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Abstract 

This paper proposes a risk management model for the facility location problems in fuzzy 
environment. We investigate the capacitated continuous location allocation problem in continuous 
space as a risk model. Two risk types are considered in the proposed model: customer risk and 
financial risk. The risks are caused because of unsatisfied demands and budget constraint, respectively. 
The introduced model is extension of the continuous location allocation model by adding fixed cost 
and customer risk concept. A facility belongs to a zone when is located in a predetermined radius from 
center of the zone. Because of uncertain budget and demand, the model is considered in fuzzy 
environment. Finally, a risk management model is proposed with presentation of degree satisfaction 
concept of each risk as objective function. Also, a numerical example is expressed to illustrate the 
proposed model. 

 
Keywords: capacitated continuous location allocation problem, risk management, financial risk, 
customer risk, satisfaction degree, fuzzy set theory. 

 
1. Introduction 

Several researches have been concentrated on considering risk in the facility location problem. 
Guillen et al. [8] considered the design and retrofit problem of a supply chain consisting of several 
production plants, warehouses, markets and the associated distribution systems. They constructed a 
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two-stage stochastic model in order to take into account the effects of the uncertainty in the 
production scenario. Snyder et al. [17] proposed a stochastic version of the location model with risk 
pooling which optimizes location, inventory and allocation decisions under random parameters 
described by discrete scenarios. The goal of their model was to find solutions that minimize the 
expected total cost of the system across all scenarios. They presented a Lagrangian-relaxation–
based exact algorithm for the model. Ozsen et al. [14] introduced the capacitated warehouse 
location model with risk pooling. The model provided a logistics system in which a single plant 
shipped one type of product to a set of retailers, each with an uncertain demand. Also, the model 
was solved by a Lagrangian relaxation solution algorithm. Azaron et al. [1] developed a multi-
objective stochastic programming approach for supply chain design under uncertainty. Demands, 
supplies, processing, transportation, shortage and capacity expansion costs were all considered as 
the uncertain parameters. They used the goal attainment technique to obtain the Pareto-optimal 
solutions. Afterwards, Wagner et al. [18] considered a location-optimization problem where the 
classical incapacitated facility location model was recast in a stochastic environment with several 
risk factors that made demand at each customer site probabilistic and correlated with demands at 
the other customer sites. They considered “Value-at-Risk” (VaR) measure and designed a branch-
and-bound algorithm to solve the problem. Considering the risk management for mid-term planning 
of a global multi-product chemical supply chain under demand and freight rate uncertainty, You et 
al. [21] proposed a two-stage stochastic linear programming approach within a multi-period 
planning model. Furthermore, they developed an algorithm based on the multi-cut L-shaped method 
in order to solve the resulting large scale industrial size problems. Mete and Zabinsky [12] 
developed a stochastic optimization approach for the storage and distribution problem of medical 
supplies to be used for disaster management under a wide variety of possible disaster types and 
magnitudes. Wang et al. [19] presented location model of risk pooling with variable construction 
cost. They applied a square nonlinear integer-programming model and used particle swarm 
optimization algorithm to find suboptimum solutions. Cui et al. [5] investigated reliable facility 
location models considering unexpected failures with site dependent probabilities, as well as 
possible customer reassignment. They proposed a compact mixed integer program formulation 
which was solved using a custom-designed Lagrangian relaxation algorithm. Liu et al. [11] 
presented a location model that assigns online demands to the capacitated regional warehouses 
currently serving in-store demands in a multi-channel supply chain. The model explicitly 
considered the trade-off between the risk pooling effect and the transportation cost in a two-echelon 
inventory/logistics system. They formulated the assignment problem as a non-linear integer 
programming model.  

