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Abstract

The purpose of this paper is to prove common fixed point theorems for a pair of mappings satisfying a
quasi-contraction condition in a complex-valued metric space (X, d). For this, we have defined the ‘max

function for the partial order < in complex-valued metric d.
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1. Introduction.

An ordinary metric d is a real-valued function from a set XxX into R, where X is a nonempty set. That is,
d:XxX—R. A complex number z ¢ C is an ordered pair of real numbers, whose first co-ordinate is called
Re(z) and second coordinate is called /m(z). Thus a complex-valued metric d would be a function from a
set XxX into C, where X is a nonempty set and C is the set of complex number. That is, d:XxX—R.
Define a partial order < on C as follows; let z;, z, ¢ C.

z;<z;if and only if Re(z;) < Re(z,), Im(z;) <Im(z,).

It follows that z; <z, if one of the following conditions is satisfied:
(1) Re(z;) = Re(zy), Im(z;) < Im(z;),
(i1) Re(z;) < Re(zy), Im(z; = Im(z,),
(ii1) Re(z;) < Re(z;), Im(z;) < Im(z,),

(iv) Re(z;) = Re(zy), Im(z;) = Im(z;).

In (i), (ii) and (iii), we have |z;|<|z|. In (iv), we have |z;|=|z;|. So that, |z;|<|z;|. In particular, z; not< z; if
z; # z; and one of (i), (ii), (iii) is satisfy. In this case |z;|<|z;|. Also z,<z; if only (iii) satisfy. Further,

0 <z; not< z; implies |z;|<|z,|,

z; <z zp<zz implies z; < z;.

From this definition of complex-valued metric d, Azam et. al. [1] defined the complex-valued
metric space (X, d) in the following way:

Definition 1.1. Let X be a nonempty set. Suppose that the mapping d:X*X—C satisfies the following
conditions:

(C1) 0<d(x, y) forallx,y e Xand d(x, y) = 0 if and only if x =y,
(C2)d(x,y) =d(y, x) forallx, y ¢ X;
(C3) d(x, y) <d(x, z) +d(z, y) forallx, y, z ¢ X.

Then d is called a complex-valued metric in X, and (X, d) is called a complex-valued metric space.
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A point x ¢ X is called an interior point of A subseteq X if there exists r ¢ C, where 0 < r, such that

B(x, r) ={yeX: d(x, y) <r}subseteq 4.

A point x ¢ X is called a limit point of A subseteq X, if for every 0< r ¢ C,

Bx, )N(AX) # ¢.

The set 4 is called open whenever each element of 4 is an interior point of 4. A subset B is called closed
whenever each limit point of B belongs to B.

The family F:= {B(x, r): x ¢ X, 0 < r} is a sub-basis for a Hausdorff topology 7 on X. Let {x,} be a
sequence in X and x ¢ X. If for every ¢ ¢ C with 0 < ¢, there exists n, ¢ N such that for all n > n, d(x,, x) <
¢, then {x,} is called convergent. Also, sequence {x,} converges to x (written as, x, — x or

lim, . x, = x); and x is the limit point of {x,}. The sequence {x,} converges to x if and only if
lim,_.|d(x,, x)| = 0. If for every ¢ ¢ C with 0 < ¢, there exists ny & N such that for all n > n,,

d(x,, Xpem) < c, then {x,} is called Cauchy sequence in (X, d). If every Cauchy sequence converges in X,
then X is called a complete complex-valued metric space. The sequence {x,} is called Cauchy if and only
if lim 0| d (X, Xpsm)| = 0.

Definition 1.2. We define the ‘max’ function for the partial order relation < by:
(1) max{z;, zo} =z, ifand only if z; < z,,

(2) z; <max{z,, z3} implies z; <z, orz; < z;.

Using Definition 1.2 we have the following Lemma:
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Lemma 1.3. Let z;, 7, 73, .... € C and the partial order relation < is defined on C. Then
(1) If z; <max{z,, z3} then z; <z, if z; < z;
(11) IfZ] Smax{zz, z3, 24} then z1 <2z, ifmax{Z3, 24} <z

(111) IfZ] Smax{zz, Z3, Z4, Z5} then z1 <2z, ifmax{Z3, Zy4, Z5} <z, and so on.

