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Abstract
This paper presents a new investigation of the circular restricted four body problem under the effect of any variation in

coriolis and centrifugal forces. Here, masses of all the bodies vary with time. This has been done by considering one of the
primaries as oblate body and all the primaries are placed at the vertices of a triangle. Due to the oblateness, the triangular con-
figuration becomes an isosceles triangular configuration which was an equilateral triangle in the classical case. After evaluating
the equations of motion, we have determined the equilibrium points, the surfaces of the motion, the time series and the basins of
attraction of the infinitesimal body. We note that, when we increase both the coriolis and centrifugal forces, the curves, surfaces
of motion, and the basins of attraction are shrinking except when we fix the centrifugal force and increase the value of coriolis
force, the curves are expanding and the equilibrium points are away from the origin. The behavior of the surfaces of motion
and the basins of attraction in the last case (fixing the centrifugal force and increasing the value of coriolis force) will be studied
next. In all the present study, we found that all the equilibrium points are unstable. c©2017 All rights reserved.
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1. Introduction

Since many decades scientists performed many mathematical models in the celestial mechanics as two-
body, three-body, four-body, and n-body problems. The restricted problem was also an interesting topic
for them. Many scientists have studied the restricted three-body and the restricted four-body problems.
Many related topics have been studied. For example, in [39], Moulton evaluated the equations of motion
in the four-body problem and demonstrated that the finite bodies can be placed by twenty-eight different
ways. On the other hand, Jeans in [27] discussed the two-body problem with variable mass and Meščerskiı̆
in [37] investigated the mechanics of the bodies with variable mass. For their work, Sharma et al. in [45]
investigated numerically the location of the collinear libration points in the restricted three-body problem
when the primaries are oblate spheroids and observed that these equilibrium points are unstable. To be
complete, we give below an important list of works close to our investigation.
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In [13], Bhatnagar et al. examined the stability of libration points in the restricted problem with
the perturbations in the coriolis and centrifugal forces and found that there is no effect of perturbations
on the collinear points and they remain unstable, however the range of the stability for the equilateral
triangular points increases or decreases due to the perturbations. Simo in [49] discussed the solutions
for arbitrary masses and the manifolds of degeneracies in the restricted four-body problem. They have
examined the linear stability in the restricted and general cases. Majorana in [34] examined the linear
stability of eight equilibrium points which depends on the values of the mass parameter in the restricted
four-body problem. Shrivastava et al. in [47] deduced the equations of motion in the restricted three-body
problem with decreasing mass by using the Jeans law and Meshcherskii transformation. Shrivastava et
al. in [46] evaluated the equilibrium points in the Robes restricted problem of three-bodies with effect of
perturbations in the coriolis and centrifugal forces. Singh et al. in [50–59] studied the restricted problem
of three-bodies and four-bodies in circular and elliptic cases with different perturbations. Khanna et al. in
[29, 30] explored the existence and stability of libration points in the restricted three-body problem when
the smaller primary is a triaxial rigid body and the bigger one an oblate spheroid and observed that there
are five libration points in which three collinear libration points are unstable and two triangular points
are stable for the particular mass parameter. They also observed that the triangular points have long
and short periodic elliptical orbits for the same mass parameter. Hallan et al. in [24, 25] investigated the
locations, linear stability, and non-linear stability of the equilibrium points in the Robe’s circular restricted
three-body problem with the effect of perturbations in coriolis and centrifugal forces. They found that
the locations of equilibrium points are not affected by coriolis force and the range of stability increases
or decreases depending upon the perturbations. Shu et al. in [48] investigated the existence of libration
points and their linear stability under the effects of coriolis and centrifugal forces in the Robe’s restricted
three-body problem and found that the linear stability depends on the parameter k. Leandro in [32]
investigated the bifurcations of central configurations by the uniqueness of convex central configurations
up to a symmetry in the planar restricted four-body problem. They have discussed also the spectral
stability and their bifurcations with all the possible configurations. AbdulRaheem et al. in [1, 2] studied
the stability and periodic orbits of equilibrium points in the restricted three-body problem under the
effect of radiation, oblateness, and perturbing forces. They observed that the perturbing forces affect the
stability, period, orientation, and the eccentricities of the long and short periodic orbits. Lukyanov in
[33] investigated the close binary stars with transfer since Roche’s time by using the circular restricted
