
Available online at www.isr-publications.com/jmcs
J. Math. Computer Sci., 17 (2017), 355–364

Research Article

Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs

A combination of curve fitting algorithms to collect a few training samples
for function approximation

Saeed Parsa∗, Mohammad Hadi Alaeiyan

Department of Computer Engineering, Iran University of Science and Technology, Narmak, Tehran, 16844, Iran.

Abstract

The aim of this paper is to approximate the numerical result of executing a program/function with a number of input
parameters and a single output value with a small number of training points. Curve fitting methods are preferred to non-
deterministic methods such as neural network and fuzzing system methods, because they can provide relatively more accurate
results with the less amount of member in the training dataset. However, curve fitting methods themselves are most often
function specific and do not provide a general solution to the problem. These methods are most often targeted at fitting specific
functions to their training dataset. To provide a general curve fitting method, in this paper, the use of a combination of Lagrange,
Spline, and trigonometric interpolation methods are suggested. The Lagrange method fits polynomial functions of degree N to
its training values. In order to improve the resultant fitted polynomial our combinatorial method combines Lagrange with the
polynomial resulted from the Spline method. If the absolute error of the actual value and the predicted value of a function are
not desired, the trigonometric interpolation methods that fit trigonometric functions can be applied. Our experiments with a
number of benchmark examples demonstrate the relatively high accuracy of our combinational fitting method. c©2017 All rights
reserved.

Keywords: Output function approximation, black box approximation, curve fitting, linear function approximation, nonlinear
function approximation.
2010 MSC: 68W25, 68W30, 12Y05, 14Q05.

1. Introduction

The aim is to propose a new method to approximate both linear and nonlinear real-valued executing
functions, with minimum approximation error. Function approximation is a method to map a given input
vector to an output vector. It is simply the mapping of a domain(x) to a range(y). In this case, the domain
is represented by a real-valued vector and range is a single real-valued output. Function approximation is
a known technique for analysis and reverse engineering for constrained fitting [4]. In addition, function
approximation is of great use in software testing to verify the correctness of mathematical code, also it
can be used as an oracle in black box software testing. Moreover, in certain situations, such as predicting
a robot action and estimating the value of the lost pixels of an image, function approximation is also quite
beneficial [22].

∗Corresponding author
Email addresses: Parsa@iust.ac.ir (Saeed Parsa), hadi_alaeiyan@comp.iust.ac.ir (Mohammad Hadi Alaeiyan)

doi:10.22436/jmcs.017.03.02

Received 2015-07-11

http://dx.doi.org/10.22436/jmcs.017.03.02


S. Parsa, M. H. Alaeiyan, J. Math. Computer Sci., 17 (2017), 355–364 356

There are several non-deterministic and deterministic approaches for function approximation, all of
which are aimed at minimizing the approximation error with a small number of a training points. For in-
stance, in order to reduce approximation error, it is observed that some function approximation methods,
using neural networks [10], have modified their learning engine and its weight of neurons by changing or
modifying their sigmoidal function [7] or feed-forward network and back-propagation learning algorithm
[10]. To promote the accuracy of neural network fuzzing methods have been applied to the approxima-
tions provided by neural networks [20]. Also in certain situations, the approximation provided by a fuzzy
system is used as input to neural networks [8]. A fuzzy system may include a set of fuzzy rules to map
inputs to outputs according to the semantics of a function f : X → Y. The rules have if-then style such as
”if X is A, then Y is B.” where A and B are multivalued or fuzzy sets that contain members to some de-
gree. Also, A and B are subsets of X and Y, respectively. Moreover, genetic programming and algorithms
have great use to approximate simple functions [15].

A major difficulty with function approximation based on genetics is that along with increasing the
number of decisions in the approximated functions, the accuracy of the results decreases [15]. In gen-
eral, the drawback of non-deterministic approaches such as neural networks, fuzzy and genetics is the
relatively large size of the training points and approximation of more than one result for a given input
[14]. The performance of non-deterministic function approximation algorithms degrades as the size of
samples decreases. To resolve the difficulty, artificial sample generation techniques are used [12, 21].
However, these techniques were demonstrated only for functions with at most two input parameters [19].
On the other hand, deterministic methods tend to generate a single result for a given function in differ-
ent execution of their underlying algorithms. However, yet the accuracy of these methods highly relies
on the increasing number of the training points. Weighted kernel regression methods incorporate prior
knowledge of model to improve the accuracy [16]. In general, there are several techniques to compensate
the approximation error caused by the small number of training points such as finely tune the model
parameter [19], pre-data processing [2, 17], and incorporation of prior knowledge [6, 13, 23]. However, as
described in [2], there are not universally optimal solution to this problem yet.

