JMCS Science

Contents list available at JMCS

Journal of Mathematics and Computer Science

Journal Homepage: www.tjmcs.com

Another proof for the existence of dominated splitting for robustly ergodic diffeomorphisms

Alireza Zamani bahabadi

Department of Mathematics Ferdowsi University of Mashhad, Mashhad, Iran

zamany@um.ac.ir

Article history:

Received: December 2012 Accepted: January 2013 Available online: January 2013

Abstract

In this paper we show that any robustly ergodic system admits a dominated splitting without using pasting lemma for conservative diffeomorphisms.

Keywords: Ergodic, dominated splitting, conservative diffeomorphism.

1. Introduction

We shall address here the question of how the important concepts of robust ergodicity and dominated splitting are related. Ali Tahzibi in [4] studied the relation between robust transitivity and robust ergodicity for conservative diffeomorphism. This is well known that robustly transitive systems admit a dominated splitting.

Ali Tahzibi mentioned an interesting question for robustly ergodic diffeomorphism as in the following:

1.1. Question Is it true that any C^1 robustly ergodic conservate diffeomorphism admits dominated splitting?

Using pasting lemma for conservative diffeomorphism, A.Arbieto and C.Matheus in [1] showed that robustly transitive conservative diffeomorphisms admit a non-trivial dominated splitting defined on the whole M. So robustly ergodic diffeomorphisms admit a dominated splitting.

In this paper we give another proof of the existence of dominated splitting for robustly ergodic diffeomorphisms without using pasting lemma for conservative diffeomorphisms.

A Df -invariant splitting $E \oplus F$ of TM is called dominated splitting if the fibers of the bundles have constant dimension on whole manifold and there is $\lambda < 1$ such that:

$$PDf \mid_{E_x} P.PDf^{-1} \mid F(f(x)) P \leq \lambda \forall x \in M.$$

Let $Diff_m^1(M)$ denote the set of diffeomorphisms which preserve the Lebesgue measure m induced by the Riemannian metric. We endow this space with the C^1 -topology.

Let $Diff_m^{1+\alpha}(M)$ denote the subset of $Diff_m^1(M)$ for which the derivative is α -Holder continuous and put $Diff_m^{1+}(M) = \bigcup_{\alpha>0} Diff_m^{1+\alpha}$.

1.2. Theorem (Main theorem)

Let $f \in Diff_m^1(M)$ be robustly ergodic. Then f admits a dominated splitting.

For the prove of the above theorem we need some notions and lemmas.

For a periodic point p of $f \in Diff_m^1(M)$, we assume that the eigenvalues of $Df^{\pi(p)}$ are $\{\lambda_1, \lambda_2, \dots, \lambda_d\}$ for witch

$$|\lambda_1| \le |\lambda_2| \le \cdots \le |\lambda_d|$$
.

We say that p is an almost source if $|\lambda_1|=1$; p is an almost sink if $|\lambda_d|=1$.

1.3. Lemma

Let $f \in Diff_m^1(M)$ be robustly ergodic. Then f has neither almost sinks nor almost sources.

For the proof of the above lemma we need to conservative version of Franks lemma [2].

1.4. Proposition (Conservative version of Franks Lemma)

Let f be a diffeomorphism preserving a smooth measure m, p be a periodic point. Assume that B is a conservative ε -perturbation of Df along the orbit of p. Then for every neighborhood V of the orbit of p there is a C^1 -perturbation $h \in C^{1+\alpha}$ preserving m and coinciding with f on the orbit of p and out of V, such that Dh is equal to B on the orbit of p.

Proof (lemma 1.3)

Since f is robustly ergodic, then there is a neighbourhood U_f of f in $Diff_m^{1+}$ such that every $g \in U_f$ is ergodic. Assume p is an almost sink for f. By conservative version of Franks lemma there is a $g \in U_f \cap Diff_m^{1+\alpha}(M)$ such that p is a sink for g, which is a contradiction because conservative systems have no sink. This completes the proof of lemma.

1.5. Lemma

For any $\varepsilon > 0$ and for any neighbourhood U of f in $Diff_m^1(M)$, there is a periodic point p of $g \in U \cap Diff_m^{1+}(M)$ such that $d_H(Orb_{\varepsilon}(p), M) < \varepsilon$.

For the proof of the above lemma we need the ergodic closing lemma as following;

Theorem B(Ergodic closing lemma).

Consider a diffeomorphism f preserving a smooth volume m. Then there is an f-invariant set $\Sigma(f)$, such that:

- (1) $\mu(\Sigma(f)) = 1$ for any invariant probability measure μ .
- (2) For every $x \in \Sigma(f)$ and $\varepsilon > 0$ there is a C^1 -perturbation $g \in C^{1+\alpha}$ preserving m such that x is a periodic point of g and $d(f^i(x), g^i(x)) < \varepsilon$ for all $i \in [0, \pi_g(x)]$, $\pi_g(x)$ is the period of x with respect to g.

Any $x \in \Sigma(f)$ is called a well closable point.