three-body model with constant mass. He also used the Gylden-Meshcherskii problem and determined
the equilibrium points and the zero velocity surfaces. He observed that the zero velocity surfaces do
not exist. Zhang et al. in [61] investigated the triangular libration points in the restricted three-body
problem of variable mass in which both the primaries are radiating as well and the infinitesimal body
varies its mass with time according to Jean’s law and observed that the motion around the triangular
libration points are unstable. Ceccaroni et al. in [20] explored the stability of the circular restricted
four-body problem. Using this model, they explored the low-thrust propulsion capabilities to generate
surfaces of artificial equilibrium points near the smaller primaries, both in and out of plane. Suraj et al. in
[44] studied the Sitnokov problem by considering all the three primaries as oblate bodies in the circular
restricted four-body problem. They found the stability region of the motion depending on the oblateness
parameter by using Floquet theory. Kumari et al. in [31] studied the circular restricted four-body problem
by taking two primaries as oblate and of equal masses. They obtained two collinear and six non-collinear
equilibrium points. The non-collinear equilibrium points are stable for the particular interval of the mass
parameter. They also have demonstrated the convergence as well as the divergence of the equilibrium
points by the construction of Newton-Raphson basin of attraction. Asique et al. in [11] investigated
the locations and stability of the equilibrium points in the circular restricted four-body problem and
observed that the collinear libration points are unstable while the non-collinear equilibration points are
stable for the different mass parameter and oblateness factor. They showed that the presence of oblateness
coefficient and various values of Jacobi constant expanded the stability regions of the equilibrium points.
Falaye in [23] investigated the stability of equilibrium points in the circular restricted four-body problem
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with the effect of oblateness, radiation, and a circular cluster of material points. After considering two
equal masses, he obtained that all the equilibrium points are unstable. Papadauris et al. in [42, 43] studied
numerically the restricted four-body problem by considering the bigger primary as source of radiation and
the other two primaries are equal. They observed that the equilibrium points are depending on the mass
parameter and source of radiation. They also illustrated the periodic orbits, the Poincare surface of section
and their stability under the effect of radiation pressure. Abouelmagd in [3–6] explored the restricted
three-body problem with different perturbations. Papadakis in [40, 41] studied the 3D symmetric periodic
orbits of the circular restricted four-body problem, through their bifurcation from the plane orbits. He
illustrated the characteristic curves and stability diagram of families of 3D periodic orbits. Additionally,
he described a grid method to obtain initial conditions for new asymmetric double-periodic orbits. Mittal
et al. in [38] investigated the stability of the Lagrangian solutions for the restricted four-body problem
with variable mass. They found that all the equilibrium points are unstable. Ansari in [7, 8] studied the
stability of the equilibrium points in the circular restricted four-body problem with one of the primaries
is taken as oblate spheroid and the mass of the infinitesimal body is taken as variable mass body. He
found eight equilibrium points in which three are asymptotically stable and the five others are unstable.
Ansari in [9] explored the equilibrium points, time series, zero-velocity curves, and Poincare surface of
section numerically in the circular restricted three-body problem by considering one of the primaries as
oblate spheroid, a second one as a source of radiation pressure and such that all the three bodies vary
their masses with time. He also examined the stability of the equilibrium points and found that all the
equilibrium points are unstable. Another aspect in relation with our work is the basin of attraction. In
this topic, many scientists have studied and determined the basins of attraction. Among them, we can
cite for example the works of Douskos [22], Kumari et al. in [31], de Assis and Terra in [21], Matthies et
al. in [35], Paricio in [26], Asique et al. in [12], Zotos in [62–65], etc.

Taking in consideration the cited literature, we have studied the effect of coriolis and centrifugal forces
in the circular restricted four-body problem by considering all the masses vary with time and one of the
primaries as oblate body. The organization of the present paper is as follows: In the introduction section,
we have reviewed all the literature related to the problem. In the equations of motion section, we have
evaluated the equations of motion with the effect of coriolis and centrifugal forces. In the numerical
computations section, we have determined the locations of equilibrium points, surfaces of the motion of
the infinitesimal body, time series, and the basins of attraction. In the stability section, we have examined
the stability of the equilibrium points. Finally, in the last section, we made some necessary comments
about the present work to explain our point of view on the obtained results in view of the classical ones.
We are convinced that the results obtained in this study have practical application in astrophysics.