A strategic supply chain management problem was studied by Peng et al. [15] to design reliable 
networks that perform as well as possible under normal conditions, while also performing relatively 
well when disruptions strike. They presented a mixed-integer programming model whose objective 
was to minimize the nominal cost while reducing the disruption risk using the p-robustness criterion 
which bounds the cost in disruption scenarios. Chen et al. [3] presented a multi-criteria decision 
analysis for environmental risk assessment with regard to avoiding and eliminating damages and 
loss under natural disasters in international airport projects. They used the ANP to demonstrate one 
of its utility modes in decision making support to location selection problems, which aims at an 
evaluation of different projects from different locations. Wang and Watada [20] studied a facility 
location model with fuzzy random parameters and its swarm intelligence approach. A VaR based 
fuzzy random facility location model was built in which both the costs and demands were assumed 
to be fuzzy random variables. The model was inherently a two-stage mixed 0–1 integer fuzzy 
random programming problem. A hybrid modified particle swarm optimization approach was 
proposed to solve the model.  A corresponding framework for value-based performance and risk 
optimization in a single-stage supply chain problem was developed by Hahn and Kuhn [19]. They 
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applied Economic Value Added as a prevalent metric of value-based performance to mid-term sales 
and operations planning. Due to the uncertainty of future events in a scenario based problem, they 
also used robust optimization methods to deal with operational risks in physical and financial 
supply chain management. Nickel et al. [13] provided a multi-period supply chain network design 
problem. In this problem, uncertainty was assumed for demand and interest rates, which was 
described by a set of scenarios. Accordingly, the problem was formulated as a multi-stage 
stochastic mixed-integer linear programming problem.   

These researches have investigated risk in the location models with discrete space and have 
provided the models as a risk cost minimization model. In the next section, a risk management 
model in continuous space with uncertain demands and budget are provided and two risk types are 
investigated; customer risk because of unsatisfied customers and financial risk which is caused by 
budget constraint. Since a customer has an uncertain demand, once the customer was assigned to a 
facility, the facility may not service the customer properly and cause to some unsatisfied demand. 
Then, we introduce a model proposing a criterion named satisfaction degree of the risk so as to 
maximize the satisfaction degree in the location allocation model. In the rest of this section, 
aforementioned articles are classified based on Location model, Risk type, Space and Uncertainty 
as shown in Table 1 in order to help the reader appreciate the symmetry associated with the facility 
location problems.  

Therefore, the main differences of our research compared with other works are as follows: 

 Providing a location allocation model with fixed cost and customer risk. 
 Investigating risk in a continuous space 
 Introducing satisfaction degree concept of risk 

  

 

The remainder of the paper is organized as follows. In section 2 the capacitated continuous location 
allocation model is provided. In Section 3, we present the risk management model. A numerical 
example is given in Section 4 in order to illustrate the usability of the proposed model. Finally, 
Section 5 is devoted to the conclusion and future work. 

 

Table 1- Comparison between the works 
Uncertainty Space Risk type Location model Author(s) 
Stochastic Discrete Scenario based Multi objective supply chain  Guillen et al. [8] 
Stochastic Discrete Scenario Based Location with risk pooling Snyder et al.  [17] 
Stochastic Discrete Uncertain demand Warehouse location  Ozsen et al. [14] 
Stochastic Discrete Scenario Based Multi-objective stochastic Azaron et al. [1] 
Stochastic Discrete Value-at-Risk Uncapacitated p-median Wagner et al. [18] 
Stochastic Discrete Uncertain demand Multi-product supply chain You et al. [21] 
Stochastic Discrete Disaster Location with vehicle routing Mete and  Zabinsky [12] 
Stochastic Discrete Stochastic demand Location with risk pooling Wang et al. [19] 
Stochastic Discrete Risk of disruption Reliable facility location  Cui et al. [5] 
Stochastic Discrete Stochastic demand Two-echelon inventory/logistics  Liu et al. [11] 
Stochastic Discrete Disruption Reliable logistics network design Peng et al. [15] 
judgmental Discrete Disaster Location selection Chen et al. [3] 

Fuzzy Discrete Value-at-Risk  Fuzzy facility location Wang and Watada [20] 
Stochastic Discrete Scenario Based Single-stage supply chain Hahn and Kuhn [9] 
Stochastic Discrete Scenario Based Multi-stage supply chain Nickel S. et al. [13] 