Curve fitting is a well-known deterministic approach to function approximation in mathematical
fields. Curve fitting methods such as Lagrange, Spline, Newton, and trigonometric interpolations have
been largely applied to estimate both linear and nonlinear functions. These approximation methods them-
selves could be linear or nonlinear dependent on the number of training points. Lagrange attempts to
find a polynomial, passing through all the points in the training points. However, a major drawback
is the oscillation of the resultant high degree polynomials amongst the adjacent training points [3]. To
damp the oscillation, we combine the interpolation polynomial resulted from the Lagrange with the one
produced by the Spline method on the same set of training points. However, in certain situations where
the function to be approximated, is itself inherently oscillating the damping appears to affect adversely
and worsens the approximated results. To overcome the problem, we apply trigonometric interpolation
to approximate mathematical functions that describe repetitive oscillations. These performances help us
to propose a fewer among of training points with better accuracy in function approximation.

The remainder of this paper is organized as follows: in Section 2, the proposed approach is presented
and its algorithm is presented in Section 3, and Section 4 includes a discussion of the experimental results.

2. Combinatorial curve fitting method

In order to approximate a given function F(p1,p2, . . . ,pn), the domain [pi min,pi max] of each input
parameter pi, is subdivided into a sequence of intervals < [pi min,pi min+L], [pi min+L,pi min+2 ∗
L], . . . , [pi max−L,pi max] >. The width of the intervals, L, is determined in such a way that the function
oscillations are divided amongst the intervals in such a way that the approximation error is minimized.
If the behavior of the function to be approximated, is trigonometric within an interval, then the trigono-
metric interpolation method is applied, otherwise, the combinatorial method is applied.



S. Parsa, M. H. Alaeiyan, J. Math. Computer Sci., 17 (2017), 355–364 357

Many types of research and approximation methods have utilized the Lagrange interpolation [3, 5]
as one of the standard approximation tools to the problem of nonlinear function approximation because,
Lagrange interpolates a training points, collected for a given function, into a polynomial function that
passes through all the points within the training points. The degree of the resultant polynomial could be
maximally the number of training points minus one, which could be very high. Therefore, the polynomial
may suffer from unsolved problems such as Runge’s and Gibbs phenomenon [3]. On the other hand, the
Spline interpolation of degree k avoids the problem of Runge’s phenomenon, by limiting the degree
of the interpolating function to 6 k. However, the interpolating function cannot cover all the training
points collected from a function of degree greater than k. Therefore, to provide a full coverage of the
training points while avoiding the problems of Runge’s phenomenon, a combination of both Lagrange
and Spline of degree k could be promising. However, neither Lagrange nor the Spline could not prevent
the Gibbs phenomenon. To smooth down the oscillations provided by the Gibbs phenomenon, we pass a
linear approximation through the training points by connecting each two consecutive points with a line.
Therefore, to provide a convenient approximation of a nonlinear function, a finite linear combination of
Lagrange, Spline and Linear approximation interpolations of the function could be used. Considering
the experimental results for approximation of several programming functions the following relation for
combining the interpolating functions is suggested:

Combinatorial Interpolation = 0.5 ∗ Spline Degree 3 + 0.25 ∗ Linear Approximation
+ 0.25 ∗ Lagrange Interpolation.

The accuracy of the interpolating function depends on the comprehensive coverage of the fluctuations and
oscillations of the function, to be approximated. The coverage itself depends on the number of training
points, collected for the function. Therefore, in the case of fast oscillations, a relatively high number of
training points would be required. To resolve the difficulty, we apply trigonometric approximation for
the sub-intervals for which the combinatorial method cannot provide an acceptable approximation.