Since (X, d) is a complex-valued metric space, the ‘usual metric’ in R is not definable; as shown in
Example 7 [1]. Keeping this in view, we need to generalize the Banach contraction principal [2] in
complex-valued metric space, as follows:

Theorem 1.4. Let (X, d) be a complete, complex-valued metric space and T be a mapping of X into itself,
satisfying:

d(Tx, Ty) <k d(x, y), forallx, y e X; (1.1)

where k is a constant in (0,1). Then T has a unique common fixed point in X.

Proof. For an arbitrary x, in X, we have T"x, = x,.. The sequence {x,} is Cauchy. For, we have since

d(X1, Xg) = d(Txg, TX]) Skd(xo, X]),

d(xs, x3) = d(Tx;, Tx2) <k d(x}, x2) <I d(xg x1),
d(xy, Xn+1) = d(Tx,-1, Tx,) < kd(x,-1, X,) <K' d(xp, x1) A)
Hence for any m > n, m neN

d(xm xn+m) < d(xn; xn+1) + d(xn+]y xn+2) to + d(xn+m—]; xn+WJ

<K'd(xp, x) + K™ d(xg, x) + oo F KT d (g, x))
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<k".d(xo x))/(1-k) <d(xp x;), as0<k<I.

Therefore |d(x,, Xp+m)| < {K'/(1-K)}.|d(xo, x;)|— 0; as m, n —oo. Thus {x,} is a Cauchy sequence. The
completeness of X implies that sequence {x,} converges to some x ¢ X. We claim that x = T, otherwise
|d(x, Tx)| = |z| > 0, and we would then have

ld(x, Tx)| = |z| < |d(x, x,) + d(x,, Tx)| = |d(x, x,) + d(Txy-1, Tx)|

<|d(x, x,)| + |d(Tx,-1, Tx)| = |d(x, x,)| tk|d(x,-1, x)| — 0 as n—o.

Thus x = Tx. The uniqueness of x follows easily. For, if x” be another fixed point then

d(x, x’) <d(x, Tx) + d(Tx, x’) = d(Tx, Tx’) <kd(x, x), by (L.1).

Taking modulus in above, we have

|d(x, x)| <kld(x, x’)| < |d(x, x')|,

a contradiction. Thus x is unique fixed point in X. This completes the proof. O

2. Main Results

Theorem 2.1. Let (X, d) be a complete complex-valued metric space and mappings S, T: X—X satisfying:

d(Sx, Ty) <h max{d(x, y), d(x, Sx), d(y, Ty), d(x, Ty), d(y, Sx)} 2.1)
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forallx,y e X; where 0 < h <. Then S and T have a unique common fixed point in X.

Proof. Choose an arbitrary point x, in X. Sequence {x,} can be formed in X such that Sx, = x;, Tx; = x;,
Sx> =x3 Txz = x4 ....

SXon = Xon+1, Txont1 = Xopso.

(2.2)
We show that the sequence {x,} is Cauchy. For, putting x = x5 and y = x.;in (2.1), we have
d(Xopr1, Xopv2) = A(SX2, Tx2k11)
< h max{d(Xa, Xa+1), X2k, SX21), A(X2141, Tx2k1), A2k, TX2k11), A(X2ps1, SX2)}
= h max{d(Xsy, Xu+1), A(X2p, X2k+1), A(X2p+1, X2k+2), X2k X242, 0}, by (2.2) (B)

<h max{ d(XZk, x2k+1), d(XZk, x2k+1), d(x2k+1, x2k+2), d(XZk, x2k+1) +d(3€2k+1, X2k+2), 0}
whence,

d(Xok+1, Xope2) < h [d(xo, Xou+1) td(xX2+1, X21+2)], as other co-ordinates are less

i.e., d(x2k+], x2k+2) < [h/(l_h)]d(XQk, kaH).

Similarly, by putting x = x5+, and y = xz+; in (2.1), we have

d(Xok+2, Xok+3) < [W(1=h)].A(X 241, X2142).