Fuzzy Continuous 
Uncertain demand 
and Budget 

Capacitated continuous  
Location allocation 

This research 
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2. Capacitated Continuous Location Allocation Model  

The location-allocation (LA) problem is to locate a set of new facilities such that the transportation 
cost from facilities to customers is minimized and an optimal number of facilities have to be placed 
in an area of interest in order to satisfy the customer demand. This problem occurs in many 
practical settings such as the determination and location of warehouses, distribution centers, 
communication centers and production facilities. Since LA problem was proposed by Cooper [4] 
and spread to a weighted network by Hakimi [10]. For a review, on the continuous location 
problem, see Drezner et al. [6], Salhi and Gamal [17], and Brimberg and Salhi [2]. 

Assuming, there are n customers (demand points) indexed by i and m facilities indexed by j and 
following notations,  

Description Notations 
 Parameters 
coordinate of customer i ܣ௜ 
demand of customer i ݀௜ 
capacity of facility j sj 

      Decision variable 
coordinate of new facility j ௝ܺ 
distance between customer i and facility j D(Xj,Ai)  
quantity supplied to customer i by facility j ݕ௝௜ 

 
Then the capacitated continuous location-allocation problem is also known as the capacitated 
multisource Weber problem (CMWP) [7] and is as following, 

 (1) 1ܲ: ݉݅݊ ෍ ෍ ௝௜௠ݕ
௝ୀ1

∙ )ܦ ௝ܺ, ௜)௡ܣ
௜ୀ1

 

       S.t.  

(2)      ෍ ௝௜௠ݕ
 ௝ୀ1

= ݀௜,         ∀݅ = 1,2, … , ݊  

(3)      ෍ ௝௜௡ݕ
௜ୀ1

= ݆∀           ,௝ݏ = 1,2, … , ݉  

௝௜ݕ      (4) ≥ 0,                  ∀݅ = 1,2, … , ݊ ܽ݊݀ ∀݆ = 1,2, … , ݉  
 
Equation (1) is objective function consists of transportation cost. Constraint set (2) is demand 
constraint. Constraint set (3) guarantees capacity constraint of each facility. Constraint set (4) is 
standard constraint. 

As seen, the model and other location allocation problems are not considered fixed cost in 
continuous space, but, there are cases in real world which may be included some zones with high 
installation cost or forbidden zones and it needs to consider fixed cost. So, we introduce a 
continuous location allocation model with fixed cost in this paper; also, customer risk concept is 
introduced in the model. we are interested in finding the location of m facilities in continuous space 
with allocation of each facility to each customer in n points so that the total cost of transportation, 
installation and unsatisfied demands of customers is minimized. At first, the space is divided into n 
zones. The proposed model is extension of model 1ܲ. This paper introduces a new concept; a 
facility will be located in a zone if the distance between the facility and the center of the zone is 
smaller than a predetermined radius. So, a new variable ݖ௝௜ is introduced. In this regard, the ݖ௝௜ 
shows whether or not the facility j is located in the zone i. It is assumed that distance between each 
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customer and the facility is Euclidean. Accordingly, the 0-1 Nonlinear programming model 2ܲ is as 
follows:  

(5) 2ܲ: ݉݅݊ ෍ ෍ ௝௜ݕ ቆට൫ݔ௝−ܽ௜൯2 + ൫ݕ௝−ܾ௜൯2ቇ௠
௝ୀ1

௡
௜ୀ1

+ ෍ ෍ ௝௜ݖ ௝݂௜௡
௜ୀ1

௠
௝ୀ1

+ ܯ ෍ ൬ܥ௜ܥ ൰௡
௜ୀ1

൬ݍ௜݀௜൰ 

 S.t.  