3. Combinatorial algorithm

We have applied a combination of three different curve-fitting methods, namely Lagrange, Spline, and
trigonometric interpolations, to approximate both nonlinear and linear functions of more than one input
parameter. To treat functions with more than one input parameter we alternatively, alter only one of the
inputs and keep the rest as constant for a number of executions. In this way, the program execution space
traversed in a stepwise manner. The difficulty is to determine the suitable number of executions, in such
a way that the estimation error is minimal, the range of each of the input parameter is covered uniformly
and the execution time is acceptable.

Figure 1: the space of training points of function O = max(x,y) and its intervals.



S. Parsa, M. H. Alaeiyan, J. Math. Computer Sci., 17 (2017), 355–364 358

As an example, consider the program input-output space shown in Figure 1. In this example, there
are two inputs 0 6 x 6 2000 and 0 6 y 6 2000 and one output, O for a function, max(x,y). In order
to avoid the Runge’s phenomenon which in here is a problem of the oscillation at the edges of the input
intervals, the interval [0, 2000] of the input variables x and y are broken down into [0, 999] and [1000, 2000].
Our experimental result shows that the width 1000 is well suited to prevent the Runge’s phenomenon.
There are four training points shown with dotted lines and labeled 1 to 4 in Figure 1. The dotted lines
labeled 1 and 2 represent input spaces within the interval [0, 999] and the input spaces for the interval
[1000, 2000] are labeled 3 and 4. Each set of input forms a straight line in the program input space because
it is produced by altering one of the input parameters while keeping the other ones fixed. For instance,
the line labeled 1 represents the inputs produced by altering the value of the parameter x from 0 to 999
and keeping the value of y equal to 200.

3.1. A new combinatorial curve-fitting algorithm
Our proposed combinatorial curve-fitting algorithm is presented in Tables 1-3. The algorithm ac-

cepts a function F and the size L, of the intervals in which the varying input parameter of the function
F(X1,X2, . . . ,Xn) is alternatively selected. Also, there is a third input parameter, max error, which defines
the maximum tolerable error of the approximations provided by the algorithm for the function F. The
value of max error, by our experiments is found to be a real number between 1015 and 1013. The output
of the combinatorial-curve-fitting algorithm is an approximation of the value returned by the function F.
Consequently, the training points that used for approximation are able to approximate function F.

The algorithm loops over the input parameters Xi, 1 6 i 6 n, of the function F(X1,X2, . . . ,Xn) and
each time selects a parameter Xi. Then, it breaks down the range of the values of the selected parameter,
Xi, into intervals of the width L and subsequently generates ((α/100) ∗ L) number of training points
as random numbers within each of the resulted intervals. It also generates ((α/100) ∗ L)2 number of
the testing points as random numbers within each of the intervals. Experimental results show that the
appropriate number of training points is achieved by setting the value of equal to 2. Also, its range
is in [1,100]. Each training and testing point is represented as a tuple (X1,X2, . . . ,Xi k, . . . ,Xn,y) where
Xi k is a random number within an interval of the Xi values and y is equal to F(X1,X2, . . . ,Xi k, . . . ,Xn).
The resultant training and testing points are passed as input parameters to the Function Approximation
function. Also the maximum acceptable approximation error, max error is sent to the function as its third
parameter. The function adjusts the number of training points in such a way that the approximation error
is minimized. The function also determines whether polynomial or trigonometric curves are preferred to
be fitted with the training points. The output of this function is the adjusted set of training points and the
appropriate curve fitting method as either trigonometric or polynomial.

The function Function approximation firstly, depends on whether the training points are collinear
applies Lagrange interpolation method, or not applies a combination of Lagrange, Spline degree one and
Spline degree three to approximate each testing point. In order to combine the approximations provided
by these three methods for each testing point over a given set of training points, Table 4 is used. For
example, in row 1 of Table 4, the combinatorial method returns zero provided that when applying the
three methods to a testing point, and its associated training points all of them result in infinity (INF) or
not a number (NAN). In this table, S, Linear, and L indicate the results of Spline degree three, Spline
degree one and Lagrange method, respectively.