2. Equation of motion

In this section, we evaluate the equations of motion of the infinitesimal body with massm by consider-
ing that the three primaries have respectively m1, m2, and m3 as masses and are placed at the vertices of a
triangle. The primary m2 is supposed to be an oblate body with oblateness factor σ and the masses of all
the four bodies are varying with time. The perturbations in the coriolis and centrifugal forces are denoted
by ϕ and ψ, respectively, the unperturbed value of each being unity. All the primaries are revolving in
the circular orbits around their center of mass which is taken as origin. The line, at which the primary
m1 is placed, is taken as x-axis and the line perpendicular to the x-axis and passing through the origin is
considered as y-axis, the line which passes through the origin and perpendicular to the plane of motion of
the primaries is taken as z-axis (Fig. 1). Let us consider the synodic coordinate system, initially coincide
with the inertial coordinate system, and revolve with angular velocity ω about z-axis. Due to oblateness
factor s, equilateral triangular configuration with side `, will no longer exist as a classical case. Let us
suppose, in our case, AB = `+ λ1, BC = `+ λ2, CA = `+ λ3, where λ1 < 1, λ2 < 1 and λ3 < 1. Proceeding
as in Ansari [7], so we get the following
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λ1 − λ3 =
σ

2`
, λ1 = λ2, and ω2 =

G(m1 +m2 +m3)

`3
[1 −

3
`
(λ1 −

σ

2`
)].

This means that the three bodies remain at the vertices of an isosceles triangle instead of an equilateral
triangle as in the classical case. Following the procedure of Abdullah [9] and using the Meshcherskii
transformation with (i = 1, 2, 3) given by

x = ξR(t), y = ηR(t), z = ζR(t), dtdτ = R2(t), ri = ρiR(t),
ω(t) = ω0

R2(t)
, xi = ξiR(t),yi = ηiR(t), ν(t) = ν0

R(t) , νi(t) =
νi0
R(t) ,

m = m0
R(t) , R(t) =

√
a t2 + 2b t+ c, ac− b2 = 1 − k,

where k, a, b, c, ν0, ν10, ν20, ν30, m0 are constants.

Figure 1: The configuration of the restricted three-body problem with perturbations.

By considering unit of mass, distance and time at initial time t0 such that ν0 = 1, ` = 1, G = 1,
at0 + b = α1 (constant), and introducing the mass parameter as

ν10 = ν, ν20 = (1 − ν−α2ν), ν30 = α2ν, α2 � 1,

we get the equations of motion are then defined by
ξ ′′ − 2 ω0ϕη

′ −α1ξ
′ = ∂V

∂ξ ,
η ′′ + 2ω0ϕ ξ

′ −α1η
′ = ∂V

∂η ,
ζ ′′ −α1ζ

′ = ∂V
∂ζ ,

(2.1)

where

V =
1
2
(α2

1 +ω
2
0ψ+ k− 1)(ξ2 + η2) +

1
2
(α2

1 + k− 1)ζ2 −α1ϕξη

+
ν

ρ1
+

(1 − ν−α2ν)

ρ2
+

(1 − ν−α2ν)σ

2ρ3
2

+
α2ν

ρ3
,
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ω2
0 = (1 − 3λ1 +

3σ
2
), ρ2

i = (ξ− ξi)
2 + (η− ηi)

2 + ζ2, (ξ1,η1) = (
1√
3
(1 +

λ1

3
), 0),

(ξ2,η2) = (−
1

2
√

3
(1 +

7λ1

3
),

1
2
(1 + λ1)), (ξ3,η3) = (−

1
2
√

3
(1 −

5λ1

3
),−

1
2
(1 + λ1)).

The symbol prime (’) is the differentiation w.r.t. τ.