(6) ෍ ௝௜௡ݖ
௜ୀ1

ቆට൫ݔ௝−ܽ௜൯2 + ൫ݕ௝−ܾ௜൯2ቇ ≤ ,ܦ ∀݆ = 1,2, … , ݉ 

(7) ෍ ௝௜௡ݖ
௜ୀ1

= 1, ∀݆ = 1,2, … , ݉ 

(8) ෍ ௝௜௠ݖ
௝ୀ1

≤ 1, ∀݅ = 1,2, … , ݊ 

(9) ෍ ௝௜௠ݕ
௝ୀ1

+ ௜ݍ = ݀௜,   ݅ = 1,2, … , ݊ 

(10) ෍ ௝௜௡ݕ
௜ୀ1

≤ ෍ ௝௜௡ݖ
௜ୀ1

,௝௜ݏ ∀݆ = 1,2, … , ݉ 

௝௜ݖ  ∈ ሼ0,1ሽ, ௜ݍ ∈ ℤ ܽ݊݀ ݔ௝, ௝ݕ ∈ ℛ,, ∀݅ = 1,2, … , ݊, ∀݆ = 1,2, … , ݉   
 
Notations of the model are as follows, 
 

Equation (5) is objective function of the model and constitutes of three terms. The first term is 
transportation cost; the second term is installation cost and the third term named customer risk cost 
is percent of the unsatisfied demand based on importance of each demand point. Since, there is a 

Description  Notations 
   Sets/Indices 

set of  zones (demand points) in a continuous space indexed by i , {i=1,2,…,n} N  
set of new facilities to be located indexed by j, {j=1,2,…,m} K  

   Parameters 
x coordinate of demand point i ܽ௜ 
y coordinate of demand point i ܾ௜ 
Unit production cost of facility j in zone i ݌௝ 
Installation cost of facility j in zone i ௝݂௜ 
Maximum distance a facility can be located from center of a zone  for belonging to 
that zone 

  ܦ

Production capacity of facility j in zone i  ݏ௝௜ 
Demand amount of demand point i ݀௜ 
importance of demand point i ܥ௜ 
Penalty of unsatisfied demand which is a large amount M 

   Decision variable  
x coordinate of  facility j ݔ௝ 
y coordinate of  facility j ݕ௝ 
transported product from facility j to demand point i ݕ௝ 
Binary variable; equal to1 if  facility j is located in zone i; otherwise equal to 0  ݖ௝௜ 
Unsatisfied demand of demand point i  ݍ௜ 
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supply constraint in the model, all of the demand could not be supplied and demand of some 
customers may not be supplied, so the third term is added.  Constraint set (6) guarantees that if the 
distance between the facility j and the zone i be greater than D, ݖ௝௜ = 0, so the facility j does not 
belong to the zone i and the facility j will be located in the zone i, if the distance between the 
facility j and the zone i be smaller than D. in contrast, if ݖ௝௜ = 1, the distance between the facility j 
and the zone i could not be greater than D. These constraints are applied to add fixed cost to the 
continuous models. Constraint set (7) guarantees that the facility j is installed only in one zone. 
Constraint set (8) guarantees that at most one facility could be located in the zone i. Constraint set 
(9) is a capacity constraint which guarantees that the transportation amount of the facility j should 
be less than the limitation of production in the zone i. Constraint set (10) indicates the demand 
constraint which guarantees that the satisfied and the unsatisfied demand of each demand point is 
equal to the demand of that demand point. 

Since, we want to introduce a risk management model, use the model 2ܲ with some changes. For 
more adopting on real world, since demand of customers may not be certain, we consider the model 
in uncertain conditions Supposing mean and deviation of demand in the zone i are di and ddi , 
respectively. Therefore, consider ሚ݀௜ = (݀௜ − ݀݀௜, ݀௜, ݀௜ + ݀݀௜) as fuzzy demand of the zone i. 
Because of the uncertain demand, once a customer was assigned to a facility, the facility may not 
service the customer properly and cause to some unsatisfied demand. Also, we set risk cost of the 
unsatisfied customers as objective function and consider the transportation and the fixed cost as a 
budget constraint. Assuming Ω, is the budget which is assigned to the transportation and the fixed 
costs, If the costs are greater than Ω, financial risk will be caused. Therefore, a budget constraint is 
added to the model and the transportation and the fixed costs are eliminated from the objective. 
Then a fuzzy risk management 3ܲis introduced as follows, 

