

Theorem 2. For every natural number n, the followings hold:

(1) If n be even, then

$$(i) \ w(\Gamma(D_{2n})) = n - 2$$

(ii)
$$\alpha(\Gamma(D_{2n})) = \frac{n}{2} + 1$$

$$(iii)\,\beta\bigl(\Delta\left(D_{2n}\right)\bigr)=\frac{3}{2}n-3$$

(2) If n be odd, then

$$(i) \ w(\Gamma(D_{2n})) = n - 1$$

$$(ii)\;\alpha\bigl(\Gamma(D_{2n})\bigr)=n+1$$

$$(iii)\,\beta\bigl(\Gamma(D_{2n})\bigr)=n-2$$

Proof. (1) The proof follows by Lemmas 2, 3, 4 and Proposition 1.

(2) The proof follows by Lemmas 5 and Proposition 1.

Proposition 2. For generalized quaternion group Q_n , the following hold:

$$(i) \, w \big(\Gamma^u(Q_n) \big) = 2^{n-2} - 1$$

$$(ii)\,\alpha\bigl(\Gamma^u(Q_n)\bigr)=2^{n-2}+1$$

$$(iii)\,\beta\bigl(\Gamma^u(Q_n)\bigr)=2^{n-2}-2$$

Proof. (i) We have $Z(Q_n) = \{1, c^{2^{n-1}}\}$ and the set $T = \{1, c, c^2, ..., c^{2^{n-2}-1}, d, dc, ..., dc^{2^{n-2}-1}\}$ is a transvernal of $Z(Q_n)$ in Q_n . The set $A = \{c^i : 1 \le i \le 2^{n-2} - 1\}$ is a clique of $\Gamma^u(Q_n)$ and if B be a clique of $\Gamma^u(Q_n)$, then $B \subseteq A$. Thus $|A| = 2^{n-2} - 1 = w(\Gamma^u(Q_n))$.

(ii) For any j that $1 \le j \le 2^{n-2} - 1$, the set $A_j = \{c^j, d, dc, ..., dc^{2^{n-2}-1}\}$ is an independent set of $\Gamma^u(Q_n)$ and each two elements of the set $\{c^i : 1 \le i \le 2^{n-2} - 1\}$ are adjacent. Thus, for any j, $1 \le j \le 2^{n-2} - 1$, $|A_j| = \alpha(\Gamma^u(Q_n)) = 2^{n-2} + 1$. The relation (iii) follows from Lemma 1 and (ii).

Now by Lemmas 2, 3, 4 and Proposition 2 we conclude the following theorem.

Theorem 3. For generalized quaternion group Q_n , the following hold:

$$(i) w(\Gamma(Q_n)) = 2^{n-1} - 2$$

$$(ii)\;\alpha\bigl(\Gamma(Q_n)\bigr)=2^{n-2}+1$$

$$(iii) \beta(\Gamma(Q_n)) = 3 \times 2^{n-2} - 3$$

References

- [1] A.Abdollahi, S. Akbary, H.R. Maimani, Non-commuting graph of a group, J. Algebra, 28(2006), 468–492.
- [2] J.A. Bondy, and J.S. Murty, Graph theory with application, Elsevier, (1977).
- [3] J.R. Moghadamfar, W.J. Shi, W. Zhou and A.R. Zokayi, On the non-commuting graph associated with a finite group, sibarian Mathematical journal, vol. 46, no. 2, pp. (2005), 325–332.
- [4] Y. Segev, On finite homomorphic image of the multiplicative group of a division algebra, Ann. of Math, 149(1999), 219–251.
- [5] Y. Segev, and G. Seitz, Anisotropic groups of type A_n and the commuting graph of finite simple groups, Pacific J. Math, 202, (2002). 125–225.
- [6] A. Asghar Talebi, On the Non-commuting graphs of group D_{2n} , International Journal of Algebra, Vol. 2, no. 20, (2008), 957–961