3. Graphs with numerical computations

In this section, we determine the locations of equilibrium points in the three planes; (ξ, η)-plane
(ξ, ζ)-plane and (η, ζ)-plane, the surfaces of the motion of the infinitesimal body, the time series, and the
basins of attraction by Newton-Raphson method. The numerical methods used in the present study are
similar to those presented in [10, 14–19, 28, 60].

3.1. Locations of equilibrium points
We can find the locations of the equilibrium points by solving the following equations for Vξ = Vη =

Vζ = 0,

(α2
1 +ω

2
0ψ+ k− 1)ξ−α1ϕη−

ν(ξ− ξ1)

ρ3
1

−
(1 − ν−α2ν)(ξ− ξ2)

ρ3
2

−
3(1 − ν−α2ν)(ξ− ξ2)σ

2ρ5
2

−
α2ν(ξ− ξ3)

ρ3
3

= 0,

(α2
1 +ω

2
0ψ+ k− 1)η− α1ϕξ−

νη

ρ3
1
−

(1 − ν−α2ν)(η− η2)

ρ3
2

−
3(1 − ν−α2ν)(η− η2)σ

2ρ5
2

−
α2ν(η− η3)

ρ3
3

= 0,

(α2
1 + k− 1)ζ−

νζ

ρ3
1
−

(1 − ν−α2ν)ζ

ρ3
2

−
3(1 − ν−α2ν)σζ

2ρ5
2

−
α2νζ

ρ3
3

= 0.

• (ξ,η)-plane k = 0.4, α1 = 0.2, ν = 0.019, σ = 0.01, λ1 = 0.01,α2 = 0.01.

In this plane, we found five equilibrium points and observed that

1. when we increase both the coriolis and centrifugal forces, the curves are shrinking and the
equilibrium points are towards the origin (Fig. 2 (a));

2. when we fix the coriolis force and increase the value of centrifugal force, the curves are shrink-
ing and the equilibrium points are towards the origin (Fig. 2 (b));

3. when we fix the centrifugal force and increase the value of coriolis force, the curves are ex-
panding and the equilibrium points are away from the origin (Fig. 2 (c)).

In Figure 2, we have the color code: ϕ = ψ = 1.2 (red), ϕ = ψ = 1.4 (green), and the purple color
points indicate the locations of the primaries.

• (ξ, ζ)-plane k = 0.4, α1 = 0.2, ν = 0.019, σ = 0.01, λ1 = 0.01,α2 = 0.01.

In this plane, we found five equilibrium points and observed that when we increase the values of
the coriolis and centrifugal forces, the curves are shrinking and the equilibrium points are moving
towards the origin. See Figure 3 (ϕ = ψ = 1.2 (red), ϕ = ψ = 1.4 (green)).

• (η, ζ)-plane k = 0.4, α1 = 0.2, ν = 0.019, σ = 0.01, λ1 = 0.01,α2 = 0.01.

In this plane, we found three equilibrium points and observed that when we increase the values of
the coriolis and centrifugal forces, the curves are shrinking and the equilibrium points are moving
towards the origin. Figure 4 gives more detail (ϕ = ψ = 1.2 (red), ϕ = ψ = 1.4 (green)).
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(a) (b) (c)

Figure 2: The locations of equilibrium points at (a) : ϕ = ψ = 1.2 (red), ϕ = ψ = 1.4 (green). (b) : ϕ = ψ = 1.2 (red),
ϕ = 1.2,ψ = 1.4 (green). (c) : ϕ = ψ = 1.2 (red), ϕ = 1.4,ψ = 1.2 (green).

Figure 3: The locations of equilibrium points at ϕ = ψ = 1.2 (red), ϕ = ψ = 1.4 (green).

Figure 4: The locations of equilibrium points at ϕ = ψ = 1.2 (red), ϕ = ψ = 1.4 (green).
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3.2. Surfaces
In this section, we have drawn the surfaces of motion of the infinitesimal body under the effect of the

coriolis and centrifugal forces and found that when we increase the values of the coriolis and centrifugal
forces, the surfaces are shrinking (Figs. 5 and 6).

(a) (b) (c)

Figure 5: The surfaces of motion of infinitesimal body at ϕ = ψ = 1.2.

(a) (b) (c)

Figure 6: The surfaces of motion of infinitesimal body at ϕ = ψ = 1.4.