The approximation error is computed as the difference between the value resulted from applying the
combinatorial method to a testing point and the actual value returned by the function, to be approximated.
If the approximation is greater than max error, then Function approximation continues the processes to
achieve better approximation by calling the functions Complimentary Fitting, Find intersections, Trigono-
metric case, Two extra points, and Two extra points2, respectively, that all of them continue the process
until errors value is greater than max error. Hence, function Two extra points2 selects two points that
they are very close to the testing points, its approximation value is able to be interpolated by spline
methods.



S. Parsa, M. H. Alaeiyan, J. Math. Computer Sci., 17 (2017), 355–364 359

Table 1: the combinatorial-curve-fitting algorithm.
1 Algorithm combinatorial-curve-fitting
2 Input
3 F: a function to be approximated;
4 L: the width of the intervals that splites an input parameter space into the

intervals with length L.
5 max error: the maximum value of the error, acceptable for the approximation.
6 Output:
7 Fitted curves: set of interpolated curves;
8 Begin
9 For each formal parameter, Xi, of the function F(X1,X2, . . . ,Xn) do
10 Begin
11 Assume Xi is a real number;
12 Partition the range of Xi into intervals, Li, j, of the width L defined by the user;
13 For each interval Li, j do
14 Begin
15 Compute no-points = %α ∗ L;
16 Generate no-points training points within the Li, j interval, randomly;
17 Generate randomly, no-points*no-points testing points within the Li, j

interval such that none of the training points is repeated in testing points;
18 Fitted Curves = Function Approximation (training points, testing points, max error);
19 end {for each interval}
20 end {for each input}
21 End {Algorithm combinatory}

22 Set of interpolated Curves Function Approximation(training points, testing points, max error)
23 Begin
24 For each pi in testing points
25 Begin
26 if (training points are collinear(training points)) then
27 estimation error = Fit a Line(training points, OUT set of interpolated Curves);
28 else estimation error =

Combinatorial method(training points, pi, OUT set of interpolated Curves);
29 if estimation error > max error then
30 estimation error = Complimentary Fitting(training points, pi,

OUT set of interpolated Curves);
31 if estimation error > max error then
32 estimation error = Find intersections(training points, pi,

OUT set of interpolated Curves);
33 if estimation error > max error then
34 estimation error = Trigonometric case(training points, pi,

OUT set of interpolated Curves);

To put it in a nutshell, this combinatorial method uses b ∗ ((α%)L) + 7w+ 2p training points, to fulfill
function approximation. Where b is the number of intervals, L is the width of intervals, w is the number
of testing points that entered to the function Complimentary Fitting and p is the number of testing points
that reached to Two extra points, as well as α, is the modules of L that shows the number of the training
points in each interval. Moreover, this method does not propose a unique result based on different
random inputs.



S. Parsa, M. H. Alaeiyan, J. Math. Computer Sci., 17 (2017), 355–364 360

Table 2: the combinatorial-curve-fitting algorithm.
35 if estimation error > max error then
36 estimation error = Two extra point(training points, pi,

OUT set of interpolated Curves);
37 if estimation error > max error then
38 estimation error = Two extra points2(training points, pi,

OUT set of interpolated Curves);
39 end {for each testing point}
40 End {Algorithm Approximation}

41 Function training points are collinear(training points: set of points): Boolean;
42 {/*This function determines whether the training points, training points,

are collinear.*/}

43 Procedure Fit a Line(training points: set of points, OUT set of interpolated Curves);
44 {/*Uses the Lagrange interpolation method to fit a line to the training points,

training points. The training points are supposed to be collinear*/}

45 Function Error Combinatorial method(training points: set of points, pi:
testing points, OUT set of interpolated Curves)

46 {/*Uses table 4 to combine the approximations provided for the by:
47 1. Lagrange (training points, pi),
48 2. Spline degree three (training points, pi) and
49 3. Spline degree one (training points, pi) */}

50 Function Error Complimentary Fitting(training points: set of points, pi:
testing points, OUT set of interpolated Curves)

51 {/*This Function is invoked whenever the approximation error of the
Combinational method is greater than a certain value, max error, provided by the
user or not. To reduce the approximation error, Complementary Fitting adds 3
random distinct points immediately before pi and 4 random distinct points
immediately after pi to the training points*/}