(11) 
3ܲ: ݉݅݊ ෍ ൬ܥ௜ܥ ൰௡

௜ୀ1

ቆݍ௜ሚ݀௜ቇ 

 S.t.  
 ෍ ෍ ௝௜ݕ ቆට൫ݔ௝−ܽ௜൯2 + ൫ݕ௝−ܾ௜൯2ቇ௠

௝ୀ1

௡
௜ୀ1

+ ෍ ෍ ௝௜ݖ ௝݂௜௡
௜ୀ1

௠
௝ୀ1

≤  ߗ

 ෍ ௝௜௡ݖ
௜ୀ1

ቆට൫ݔ௝−ܽ௜൯2 + ൫ݕ௝−ܾ௜൯2ቇ ≤ ,ܦ ∀݆ = 1,2, … , ݉ 

 ෍ ௝௜௡ݖ
௜ୀ1

= 1, ∀݆ = 1,2, … , ݉ 

 ෍ ௝௜௠ݖ
௝ୀ1

≤ 1, ∀݅ = 1,2, … , ݊ 

 ෍ ௝௜௠ݕ
௝ୀ1

+ ௜ݍ = ሚ݀௜,   ݅ = 1,2, … , ݊ 

 ෍ ௝௜௡ݕ
௜ୀ1

≤ ෍ ௝௜௡ݖ
௜ୀ1

,௝௜ݏ ∀݆ = 1,2, … , ݉ 

௝௜ݖ  ∈ ሼ0,1ሽ, ௜ݍ ∈ ℤ ܽ݊݀ ݔ௝, ௝ݕ ∈ ℛ,, ∀݅ = 1,2, … , ݊, ∀݆ = 1,2, … , ݉   
In the next section, by considering fuzzy concepts, the final risk management model with crisp 
parameters is introduced. 
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3. Risk management model 

In this section a risk management model is proposed based on the model 3ܲ . We introduce a model 
which proposes a criterion named satisfaction degree of the risk so as to maximize the satisfaction 
degree in the model. Since, we investigate the model in uncertain condition; the satisfaction degree 
concept in fuzzy set theory is applied to provide the risk management model. We introduce the 
satisfaction degree of the customers risk and the financial risk and demand constraint, respectively. 
We use the satisfaction degree concept to provide a crisp risk management model. By utilization of 
the max–min operator introduced by Zimmermann [22], the problem convert to a single objective 
optimization problem, assuming ݂(ܺ) = ෍ ෍ ௝௜ݕ ቆට൫ݔ௝−ܽ௜൯2 + ൫ݕ௝−ܾ௜൯2ቇ௠

௝ୀ1

௡
௜ୀ1

+ ෍ ෍ ௝௜ݖ ௝݂௜௡
௜ୀ1

௠
௝ୀ1

 

Be total cost and Ω1 be the existing budget and  Ω2 be at most value we could assign as the budget 
so that total cost could not be greater than Ω2, Since ሚ݀௜ = (݀௜ − ݀݀௜, ݀௜, ݀௜ + ݀݀௜), we introduce 
fuzzy variable  ߤ෤Ω in (12) as fuzzy satisfaction degree of financial risk which is shown in Figure 1,  

 

 

 

 

 

 

 

 

 

 

Where ߤΩ௟ , ,Ω௠ߤ Ω௨ߤ  are calculated when demand of each customer are ݀௜ − ݀݀௜, ݀௜, ݀௜ + ݀݀௜, 
respectively. As seen in constraint (12), if total cost is greater than Ω2, then the satisfaction degree 
of financial risk is 0, in other words,  the  financial risk is 1 or 100%. Also if total cost is smaller 
than Ω1, then the satisfaction degree of financial risk is 1, in other words, the financial risk is 0 or 
0%. If ߣΩ = ݉݅݊൛ߤΩ௟ , ,Ω௠ߤ    :Ω௨ൟ, which is named satisfaction degree of financial risk as shown in(13)ߤ

