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Abstract 

This paper aims to develop a new category of operational matrices. Exact operational 
matrices (EOMs) are matrices which integrate, differentiate and product the vector(s) of 
basis functions without any error. Some suggestions are offered to overcome the 
difficulties of this idea (including being forced to change the basis size and having more 
equations than unknown variables in the final system of algebraic equations). The 
proposed idea is implemented on the Bernstein basis functions. By both of the newly 
extracted Bernstein EOMs and ordinary operational matrices (OOMs) of the Bernstein 
functions, one linear and one nonlinear ODE is solved. Special attention is given to the 
comparison of numerical results obtained by the new algorithm with those found by 
OOMs. 

 
Keywords: Exact Operational matrices, Bernstein polynomials, Bessel differential 
equation, Emden-Fowler equation. 

AMS subject classification: 65M70, 65N35. 

 

1 Introduction 
 

In this paper, we introduce a new category of matrices by which some operations such 
as differentiation, integration and product can be done exactly. Also, we introduce 
some new matrices including Galerkin matrix, by which the resulting equations 
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system of the Galerkin method is obtained. Hereon we introduce them briefly and 
leave the detailed explanation to be discussed in the main context. 

 

1.1 Operational matrices 
 

Orthogonal functions and polynomial series have received researchers' attention for 
solving various problems. The main role of this technique is to convert the problem to 
a system of algebraic equations, which is a considerable complexity reduction. This 
approach is based on the terms approximation of the polynomial series and the use of 
operational matrices for eliminating the integration, differentiation and products from 
the equation. For example, suppose the following truncated polynomial series and the 
known functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) 

Θ𝑚𝑚  =  {𝛽𝛽1(𝑥𝑥),𝛽𝛽2(𝑥𝑥),⋯ ,𝛽𝛽𝑚𝑚 (𝑥𝑥)} 

𝑓𝑓(𝑥𝑥) =  �𝜅𝜅𝑖𝑖𝛽𝛽𝑖𝑖(𝑥𝑥) =  𝑘𝑘𝑇𝑇𝑏𝑏𝑚𝑚(𝑥𝑥)
𝑚𝑚

𝑖𝑖=1

, 

𝑔𝑔(𝑥𝑥) = �𝜆𝜆𝑖𝑖𝛽𝛽𝑖𝑖(𝑥𝑥)
𝑚𝑚

𝑖𝑖=1

=  𝑙𝑙𝑇𝑇𝑏𝑏𝑚𝑚(𝑥𝑥), 

where 

𝑏𝑏𝑚𝑚 (𝑥𝑥) = [𝛽𝛽1(𝑥𝑥) 𝛽𝛽2(𝑥𝑥) ⋯ 𝛽𝛽𝑚𝑚 (𝑥𝑥)]𝑇𝑇 ,
𝑘𝑘 =  [𝜅𝜅1(𝑥𝑥) 𝜅𝜅2(𝑥𝑥) ⋯ 𝜅𝜅𝑚𝑚 (𝑥𝑥)]𝑇𝑇 ,
𝑙𝑙 =  [𝜆𝜆1(𝑥𝑥) 𝜆𝜆2(𝑥𝑥) ⋯ 𝜆𝜆𝑚𝑚(𝑥𝑥)]𝑇𝑇 .

 

We call the 𝑏𝑏𝑚𝑚 (𝑥𝑥) the basis vector.Up to now, Researchers who have employed this 
approach, have been approximating the following expressions as 

� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑥𝑥

0
=  𝑘𝑘𝑇𝑇 � 𝑏𝑏𝑚𝑚(𝑥𝑥)

𝑥𝑥

0
≈  𝑘𝑘𝑇𝑇𝑃𝑃1𝑏𝑏𝑚𝑚(𝑥𝑥)

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑓𝑓(𝑥𝑥) = 𝑘𝑘𝑇𝑇
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑏𝑏𝑚𝑚(𝑥𝑥) ≈  𝑘𝑘𝑇𝑇𝐷𝐷1𝑏𝑏𝑚𝑚(𝑥𝑥)

𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥) = �𝑘𝑘𝑇𝑇𝑏𝑏𝑚𝑚(𝑥𝑥)�(𝑏𝑏𝑚𝑚(𝑥𝑥)𝑇𝑇𝑙𝑙) ≈  𝑘𝑘𝑇𝑇𝐿𝐿1� 𝑏𝑏𝑚𝑚(𝑥𝑥)

 

where 𝑃𝑃1, 𝐷𝐷1 and 𝐿𝐿1�  are integration, differentiation and product matrices related to the 
basisΘ𝑚𝑚 . As it can be seen, both of 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are in the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(Θ𝑚𝑚). It is quite 
probable that their integration or product do not remain in that space; but, to the best 
of our knowledge, in all of the previous researches they have been kept in 
the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(Θ𝑚𝑚). That is because the increase in the dimension causes the number of 
the algebraic system equations to be greater than the number of unknown variables. In 
this paper, a solution is presented for this problem. 

