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Abstract 
The purpose of this paper is to prove common fixed point theorems for a pair of mappings satisfying a 
quasi-contraction condition in a complex-valued metric space (X, d). For this, we have defined the ‘max’ 
function for the partial order ≤ in complex-valued metric d.  
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1.   Introduction. 

An ordinary metric d is a real-valued function from a set X×X into R, where X is a nonempty set. That is, 
d:X×X→R. A complex number z ε C is an ordered pair of real numbers, whose first co-ordinate is called 
Re(z) and second coordinate is called Im(z). Thus a complex-valued metric d would be a function from a 
set X×X into C, where X is a nonempty set and C is the set of complex number. That is, d:X×X→R. 
Define a partial order ≤ on C as follows; let z1, z2 ε C. 

 

z1 ≤ z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2). 

 

It follows that z1 ≤ z2 if one of the following conditions is satisfied: 

(i) Re(z1) = Re(z2), Im(z1) < Im(z2), 

(ii) Re(z1) < Re(z2), Im(z1 = Im(z2), 

(iii) Re(z1) < Re(z2), Im(z1) < Im(z2), 

(iv) Re(z1) = Re(z2), Im(z1) = Im(z2). 

 

In (i), (ii) and (iii), we have |z1|<|z2|. In (iv), we have |z1|=|z2|. So that, |z1|≤|z2|. In particular, z1 not≤ z2 if 
z1 ≠ z2 and one of (i), (ii), (iii) is satisfy. In this case |z1|<|z2|. Also z1<z2 if only (iii) satisfy. Further, 

0 ≤ z1  not≤  z2  implies |z1|<|z2|, 

z1 ≤ z2,    z2 < z3   implies  z1 < z3. 

 

From this definition of complex-valued metric d, Azam et. al. [1] defined the complex-valued 
metric space (X, d) in the following way: 

 

Definition 1.1. Let X be a nonempty set. Suppose that the mapping d:X×X→C satisfies the following 
conditions: 

(C1) 0 ≤ d(x, y) for all x, y ε X and d(x, y) = 0 if and only if x = y; 

(C2) d(x, y) = d(y, x) for all x, y ε X; 

(C3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z  ε X. 

Then d is called a complex-valued metric in X, and (X, d) is called a complex-valued metric space.  
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A point x ε X is called an interior point of A subseteq X if there exists r ε C, where 0 < r, such that 

 

B(x, r) = {y ε X: d(x, y) < r} subseteq A. 

 

A point x ε X is called a limit point of A subseteq X, if for every 0< r ε C,  

 

B(x, r)∩(AX) ≠ φ. 

 

The set A is called open whenever each element of A is an interior point of A. A subset B is called closed 
whenever each limit point of B belongs to B. 

 

The family F:= {B(x, r): x ε X, 0 < r} is a sub-basis for a Hausdorff topology τ on X. Let {xn} be a 
sequence in X and x ε X. If for every c ε C with 0 < c, there exists n0 ε N such that for all n > n0, d(xn, x) < 
c, then {xn} is called convergent. Also, sequence {xn} converges to x (written as, xn → x or 

limn→∞ xn = x); and x is the limit point of {xn}. The sequence {xn} converges to x if and only if  

limn→∞|d(xn, x)| = 0. If for every c ε C with 0 < c, there exists n0 ε N such that for all n > n0,  

d(xn, xn+m) < c, then {xn} is called Cauchy sequence in (X, d). If every Cauchy sequence converges in X, 
then X is called a complete complex-valued metric space. The sequence {xn} is called Cauchy if and only 
if lim n→∞|d(xn, xn+m)| = 0. 

 

 

Definition 1.2. We define the ‘max’ function for the partial order relation ≤ by:  

(1) max{z1, z2} = z2   if and only if z1 ≤ z2, 

(2) z1 ≤ max{z2, z3}  implies z1 ≤ z2, or z1 ≤ z3. 

 

Using Definition 1.2 we have the following Lemma: 
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Lemma 1.3. Let z1, z2, z3,  .... ε C and the partial order relation ≤ is defined on C. Then 

(i) If z1 ≤ max{z2, z3} then z1 ≤ z2 if z3 ≤ z2; 

(ii) If z1 ≤ max{z2, z3, z4} then z1 ≤ z2 if max{z3, z4} ≤ z2; 

(iii) If z1 ≤ max{z2, z3, z4, z5} then z1 ≤ z2 if max{z3, z4, z5} ≤ z2, and so on. 