52 Function Error Find intersections(training points: set of points, pi: testing points,
OUT set of interpolated Curves)

53 {/* In order to reduce the approximation error at the testing point pi,
Find intersections is invoked. This function splits the set of training points,
completed by Complimentary Fitting, into two sets of points greater than or equal
and less than the testing point pi */}

54 Function Error Trigonometric case(training points: set of points, pi:
testing points, OUT set of interpolated Curves)

55 {/*This function fits a trigonometric curve P(x) = a0 + Σ
n
j=1(aj cos (jt) + bj sin (jt))

[3] to training points.*/}

56 Function Error Two extra points(training points: set of points, pi:
testing points, OUT set of interpolated Curves)



S. Parsa, M. H. Alaeiyan, J. Math. Computer Sci., 17 (2017), 355–364 361

Table 3: the combinatorial-curve-fitting algorithm.
57 {/*This function is invoked to reduce the approximation error at a testing point, pi.

This function adds two extra points very close to pi
to training points and then invokes Combinatorial method (training points, pi,
interpolated Curves) to fit a polynomial to training points. If the approximation error
is still high, the function Two extra points2 (training points, pi ) will be invoked.*/}

58 Function Error Two extra points2(training points: set of points, pi:
testing points, OUT set of interpolated Curves)

59 {/*This function fits a trigonometric curve to training points and invokes
Trigonometric case function.*/}

Table 4: Combining the results from three methods of Lagrange, Spline degree one and Spline degree three.
Row Return Lagrange Spline degree one Spline degree three
1 0 NAN or INF NAN or INF NAN or INF
2 S NAN or INF NAN or INF S
3 L L NAN or INF NAN or INF
4 Linear NAN or INF Linear NAN or INF
5 0.5*S+0.5*L L NAN or INF S
6 0.5*S+0.5*Linear NAN or INF Linear S
7 0.5*L+0.5*Linear L Linear NAN or INF
8 0.5*S+0.25*Linear+0.25*L L Linear S

4. Numerical experiments and results

This experiment is conducted to show the advantage of our proposed combinatorial method over a
fuzzing system [20], a regression approximation method, NWKR, and two known neural network meth-
ods, ANNBP and DNN model [18], for small samples problem with a few number of training points. In
Table 5, the results of our experiments with a function y = x2 in the domain [−32768, 32767], is presented.
We have applied 490 training samples to approximate the function with our proposed combinatorial
method. Figure 2 shows the real function y = x2 in the dotted curve. The combinatorial method applied
Lagrange, Spline degree 3, and Linear approximation methods to approximate the function for y = x2

in the interval defined in Figure 2. The mean square approximation error (MSE) is 1.36 ∗ 1010 and the
curve for the resultant interpolating function is exactly the same as the one depicted in Figure 2. The
function y = x2 is also used in [18] to show the advantage of NWKR as compared to ANNBP and DNN
model. The number of samples used in [18] is 5 in the interval [0, 1.2] that is equal to 218450 samples in
the domain [−32768, 32767].

Table 5: MSE of approximated result with methods DNN, ANNHP, NWKR and curve fitting.
DNN ANNHP NWKR Combinatorial-curve-fitting

MSE 0.002358 0.004528 0.001182 1.36 ∗ 1010

However, NWKR and neural network approximation methods suffer from the over-fitting phenom-
enon. Neural networks have been widely used for function approximation due to their structural simplic-
ity and fast learning capabilities [9]. The neural networks are able to handle continuous input data. The
multilayer perceptron network is the most common network used today. Due to the powerful nonlinear
function approximation and adaptive learning abilities, neural networks have drawn great attention in the
field of function approximation. The advantage of neural network approach is their generalization capa-
bility, which lets them deal with partial or noisy inputs. However, the accuracy of approximated function



S. Parsa, M. H. Alaeiyan, J. Math. Computer Sci., 17 (2017), 355–364 362

Figure 2: Approximated results for y = x2.

obtained by a neural network is dependent on the number of training points and weights of neurons. If
the number of training points is not adequate, the approximation provided by the neural networks will
suffer from the over-fitting phenomenon. The proposed combinatorial method has resolved the overfit-
ting and under-fitting phenomena by smoothing down the fluctuations caused by the differences in the
degree of the real function and its approximations.