Firstly, we present𝑃𝑃2, 𝐷𝐷2 and 𝐿𝐿2�  

� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑥𝑥

0
= 𝑘𝑘𝑇𝑇 � 𝑏𝑏𝑚𝑚(𝑥𝑥)

𝑥𝑥

0
= 𝑘𝑘𝑇𝑇𝑃𝑃2𝑏𝑏𝑛𝑛1

(𝑥𝑥)

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑓𝑓(𝑥𝑥) = 𝑘𝑘𝑇𝑇
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑏𝑏𝑚𝑚 (𝑥𝑥) = 𝑘𝑘𝑇𝑇𝐷𝐷2𝑏𝑏𝑛𝑛2
(𝑥𝑥)

𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥) = �𝑘𝑘𝑇𝑇𝑏𝑏𝑚𝑚(𝑥𝑥)�(𝑏𝑏𝑚𝑚 (𝑥𝑥)𝑇𝑇𝑙𝑙) = 𝑘𝑘𝑇𝑇𝐿𝐿2� 𝑏𝑏𝑛𝑛3
(𝑥𝑥).
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As it can be seen, all of the approximations have been removed and also the basis 
vector has been changed. 𝑏𝑏𝑛𝑛𝑖𝑖(𝑥𝑥) depends on the 𝑏𝑏𝑚𝑚 (𝑥𝑥) and the respective operational 
matrix. 

We apply these matrices into the equation and sum all of the terms together to reach 
the residual function. To be able to factor out a basis vector from all of the different 
𝑏𝑏𝑛𝑛(𝑥𝑥)-sized terms in the residual function, the matrix 𝐸𝐸𝑖𝑖 ,𝑗𝑗  is introduced, by which: 

𝑏𝑏𝑖𝑖(𝑥𝑥) = 𝐸𝐸𝑖𝑖 ,𝑗𝑗 . 𝑏𝑏𝑗𝑗 (𝑥𝑥). 

Using this matrix, we can convert the basis vector existing in each term to the biggest-
sized 𝑏𝑏𝑁𝑁(𝑥𝑥). By factoring out the 𝑏𝑏𝑁𝑁(𝑥𝑥), we can write the residual function as 
𝑅𝑅𝑁𝑁𝑏𝑏𝑁𝑁(𝑥𝑥); so, to solve the problem, we should solve 

𝑅𝑅𝑁𝑁𝑏𝑏𝑁𝑁(𝑥𝑥) = 0. 

𝑏𝑏𝑁𝑁(𝑥𝑥) is a basis vector and its functions are linearly-independent; so we can solve the 
following equation instead: 

𝑅𝑅𝑁𝑁 = 0 

To overcome the problems of solving a system with 𝑁𝑁-equations and 𝑚𝑚 unknown 
variables, we introduce the Galerkin matrix𝑄𝑄𝑁𝑁,𝑚𝑚 , which reduces the number of 
equations to 𝑚𝑚, based on the Galerkin method 

𝑅𝑅𝑁𝑁𝑄𝑄𝑁𝑁,𝑚𝑚 = 0 

In this paper, we call the newly introduced exact operational matrices EOMs and the 
ordinary operational matrices OOMs. 

 

1.2 The previous researches 
 

The idea of operational matrices is very general and applicable to dozens of bases. 
Lots of researchers have worked on OOMs, using miscellaneous bases; but, to the 
best of our knowledge, the author's research is the first study on the EOMs. 