 

Since (X, d) is a complex-valued metric space, the ‘usual metric’ in R is not definable; as shown in 
Example 7 [1]. Keeping this in view, we need to generalize the Banach contraction principal [2] in 
complex-valued metric space, as follows: 

 

Theorem 1.4. Let (X, d) be a complete, complex-valued metric space and T be a mapping of X into itself, 
satisfying: 

d(Tx, Ty) ≤ k d(x, y),  for all x, y ε X;                  (1.1) 

 

where k is a constant in (0,1). Then T has a unique common fixed point in X. 

 

Proof. For an arbitrary x0 in X, we have Tnx0 = xn. The sequence {xn} is Cauchy. For, we have since 

 

d(x1, x2) = d(Tx0, Tx1) ≤ k d(x0, x1), 

d(x2, x3) = d(Tx1, Tx2) ≤ k d(x1, x2) ≤ k2 d(x0, x1), 

...... ...... ........ ............ ............ ...... ...... ........ ........ 

d(xn, xn+1) = d(Txn−1, Txn) ≤ kd(xn−1, xn) ≤ kn d(x0, x1)    (A) 

 

Hence for any m > n,      m, n ε N 

 

   d(xn, xn+m) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ........ + d(xn+m−1, xn+m) 

 

        ≤ kn d(x0, x1) + kn+1 d(x0, x1) + ...... + kn+m-1 d(x0, x1) 
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                                  ≤kn.d(x0, x1)/(1−k) ≤ d(x0, x1) ,      as 0< k<1. 

 

Therefore |d(xn, xn+m)| ≤ {kn/(1−k)}.|d(x0, x1)|→ 0; as m, n →∞. Thus {xn} is a Cauchy sequence. The 
completeness of X implies that sequence {xn} converges to some x ε X. We claim that x = Tx, otherwise 
|d(x, Tx)| = |z| > 0, and we would then have 

 

|d(x, Tx)| = |z| ≤ |d(x, xn) + d(xn, Tx)| = |d(x, xn) + d(Txn−1, Tx)| 

 

   ≤ |d(x, xn)| + |d(Txn−1, Tx)| = |d(x, xn)|+k|d(xn−1, x)| → 0 as n→∞. 

 

Thus x = Tx. The uniqueness of x follows easily. For, if x’ be another fixed point then 

 

d(x, x’) ≤ d(x, Tx) + d(Tx, x’) = d(Tx, Tx’) ≤ k.d(x, x’),   by (1.1). 

 

Taking modulus in above, we have 

 

|d(x, x’)| ≤ k|d(x, x’)| < |d(x, x’)|, 

 

a contradiction. Thus x is unique fixed point in X. This completes the proof.      � 

 

2. Main Results 

 

Theorem 2.1. Let (X, d) be a complete complex-valued metric space and mappings S, T: X→X satisfying: 

 

d(Sx, Ty) ≤ h max{d(x, y), d(x, Sx), d(y, Ty), d(x, Ty), d(y, Sx)}    (2.1) 
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for all x, y ε X; where 0 < h < ½. Then S and T have a unique common fixed point in X. 

 

Proof. Choose an arbitrary point x0 in X. Sequence {xn} can be formed in X such that Sx0 = x1, Tx1 = x2, 
Sx2 = x3, Tx3 = x4, .... 

     Sx2n = x2n+1, Tx2n+1 = x2n+2.                (2.2) 

 

We show that the sequence {xn} is Cauchy. For, putting x = x2k and y = x2k+1 in (2.1), we have 

 

      d(x2k+1, x2k+2) = d(Sx2k, Tx2k+1)  

   

  ≤ h max{d(x2k, x2k+1), d(x2k, Sx2k), d(x2k+1, Tx2k+1), d(x2k, Tx2k+1), d(x2k+1, Sx2k)} 

 

  = h max{d(x2k, x2k+1), d(x2k, x2k+1), d(x2k+1, x2k+2), d(x2k, x2k+2), 0}, by (2.2)             (B) 

 

  ≤ h max{d(x2k, x2k+1), d(x2k, x2k+1), d(x2k+1, x2k+2), d(x2k, x2k+1)+d(x2k+1, x2k+2), 0} 

whence, 

      d(x2k+1, x2k+2) ≤ h [d(x2k, x2k+1)+d(x2k+1, x2k+2)], as other co-ordinates are less 

 

i.e.,       d(x2k+1, x2k+2) ≤ [h/(1−h)].d(x2k, x2k+1). 

 

Similarly, by putting x = x2k+2 and y = x2k+1 in (2.1), we have 

 

d(x2k+2, x2k+3) ≤ [h/(1−h)].d(x2k+1, x2k+2). 