Table 6: RMSE of approximated result with methods Proposes in [20], LS-Based and curve fitting.
Proposes method in [20] LS-Based method Combinatorial-curve-fitting

RMSE 0.0087 0.0843 0.0062

Figure 3: approximated results for ((x− 2)(2x− 1))/(1 + x2),”O” in this figure shows approximated value for testing points and
”.” shows the actual value of testing points and ”×” shows 50 random training points.

In Table 6, root minimum square error (RMSE) for approximations of a nonlinear function ((x −
2)(2x − 1))/(1 + x2), using fuzzy method presented in [20], LS-Based, and our combinational method.
As shown in Figure 2, the fuzzy method outperforms the LS-Based function approximation method.
However, a major difficulty with the fuzzy based approximation methods is their dependency on the
experts knowledge [1]. Fuzzy systems generate IF-THEN rules to determine the approximation method
dependent on a function behavior in different intervals of its domain [2, 8]. The basic idea behind the



S. Parsa, M. H. Alaeiyan, J. Math. Computer Sci., 17 (2017), 355–364 363

fuzzy systems method is the subdivision of the input space into fuzzy regions and approximate the
system in each subdivision by a simple model. The main concern underlying fuzzy system is to minimize
the number of rules. In Table 6 the results of our experiments with a function ((x− 2)(2x− 1))/(1 + x2)
in domain (−8, 12) is presented. We have applied 50 training samples to approximate the function, using
our proposed combinatorial method. Figure 3 shows the real function ((x− 2)(2x− 1))/(1 + x2) in dotted
curve. The combinatorial method applies Lagrange, Spline degree 3, and Linear approximation methods
to approximate the function ((x− 2)(2x− 1))/(1 + x2) in the interval defined in Figure 2. The root mean
square approximation error (RMSE) is 0.0062 and the curve depicting, the resultant interpolating function
is exactly the same as the one shown in Figure 3. In Figure 3, white bullet points represent all the
approximated points, provided by our combinatorial method. The function ((x− 2)(2x− 1))/(1 + x2) is
also used in [20] to show the advantage of the fuzzy function approximation method in comparison with
the LS-Based method. The number of samples used in [20] are 50 points within the interval (−8, 12) and
the RMSE is 0.0087.

5. Conclusions

In order to fit a curve into a nonlinear function with a small number of training points, dependent
on the behavior of the function in different intervals of its domain, different curve fitting methods could
be applied. Our experiments suggest the combinatorial use of trigonometric, Lagrange, Spline degree
3, and linear interpolation methods to model a variety of behaviors shown by a nonlinear function in
different intervals of its domain that this combinatorial method collects a suitable number of training
points that these points are able to replace with the function. For instance, sinusoidal behaviors could be
modeled appropriately, using trigonometric curve fitting methods and polynomial, power and logarithmic
behaviors could be modeled appropriately, using Lagrange and Spline interpolation methods. In addition,
linear behaviors could be better modeled by applying the well-known linear approximation method [11].
Moreover, multidisciplinary behaviors could be better modeled by finding the intersections of curves,
depicted for the multidisciplinary function, and apply different curve fitting methods to fit suitable curves
within consecutive intersecting points.

The width of the intervals and the number of training points should be determined carefully because
the insufficient width of the intervals and the number of the training points may result in unsatisfactory
predictions. For the time being, we are working on automatic detection of the width of the intervals and
the suitable number of training points within different intervals.

Acknowledgment

We would like to give special thanks to Iran National Science Foundation (ISNF) for its financial
supports of this research work.

References

[1] L. E. Aik, Y. Jayakumar, A study of neuro-fuzzy system in approximation-based problems, Mat., 24 (2008), 113–130. 4
[2] R. Andonie, L. Fabry-Asztalos, C. B. Abdul-Wahid, S. Abdul-Wahid, G. I. Barker, L. C. Magill, Fuzzy ARTMAP

prediction of biological activities for potential HIV-1 protease inhibitors using a small molecular data set, IEEE/ACM Trans.
Comput. Biol. Bioinf., 8 (2011), 80–93. 1, 4

[3] K. E. Atkinson, An introduction to numerical analysis, Second edition, John Wiley & Sons, Inc., New York, (1989). 1,
2, 2