Ωߣ (13) ≤ ቌΩ2 − ෍ ෍ ௝௜ݕ ቆට൫ݔ௝−ܽ௜൯2 + ൫ݕ௝−ܾ௜൯2ቇ௠
௝ୀ1

௡
௜ୀ1

+ ෍ ෍ ௝௜ݖ ௝݂௜௠
௝ୀ1

௡
௜ୀ1

ቍ ൫Ω2 − Ω1൯, ∀݀௜ ∈ ሼ݀௜ − ݀݀௜, ݀௜, ݀௜ + ݀݀௜ሽ൘  

 
We carry out similar definitions for the customer risk as (14), 

෤Ωߤ (12)  = ൫ߤΩ௟ , ,Ω௠ߤ Ω௨൯ߤ = ۔ۖەۖ
ۓ 1,          ݂(ܺ) ≤ Ω1 
Ω2 − ݂(ܺ)
Ω2 − Ω1 ,                                           Ω1 ≤ ݂(ܺ) ≤ Ω2

0,         ݂(ܺ) ≥ Ω2

 

 

Figure 1-  degree satisfaction of  the financial risk 

Ω1
(ݔ)݂

1

Degree of satisfaction 

Ω2
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As seen in constraint (14), if the satisfied demands are smaller than 0, then the satisfaction degree 
of customer risk is 0, in other words, the financial risk is 1 or 100%. Also if the satisfied demands 
are greater than total demands, then the satisfaction degree of financial risk is 1, in other words, the 
financial risk is 0%. If ߣ஼ = ݉݅݊൛ߤ஼௟ , ,஼௠ߤ  ஼௨ൟ, which is named satisfaction degree of the customerߤ
risk as shown in (15):  

஼ߣ (15) ≤ 1 − ෍ ൬ܥ௜ܥ ൰௡
௜ୀ1

൬ݍ௜݀௜൰ ∀݀௜ ∈ ሼ݀௜ − ݀݀௜, ݀௜, ݀௜ + ݀݀௜ሽ 

 Finally, degree satisfaction of demand constraint is introduced as shown in Figure 2, this concept 
is carried out for each i, ߤௗ௜ି,  ௗ௜ା are satisfaction degree of Left Hand Side (LHS) and Right Handߤ
Side (RHS) of demand constraint i as shown in (16): 

 

 

 

 

 

 

 

 

෤஼ߤ (14) = ൫ߤ஼௟ , ,஼௠ߤ ஼௨൯ߤ =
ەۖۖۖ
۔ۖ
෍              ,1ۓۖۖ ൬ܥ௜ܥ ൰௡

௜ୀ1

ቆݍ௜ሚ݀௜ቇ ≤ 0 
1 − ෍ ൬ܥ௜ܥ ൰௡

௜ୀ1

ቆݍ௜ሚ݀௜ቇ ,                                       0 ≤ ෍ ൬ܥ௜ܥ ൰௡
௜ୀ1

ቆݍ௜ሚ݀௜ቇ ≤ 1 
0,              ෍ ൬ܥ௜ܥ ൰௡

௜ୀ1

ቆݍ௜ሚ݀௜ቇ ≥ 1

 

 

 