3.3. Time series
For this section, we determined the time series in (τ, ξ) and (τ,η) under the effect of the coriolis and

centrifugal forces. We observed that when we increase the values of the coriolis and centrifugal forces, the
curves are shifting by some phase angles and also according to the pattern of the curves, we concluded
that the orbits will not be periodic (Figs. 7 and 8).

3.4. Newton-Raphson basins of attraction
In this section, we drawn the basins of attraction for the circular restricted four-body problem under

the effect of perturbations (oblateness, variable of masses and the coriolis and centrifugal forces) by using
Newton-Raphson iterative method. It is very fast and accurate computational tool. The algorithm of our
problem is given by,
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
ξn = ξn−1 −

(
VξVηη−VηVξη
VξξVηη−VξηVηξ

)
(ξn−1,ηn−1)

,

ηn = ηn−1 −
(
VηVξξ−VξVηξ
VξξVηη−VξηVηξ

)
(ξn−1,ηn−1)

,

where ξn−1,ηn−1 are the values of the ξ and η coordinates of the (n− 1)th step of the Newton-Raphson
iterative process. The initial point (ξ,η) is a member of the basin of attraction of the root if this point con-
verges rapidly to one of the equilibrium points. This process stops when the successive approximations
converge to an attractor with some predefined accuracy. In this process the successive approximation
points create a crocked path line. For the classification of the equilibrium points on the (ξ,η)-plane, we
used color code. In this way a complete view of the basin structures created by the attractors (Figs. 9 (a)
and 10 (a)). The Figure 9 (a) represents the basin of attraction at ϕ = ψ = 1.2, where the black sign like
spider is the configuration of the primaries. The zoomed Figure 9 (b) of the Figure 9 (a) gives us a better
detail of this configuration. The Figure 10 (a) represents the basin of attraction at ϕ = ψ = 1.4, in which
the black sign like spider is the configuration of the primaries. The zoomed Figure 10 (b) of the Figure 10
(a), gives us also a better detail on this configuration. We also observed that when we increase the values
of the coriolis and centrifugal forces, the basin of attraction is shrinking.

Figure 7: The time series in (τ, ξ), ϕ = ψ = 1.2 (magneta), ϕ = ψ = 1.4 (blue).

Figure 8: The time series in (τ,η), ϕ = ψ = 1.2 (cyan), ϕ = ψ = 1.4 (black).
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(a) (b)

Figure 9: (a): The basin of attractions at ϕ = ψ = 1.2. (b): The zoomed image near the primaries.

(a) (b)

Figure 10: (a): The basin of attractions at ϕ = ψ = 1.4. (b): The zoomed image near the primaries.

3.5. Stability of equilibrium points
Using the procedure given by Mccuskey [36], we have examined the stability of the equilibrium points.

By taking ξ = ξ0 +α,η = η0 +β, ζ = ζ0 + γ in equation (2.1), we get
α ′′ − 2ϕ β ′ −α1α

′ = α(Vξξ)0 +β(Vξη)0 + γ(Vξζ)0,
β ′′ + 2ϕ α ′ −α1β

′ = α(Vηξ)0 +β(Vηη)0 + γ(Vηζ)0,
γ ′′ −α1γ

′ = α(Vζξ)0 +β(Vζη)0 + γ(Vζζ)0,
(3.1)

where α,β and γ are the small displacements of the infinitesimal body from the equilibrium point. Suffix
zero denotes the value at the equilibrium point.

To solve equation (3.1), let α = Aeλτ,β = Beλτ,γ = Ceλτ, where A,B, and C are parameters. Substi-
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tuting these values in equation (3.1) and rearranging, we get
A(λ2 −α1λ− (Vξξ)0) −B(2ϕ λ+ (Vξη)0) −C(Vξζ)0 = 0,
A(2ϕ λ− (Vηξ)0) +B(λ

2 −α1λ− (Vηη)0) −C(Vηζ)0 = 0,
−A(Vζξ)0 −B(Vζη)0 +C(λ

2 −α1λ− (Vζζ)0) = 0.
(3.2)