[4] P. Benkö, G. Kós, T. Várady, L. Andor, R. Martin, Constrained fitting in reverse engineering, Comput. Aided Geom.
Design, 19 (2002), 173–205. 1

[5] J. P. Berrut, L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev., 46 (2004), 501–517. 2
[6] G. Bloch, F. Lauer, G. Colin, Y. Chamaillard, Support vector regression from simulation data and few experimental

samples, Inform. Sci., 178 (2008), 3813–3827. 1
[7] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems, 2 (1989), 303–

314. 1



S. Parsa, M. H. Alaeiyan, J. Math. Computer Sci., 17 (2017), 355–364 364

[8] J. A. Dickerson, B. Kosko, Fuzzy function approximation with ellipsoidal rules, IEEE Trans. Systems Man Cybernet.,
26 (1996), 542–560. 1, 4

[9] M. Gori, F. Scarselli, Are multilayer perceptrons adequate for pattern recognition and verification?, IEEE Trans. Pattern
Anal. Mach. Intell., 20 (1998), 1121–1132. 4

[10] J. W. Hines, A logarithmic neural network architecture for unbounded non-linear function approximation, IEEE Interna-
tional Conference on Neural Networks, Washington, DC, USA, 2 (1996), 1245–1250. 1

[11] https : //en.wikipedia.org/wiki/Linearinterpolation 5
[12] C.-F. Huang, C. Moraga, A diffusion-neural-network for learning from small samples, Internat. J. Approx. Reason., 35

(2004), 137–161. 1
[13] F. Lauer, G. Bloch, Incorporating prior knowledge in support vector regression, Mach. Learn., 70 (2008), 89–118. 1
[14] Y. Mizukami, Y. Wakasa, K. Tanaka, A proposal of neural network architecture for non-linear function approximation,

Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 4 (2004), 605–608. 1
[15] K. Rodrı́guez-Vázquez, C. Oliver-Morales, Multi-branches genetic programming as a tool for function approximation,

Genetic and Evolutionary Computation Conference, Seattle, WA, USA, (2004), 719–721. 1
[16] M. I. Shapiai, Z. Ibrahim, M. Khalid, Enhanced weighted Kernel regression with prior knowledge using robot manipulator

problem as a case study, Procedia Eng., 41 (2012), 82–89. 1
[17] M. I. Shapiai, Z. Ibrahim, M. Khalid, L. W. Jau, S.-C. Ong, V. Pavlovich, Solving small sample recipe generation

problem with hybrid WKRCF-PSO, Int. J. New Comput. Archit. Appl., 1 (2011), 810–820. 1
[18] M. I. Shapiai, Z. Ibrahim, M. Khalid, L. W. Jau, V. Pavlovich, A non-linear function approximation from small samples

based on Nadaraya-Watson kernel regression, 2nd International Conference on Computational Intelligence, Commu-
nication Systems and Networks, Liverpool, UK, (2010), 28–32. 4

[19] M. I. Shapiai, Z. Ibrahim, M. Khalid, L. W. Jau, V. Pavlovic, J. Watada, Function and surface approximation based on
enhanced kernel regression for small sample sets, Int. J. Innov. Comput. I., 7 (2011), 5947–5960. 1

[20] T.-Y. Sun, S.-J. Tsai, C.-H. Tsai, C.-L. Huo, C.-C. Liu, Nonlinear function approximation based on Least Wilcoxon Takagi-
Sugeno fuzzy model, Eighth International Conference on Intelligent Systems Design and Applications, Kaohsiung,
Taiwan, 1 (2008), 312–317. 1, 4, 6, 4

[21] T.-I. Tsai, D.-C. Li, Approximate modeling for high order non-linear functions using small sample sets, Expert Syst. Appl.,
34 (2008), 564–569. 1

[22] G. S. Watson, Smooth regression analysis, Sankhyā Ser. A, 26 1964, 359–372. 1
[23] J. Yuan, C.-L. Liu, X.-M. Liu, K.-S. Wang, T. Yu, Incorporating prior model into Gaussian processes regression for WEDM

process modeling, Expert Syst. Appl., 36 (2009), 8084–8092. 1


	Introduction
	Combinatorial curve fitting method
	Combinatorial algorithm
	A new combinatorial curve-fitting algorithm

	Numerical experiments and results
	Conclusions