Proof. (lemma 1.5)

Since f is transitive, there is $x \in M$ such that $\omega(x) = M$. There is $N_1 \in \mathbb{N}$ such that $d_H(\{x, f(x), \cdots, f^{N_1}(x)\}, Orb_f(x)) < \frac{\varepsilon}{4}$, since M is compact. Since $\omega(x) = M$, there is $N_2 > N_1$ such that $d_H(\{x, \cdots, f^n(x)\}, M) < \frac{\varepsilon}{4}$ for any $n > N_2$. Choose $\delta > 0$ such that if for $y \in M$, $d(x, y) < \delta$ then $d(f^i(x), f^i(y)) < \frac{\varepsilon}{4}$ for $i = 0, \cdots, N_2 + 1$. By Ergodic closing Lemma, since $m(N_{\frac{\delta}{2}}(x)) > 0$, then $\sum (f) \cap N_{\frac{\delta}{2}}(x) \neq \emptyset$. Let $p \in N_{\frac{\delta}{2}}(x)$ be a well closable point. For $\delta > 0$ there is a C^1 -perturbation $g \in Diff_m^{1+\alpha}(M)$ such that p is a periodic point of g and $d(f^i(p), g^i(p)) < \frac{\delta}{2}$ for all $i \in [0, \pi_g(p)]$, where $\pi_g(p) > N_2$ is the period of p with respect to g. Since $d(x, p) < \delta$ then, $d(f^i(x), f^i(p)) < \frac{\varepsilon}{4}$ for $i = 0, \cdots, N_2 + 1$. So $d(f^i(x), g^i(p)) < \frac{\varepsilon}{2}$ for $i = 0, \cdots, N_2 + 1$. By the above process we have $d_H(Orb_g(p), M) < \varepsilon$.

As a corollary,

1.6. Corollary

There are a sequence of diffeomorphisms $\{f_n\}$ in $Diff_m^{1+}(M)$ and a sequence of point $\{p_n\}$ such that p_n is a periodic point of $f_n \lim f_n = f$ and $\lim Orb(p_n) = M$.

For the proof of the main theorem we also need the following Lemma in [2, Lemma 1.4].

1.7. Lemma

Give c>0 and $A\in(0,1)$. If there is a sequence of diffeomorphisms $\{f_n\}$ and a sequence of compact sets $\{\Lambda_n\}$ such that Λ_n is a compact invariant set of f_n and Λ_n admits a (c,A)-dominated splitting of index i with respect to f_n , then if $\Lambda=\lim_{n\to\infty}\Lambda_n$ exists, then Λ admits a (c,λ) -dominated splitting of index i with respect to f.

Proof. (main theorem1.2)

Let $\{p_n\}$ be in the above corollary.

Let $\Sigma = \coprod_{n \in \mathbb{N}} \{p_n, f(p_n), \cdots, f^{\pi(p_n)-1}(p_n)\}$. One can define a natural d-dimensional vector bundle E on Σ as following:

for any $x \in \Sigma$, the fiber on x is $T_x M$. For any $i \in [0, \pi(p_n) - 1 \cap \mathbb{N}]$, we define $h(f_n^i(p_n)) = f_n^{i+1}(p_n)$ and $A|_{E(f_n^i(p_n))} = Df_n(f_n^i(p_n))$. Thus $A = (\Sigma, h, E, A)$ is a bounded large periodic systems as in [3]. Then by [3,Theorem 2.2] either there is an infinite subset $\Sigma' \subset \Sigma$ which is invariant by h such that the periodic linear cocycle $A' = (\Sigma', h, E|_{\Sigma'}, A)$ admits a dominated splitting or there is a perturbation B of A and an in finite invariant subset Σ' of Σ such that for any $x \in \Sigma$, all eigenvalues of

By Remark 7.2 in [2] we can consider the perturbation A' such that det A'(x) = 1 for every $x \in \Sigma'$. Then by proposition 1.4 we can translate the above statement for $Diff_m^1(M)$.

 $B(h^{\pi(x)-1}(x)) \circ B(h^{\pi(x)-2}(x)) \circ \cdots \circ B(x)$ are real, with same modulus.

either there are constant c>0 and $A\in(0,1)$ such that there is a c,λ)-dominated splitting on the orbit $\{p_n\}$; or there is a sequence of diffeomorphism $\{g_n\}$ in $Diff_m^{1+}(M)$ such that $\lim_{n\to\infty}g_n=f$ and $Orb_{f_n}(p_n)$ is also a periodic orbit of g_n and all eigenvalues of $Dg_n^{\pi(p_n)}(p_n)$ are all real, with same modulus.

So by an perturbation there is an almost sink or an almost source for a $g \in Diff_m^{1+}(M)$ near f which contradicts to the fact that f is robustly ergodic. Thus the second case of the above statement is false for f.

Now by corollary 1.6 and letting $\Lambda_n = M$ in the Lemma 1.7, the proof of the main theorem is complete.

Pengfel Zhang in [5] showed that if f has a dominated splitting $TM = E \oplus F$, then f can not be minimal. Recall that the map f is said to be minimal if for each $x \in M$, the orbit $O(x) = \{f^n(x) : n \in \mathbb{Z}\}$ is a dense subset in M. So we have the following corollary.

1.8. Corollary

If f is robustly ergodic, then f is not minimal.

References

- [1] A. Arbieto, C. Matheus, A pating lemma and some applications for conservative systems, Ergodic Theory and Dynamical Systems. 27, 1399-1417 (2007).
- [2] C. Bonatti, L. Diaz, E. Pujals, A C^1 -generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources, Ann. Math. 158, 355-418 (2003).
- [3] C. Bonatti, N. Gourmelon and T. Vivier, Perturbations of the derivatives along periodic orbit, Ergodic Theory Dynam, systems, 26, 1307-1377 (2006).
- [4] A Tahzibi, Robust transitivity almost robust ergodicity, Ergodic Theory and Dynamical Systems, 24:4:1261-1269 (2004).
- [5] P. Zhang, A diffeomorphism with global dominated splitting can not be minimal. Proc. Am. Math. Soc., 140: 589 593 (2012).