Figure 2-  degree satisfaction of demand constraint 

ௗ௜ߤ (16) = ൫ߤௗ௜ି, ௗ௜ା൯ߤ =

ەۖۖ
ۖۖۖ
۔ۖ
ۖۖۖ
,0ۓۖ ෍ ௝௜௠ݕ

௝ୀ1

+ ௜ݍ ≤ ݀௜ − ݀݀௜
ቌ݀௜ − ෍ ௝௜௠ݕ

௝ୀ1

+ ௜ቍݍ ݀݀௜൘ ,        ݀௜ − ݀݀௜  ≤ ෍ ௝௜௠ݕ
௝ୀ1

+ ௜ݍ ≤ ݀௜ 
ቌ෍ ௝௜௠ݕ

௝ୀ1

+ ௜ݍ − ݀௜ቍ ݀݀௜൘ ,       ݀௜  ≤ ෍ ௝௜௠ݕ
௝ୀ1

+ ௜ݍ ≤ ݀௜ + ݀݀௜
0, ෍ ௝௜௠ݕ

௝ୀ1

+ ௜ݍ ≥ ݀௜ + ݀݀௜  
 

݀௜ − ݀݀௜ ෍ ௝௜ݕ + ,௜ݍ ∀݅௠
௝ୀ1

 

1

Degree of satisfaction 

݀௜ ݀௜ + ݀݀௜
 ௗ௜ାߤ ௗ௜ିߤ
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If λୢ = min൛μ୧ୢି, μ୧ୢା|1 = 1,2, … , nൟ, then λୢ ≤ ൛μ୧ୢି, μ୧ୢାൟ, ∀݅ = 1,2, … , ݊ which is named 

satisfaction degree of demand constraint the constraints (17) and (18) are as follows, 

 (17)݀௜ − ݀݀௜ − ෍ ௝௜௠ݕ
௝ୀ1

− ௜ݍ ௗ݀݀௜ߣ+ ≤ 1 , ݅ = 1,2, … , ݊ 

(18)෍ ௝௜௠ݕ
௝ୀ1

+ ௜ݍ − ݀௜ − ݀݀௜ ௗ݀݀௜ߣ+ ≤ 1 , ݅ = 1,2, … , ݊ 

Finally, if  λ = minሼλΩ, λC, λୢሽ we apply the Zimmermann Max-min operator to provide a crisp 
model. So, the final risk management model P4 is as follows in (19), 

 (19)4ܲ:  ߣ ݔܽ݉

 S.t.  

ߣ  ≤ 1 − ෍ ൬ܥ௜ܥ ൰௡
௜ୀ1

൬ݍ௜݀௜൰,   ∀݀௜ ∈ ሼ݀௜ − ݀݀௜, ݀௜, ݀௜ + ݀݀௜ሽ 

ߣ  ≤ ቌΩ2 − ෍ ෍ ௝௜݀௜ݕ ቆට൫ݔ௝−ܽ௜൯2 + ൫ݕ௝−ܾ௜൯2ቇ௣
௝ୀ1

௡
௜ୀ1

+ ෍ ෍ ௝௜ݖ ௝݂௜௣
௝ୀ1

௡
௜ୀ1

ቍ ൫Ω2 − Ω1൯൘  

 ෍ ௝௜௡ݖ
௜ୀ1

ቆට൫ݔ௝−ܽ௜൯2 + ൫ݕ௝−ܾ௜൯2ቇ ≤ ,ܦ ∀݆ = 1,2, … , ݉ 

 ෍ ௝௜௡ݖ
௜ୀ1

= 1, ∀݆ = 1,2, … , ݉ 

 ෍ ௝௜௠ݖ
௝ୀ1

≤ 1, ∀݅ = 1,2, … , ݊ 

 ݀௜ − ݀݀௜ − ෍ ௝௜௠ݕ
௝ୀ1

− ௜ݍ ௜݀݀ߣ+ ≤ 1 , ݅ = 1,2, … , ݊ 

 ෍ ௝௜௠ݕ
௝ୀ1

+ ௜ݍ − ݀௜ − ݀݀௜ ௜݀݀ߣ+ ≤ 1 , ݅ = 1,2, … , ݊ 

 ෍ ௝௜௡ݕ
௜ୀ1

≤ ෍ ௝௜௡ݖ
௜ୀ1

,௝௜ݏ ∀݆ = 1,2, … , ݉ 

  0 < ߣ ≤ 1, ௝௜ݖ ∈ ሼ0,1ሽ, ௜ݍ ∈ ℤ ܽ݊݀ ,௝ݔ ௝ݕ ∈ ℛ, ∀݅ = 1,2, … , ݊, ∀݆ = 1,2, … , ݉   
 
Where ߣ is the overall satisfaction degree of risk, Finally, ൫ݔ௝,  ௝௜ provide the best locationݕ ݀݊ܽ  ௝൯ݕ
of the facility j and the best allocation values to the customers with the highest satisfaction degrees 
of the risk.  