The equation (3.2) will have a non-trivial solution for A,B, and C if∣∣∣∣∣∣
λ2 −α1λ− (Vξξ)0 −(2ϕ λ+ (Vξη)0) −(Vξζ)0

2ϕ λ+ (Vηξ)0 λ2 −α1λ− (Vηη)0 −(Vηζ)0
−(Vζξ)0 −(Vζη)0 λ2 −α1λ− (Vζζ)0

∣∣∣∣∣∣ = 0 ⇐⇒

λ6 − 3α1λ
5 + λ4(4ϕ2 + 3α2

1 − (Vξξ)0 − (Vηη)0 − (Vζζ)0) +α1λ
3(−4ϕ2 −α2

1 + 2(Vξξ)0

+ 2(Vηη)0 + 2(Vζζ)0) + λ
2(−(Vξη)

2
0 − (Vξζ)

2
0 + (Vξξ)0(Vηη)0 − (Vηζ)

2
0 − 4ϕ2(Vζζ)0

+ (Vξξ)0(Vζζ)0 + (Vζζ)0(Vηη)0 −α
2
1(Vξξ)0 −α

2
1(Vηη)0 −α

2
1(Vζζ)0)

+α1λ((Vξη)
2
0 + (Vξζ)

2
0 − (Vξξ)0(Vηη)0 + (Vηζ)

2
0 − (Vξξ)0(Vζζ)0 − (Vηη)0(Vζζ)0)

+ ((Vξζ)
2
0(Vηη)0 − 2(Vξη)0(Vξζ)0(Vηζ)0 + (Vξξ)0(Vηζ)

2
0 + (Vξη)

2
0(Vζζ)0

− (Vξξ)0(Vηη)0(Vζζ)0) = 0.

(3.3)

We solved the equation (3.3) for the different values of the equilibrium points and found that in all
the cases, among the values of λ, some of them are positive real values and the others are complex values
with non-null imaginary part. Hence, all the equilibrium points are unstable.

4. Conclusion

In this paper, we have investigated the stability of the equilibrium points in the circular restricted
four-body problem under the effect of oblateness of one of the primaries, variation of masses, coriolis
and centrifugal forces. Due to oblateness, we found that the equilateral triangular configuration will no
longer exist but it will become an isosceles triangular. On the other hand under these variations, the
equations of motion differ by σ, α1, k, ϕ, and ψ, from the equations of motion in the classical case.
We have drawn the location of the equilibrium points in the three planes, (ξ, η)-plane, (ξ, ζ)-plane and
(η, ζ)-plane, and observed that the equilibrium points are depending on both the coriolis and centrifugal
forces which also differs from the classical case since in this case it depends only on the centrifugal force.
In both the (ξ, η)-plane and (ξ, ζ)-plane, we found five equilibrium points (Figs. 2 and 3). However, in
the (η, ζ)-plane, we found three equilibrium points (Fig. 4). In all these planes, we observed that, when
we increased the values of the coriolis and centrifugal forces, the curves are shrinking and the equilibrium
points are towards the origin except when we increased the coriolis force and fixed the centrifugal force,
the equilibrium points are away from the origin (Fig. 2 (c)). We have drawn the surfaces of the motion
of the infinitesimal body and observed that when we increased the values of the coriolis and centrifugal
forces, the curves are shrinking (Figs. 5 and 6). We also have drawn the time series (Figs. 7 and 8) and
observed that when we increase the values of the coriolis and centrifugal forces, the curves are shifting by
some phase angles and the pattern of the curves show that the orbits will not be periodic. As an important
part of the study, we have drawn the Newton-Raphson basins of attraction (Figs. 9 (a) and 10 (a)). The
Figure 9 (a) is at ϕ = ψ = 1.2, and the Figure 10 (a) is at ϕ = ψ = 1.4. In the Figures 9 (a) and 10 (a),
the black color spider shape shows the configuration of the primaries which can be seen in the zoomed
Figure 9 (b) of the Figure 9 (a) and in the zoomed Figure 10 (b) of Figure 10 (a). We observed that when
we increased the values of the coriolis and centrifugal forces, the basin of attraction is shrinking. As a
final deal, we have examined the stability of the equilibrium points and found that all the equilibrium
points are unstable.
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