 

Hence for each n = 1, 2, 3, .... we have 

 

         d(xn, xn+1) ≤ H.d(xn−1, xn),                          (C) 
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where 0 < H = h/(1−h) < 1. From this we have, inductively 

 

             d(xn, xn+1) ≤ H.d(xn−1, xn) ≤ H2.d(xn−2, xn−1) ≤ ...... ≤ Hn.d(x0, x1)                (2.3) 

 

Thus for any m > n, m, n ε N, we have 

 

                d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + ...... + d(xm−1, xm), 

 

     ≤ [Hn + Hn+1 + Hn+2 + ....... + Hm−1].d(x0, x1),    by (2.3) 

 

     ≤ [Hn/(1-H)].d(x0, x1),     

 

So that  |d(xn, xm)| ≤ |{Hn/(1-H)}.d(x0, x1)|→0 as n→∞.  

 

Thus {xn} is a Cauchy sequence in X. Since X is complete, therefore {xn} converges to some point u (say) 
in X. We claim that u is a fixed point of S. Otherwise u ≠ Su and |d(u, Su)| = |z| > 0. From triangle 
inequality and using (2.1), we have successively 

 

d(u, Su) ≤ d(u, x2k+2) + d(x2k+2, Su) 

 

  ≤ d(u, x2k+2) + d(Tx2k+1, Su) 

 

               ≤ d(u, x2k+2) + h max{d(u, x2k+1), d(u, Su), d(x2k+1, Tx2k+1), d(u, Tx2k+1), d(x2k+1, Su)}. 

 

Taking magnitude in above, and using |a+b| ≤ |a|+|b|, for all a, b ε C, we have 
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|d(u, Su)| ≤ d(u, x2k+2) + h max{|d(u, x2k+1)|, |d(u, Su)|, |d(x2k+1, Tx2k+1)|, 

|d(u, Tx2k+1)|, |d(x2k+1, Su)}|. 

Letting n →∞ we have 

 

|z| = |d(u, Su)| ≤ 0 + h max{0, |z|, 0, 0, |z|} = h.|z| < |z|, 

 

a contradiction. Thus |z| = |d(u, Su)| = 0, yielding u = Su. 

 

Further, since X is complete, there exist some v in X such that v = Tu. We claim that u = v. If not, 
then from (2.1), we have 

 

d(u, v) = d(Su, Tu) ≤ h max{d(u, u), d(u, Su), d(u, Tu), d(u, Tu), d(u, Su)} 

 

        ≤ h max{0, 0, d(u, v), d(u, v), 0} = h d(u, v). 

 

Whence, on taking magnitude, |d(u, v)| ≤ |h.d(u, v)| < |d(u, v)|, a contradiction. 

 

Thus u = v = Tu = Su, and u is the common fixed point of S and T.  For uniqueness of common fixed 
point, let u0 be another common fixed point of S and T. Then from (2.1), we have 

 

d(u, u0) = d(Su, Tu0) ≤ h max{d(u, u0), d(u, Su), d(u0, Tu0), d(u, Tu0), d(u0, Su)}, 

 

whence, 

 

|d(u, u0)| ≤ h max{|d(u, u0)|, 0, 0, |d(u, u0)|, |d(u0, u)|} = h |d(u, u0)| < |d(u, u0)|, 

 

a contradiction. Thus S and T have unique common fixed point. This completes the proof.  � 
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If the function ‘max’ has only three variables, as shown in (2.4) below, then we have the 
following theorem: 

 

Corollary 2.2. Let (X, d) be a complete complex-valued metric space and mappings S, T:X→X satisfying: 

d(Sx, Ty) ≤ h max{d(x, y), d(x, Sx), d(y, Ty)}    (2.4) 

 

for all x, y ε X; where 0 < h < 1. Then S and T have a unique common fixed point in X. 

 

Proof. In this case, eq.(B) reduces to:  

 

d(x2k+1, x2k+2) ≤ h max{d(x2k, x2k+1), d(x2k, x2k+1), d(x2k+1, x2k+2)} = d(x2k, x2k+1) 

 

so, eq.(C) reduces to: 

 

d(xn, xn+1) ≤ h d(xn−1, xn), where 0 < h < 1. 

 

This is eq.(A). Further proof runs smoothly as Theorem 1.4 and Theorem 2.1.       � 

 

Remark. By putting S = T in above corollary, we obtain Theorem 1.4. Thus, Corollary 2.2 is a 
generalization of Theorem 1.4. 
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