 

4. Numerical example 

In this section, a numerical example is expressed to illustrate the introduced model. Suppose we 
want to locate 4 new facilities in a region including 16 zones (customers) as shown in Figure 3. 
Number of each zone is indicated in each cell. Specification of each zone consisting importance, 
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mean and standard deviation demand of each customer, fixed cost and capacity of facility in each 
zone are shown in Table 2. Ω1 and Ω2 are 1150 and 1200, respectively and D=0.50 . 

 

Figure 3- Numerical Example with 16 zones 

The example was solved by GAMS software applying Baron Solver which uses branch and reduce 
algorithm. The Location and the allocation variables are shown in Table 3 and Table 4, 
respectively. So, 2ݍ = 20, 12ݍ = 40, 16ݍ = 5 and others = 0, consumed budget is ݂(ݔ) = 1156 and 
finally ߣ = 0.80. it means that the overall satisfaction degree of the risks is 0.80 so the overall risk 
is approximately 20%. The final solution is shown in Figure4. 

 
 

 
 
 
 
 
 

Table 2- specification of customers and zones  for the Numerical Example 

Customer/Zone Coordinate 
Mean of 
Demand 

Dev. of 
Demand 

Demand Importance 
Fixed 
cost 

Capacity 

1 (2,1) 17 8 (9,17,25) 1 200 70 
2 (3,1) 65 5 (60,65,70) 1.5 250 70 
3 (1,2) 15 7 (8,15,22) 1.1 500 75 
4 (2,2) 24 12 (12,24,36) 1.2 1500 70 
5 (3,2) 10 2 (8,10,12) 1 1200 90 
6 (1,3) 13 3 (10,13,16) 1.3 1500 80 
7 (2,3) 22 3 (19,22,25) 1.4 150 60 
8 (3,3) 38 5 (33,38,43) 1.6 400 100 
9 (4,3) 23 5 (18,23,28) 1 300 50 

10 (1,4) 20 5 (15,20,25) 1 400 80 
11 (2,4) 17 6 (11,17,23) 1.1 400 60 
12 (3,4) 70 25 (45,70,95) 2 600 30 
13 (4,4) 20 3 (17,20,23) 1 600 40 
14 (2,5) 15 14 (1,15,29) 1 300 70 
15 (3,5) 11 5 (6,11,16) 1.5 600 60 
16 (4,5) 25 1 (24,25,26) 1.3 200 90 

Table 3-  location of  facilities  
j(facility) ൫ݔ௝,  ௝൯ zoneݕ

1 (1.420,2.270) 3 
2 (2.996,1.002) 2 
3 (3.398,3.303) 8 
4 (1.487,4.110) 10 
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Figure 4- Location of facilities for the numerical example 
Red circles are the location of the  facilities and the selected zones are identified by yellow color 

5. Conclusion 

This paper proposed a risk management model for the facility location problems in fuzzy 
environment. We investigated the capacitated continuous location allocation problem in continuous 
space as a risk model. Two risk types were investigated in the proposed model: the customer and 
the financial risk. The risks are caused because of the unsatisfied demands and the budget 
constraint, respectively. The first presented model's advantage over the traditional models was 
presentation of the capacitated continuous location allocation model with fixed cost and the 
customer risk. The second was consideration of continuous space for risk management model in the 
location problems. Because of uncertain budget and demand, the risk management model was 
provided. Finally, the third advantage was presentation of the degree satisfaction concept of each 
risk as the objective function for the risk models. Considering other parameters such as capacity 
and fixed cost in uncertain condition, providing other continuous location models such as the 
covering and the p-median as a risk problem and applying a heuristic method to solve large scale 
cases are research issues which we think may need future investigations. 
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