Hence foreachn = 1, 2, 3, .... we have

d(x,, Xu+1) <H.d(x,-1, X3), ©)
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where 0 < H = h/(1—h) < 1. From this we have, inductively

d(x, Xpe1) <H.d(x, 1, x,) <H.A(Xy 2 Xp-1) <...... <H".d(xg, x;) (2.3)

Thus for any m > n, m, n ¢ N, we have

d(xn: xm) S d(xm xn+]) + d(anr]r xn+2) + d(xn+2: xn+3) +.o + d(xm*b xm):

<[H'+H"+H + ... + H" '].d(x,, x;), by (2.3)

<[H'/(1-H)].d(xy, x;),

So that |d(x,, x,)| <|{H'/(1-H)}.d(xy, x;)]—0 as n—oo,

Thus {x,} is a Cauchy sequence in X. Since X is complete, therefore {x,} converges to some point u (say)
in X. We claim that u is a fixed point of S. Otherwise u # Su and |d(u, Su)| = |z| > 0. From triangle
inequality and using (2.1), we have successively

d(u, Su) <d(u, xs3+3) + d(x2+2 Su)

<d(u, Xz;+2) + d(Tx 21, Su)

Sd(u, x2k+2) +h max{d(u, )Cgk+1), d(u, Su), d(ka+], T)Cngr]), d(u, T)Czk+1), d(ka+1, Su)}

Taking magnitude in above, and using |a+b| < |a|+|b|, for all a, b € C, we have
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|d(u, Sw)| <d(u, xs1+2) + h max{|d(u, xz+1)|, |d(u, Sw|, |d(xu+1, Txu+1)],

|d(u, Txoe)|, |1, SW).

Letting n —o we have

|z| = |d(u, Sw)| <0+ h max{0, |z|, 0, 0, |z|} = h.|z|] < |z|,

a contradiction. Thus |z| = |d(u, Su)| = 0, yielding u = Su.

Further, since X is complete, there exist some v in X such that v = Tu. We claim that u = v. If not,
then from (2.1), we have

d(u, v) = d(Su, Tu) <h max{d(u, u), d(u, Su), d(u, Tu), d(u, Tu), d(u, Su)}

<h max{0, 0, d(u, v), d(u, v), 0} = h d(u, v).

Whence, on taking magnitude, |d(u, v)| < |h.d(u, v)| < |d(u, v)|, a contradiction.

Thus u = v = Tu = Su, and u is the common fixed point of S and T. For uniqueness of common fixed
point, let u, be another common fixed point of S and 7. Then from (2.1), we have

d(u, ug) = d(Su, Tuy) <h max{d(u, uy), d(u, Su), d(uy, Tuy), d(u, Tuy), d(uy, Su)},

whence,

|d(u, ug)| <h max{|d(u, u)|. 0, 0, |d(u, ug)|, |d(uo, w)|} = h |d(u, ug)| < |d(u, uy)|,

a contradiction. Thus S and T have unique common fixed point. This completes the proof. [

25



R. K. VERMA, H. K. PATHAK / J. Math. Computer Sci. 6 (2013), 18-26

If the function ‘max’ has only three variables, as shown in (2.4) below, then we have the
following theorem:

Corollary 2.2. Let (X, d) be a complete complex-valued metric space and mappings S, 7-:X—X satisfying:

d(Sx, Ty) <h max{d(x, y), d(x, Sx), d(y, Ty)} 2.4)

for all x, y ¢ X; where 0 < 1 < 1. Then S and T have a unique common fixed point in X.

Proof. In this case, eq.(B) reduces to:

d(Xops1, Xok2) < h max{d(xzp, Xok+1), d(Xok X2k+1), A(Xokr1, Xoxr2)} = d(Xot, Xok+1)

so0, €q.(C) reduces to:

d(x,, X,+1) <hd(x,-;, x,), where 0 < h < |.

This is eq.(A). Further proof runs smoothly as Theorem 1.4 and Theorem 2.1. O

Remark. By putting S = T in above corollary, we obtain Theorem 1.4. Thus, Corollary 2.2 is a
generalization of Theorem 1.4.
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