Razzaghi et al., in [1],[2] and[3] presented the integral and product operational 
matrices based on the Fourier, the Taylor and the shifted-Jacobi series. Doha[4] has 
derived the shifted Jacobi operational matrix of fractional derivatives which is applied 
together with the spectral Tau method for the numerical solution of dynamical 
systems. Recently, Yousefi et al. in [5][6][7][8][9] and[10] have presented Legendre 
wavelets and Bernstein operational matrices and used them to solve miscellaneous 
systems. Also, recently, in [11] a new shifted-Chebyshev operational matrix of 
fractional integration of arbitrary order is introduced and applied together with the 
spectral Tau method for solving linear fractional differential equations (FDEs). In 
[12],[13] and [14] the operational matrix form in Hybrid of block-pulse functions and 
another set of functions like Taylor series, Legendre and Chebyshev has been used for 
finding the solution of the various classes of dynamical systems. Lakestani[15] 
constructed the operational matrix of fractional derivative of order 𝛼𝛼 in the Caputo 
sense using the linear B-spline functions. In [16], a general formulation for the d-
dimensional orthogonal functions and their derivative and product matrices has been 
presented. OOMs have been utilized together with the Tau method to reduce the 
solution of partial differential equations (PDEs) to the solution of a system of 
algebraic equations. The authors of [17] presented a modified form of the homotopy 
analysis method based on Chebyshev operational matrices. Recently in [18], a class of 
two-dimensional nonlinear Volterra's integral equations has been solved using 
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operational matrices of Legendre polynomials. The operational matrices of integration 
and product together with the collocation points have been utilized to reduce the 
solution of the integral equation to the solution of a nonlinear algebraic equations 
system. [19] presented a new Legendre wavelet operational matrix of derivation. In 
[20] and[21], the one and two dimensional fractional equations were studied by using 
Legendre operational matrices. 

 

1.3 The article structure  
 

In section 2, the idea is implemented by the Bernstein polynomials; also, the 
integration, differentiation, product and Galerkin matrices alongside some new 
matrices are introduced. Section 3 analyses the mean error bound of the Bernstein-
based best approximation. In section 4, a zero order Bessel and an Emden-Fowler 
differential equation are solved by both EOM and OOM approaches to prove the 
validity of the method and also the superiority of EOMs over OOMs. Finally, the5𝑡𝑡ℎ  
section has been devoted to the conclusion and new suggestions for future studies. 

 

2 Bernstein polynomials (B-polynomials) 
 

2.1 Overview of B-polynomials 
 

The Bernstein polynomials (B-polynomials) [10], are some useful polynomials 
defined on[0,1]. The Bernstein polynomials of degree 𝑛𝑛 form a basis for the power 
polynomials of degree 𝑛𝑛[22]. We can mention lots of their properties. They are 
continuous over the domain. They satisfy symmetry 

𝐵𝐵𝑖𝑖 ,𝑛𝑛(𝑡𝑡) =  𝐵𝐵𝑛𝑛−𝑖𝑖 ,𝑛𝑛(1 − 𝑡𝑡), 

positivity 

∀𝑡𝑡 ∈ [0,1]:𝐵𝐵𝑖𝑖 ,𝑛𝑛(𝑡𝑡) ≥  0, 

normalization or unity of partition [22] 

�𝐵𝐵𝑖𝑖 ,𝑛𝑛(𝑡𝑡)
𝑛𝑛

𝑖𝑖=0

= 1. 

Also,𝐵𝐵𝑖𝑖 ,𝑛𝑛(𝑡𝑡) in which 𝑖𝑖 ∉ {0,𝑛𝑛} has a single unique local maximum of 

𝑖𝑖𝑖𝑖𝑛𝑛−𝑛𝑛(𝑛𝑛 − 𝑖𝑖)𝑛𝑛−𝑖𝑖 �𝑛𝑛𝑖𝑖 � 

occurring at 𝑡𝑡 = 𝑖𝑖
𝑛𝑛
. All of the B-polynomial bases take 0 value at 𝑥𝑥 = 0 and 𝑥𝑥 = 1, 

except the first polynomial at 𝑥𝑥 = 0 and the last one at 𝑥𝑥 =  1, which are equal to 1. It 
can provide flexibility applicable to impose boundary conditions at the end points of 
the interval. 

We present the solution of linear and nonlinear differential equations as linear 
combinations of the Bernstein polynomials,𝑃𝑃(𝑥𝑥) = ∑ 𝑐𝑐𝑖𝑖𝐵𝐵𝑖𝑖 ,𝑛𝑛(𝑥𝑥)𝑛𝑛

𝑖𝑖=0 , and the 
coefficients𝑐𝑐𝑖𝑖  are determined using the Galerkin method. 

In recent years, the B-polynomials have attracted the attention of many 
researchers.These polynomials have been utilized for solving different equations by 
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using various approximate methods.B-polynomials have been used for solving 
Fredholm integral equations [23] [24], Volterra's integral equations [25], Volterra's-
Fredholm-Hammerstein integral equations [26], differential equations [10] [27] [28] 
[29], integro-differential equations [30], parabolic equation subject to specification of 
mass[9] and so on.Singh et al. [27] and [10] have proposed operational matrices in 
different ways for solving differential equations.In [27], the B-polynomials have been 
firstly orthonormalized using Gram-Schmidt orthonormalization process and then the 
operational matrix of integration has been obtained. By the expansion of B-
polynomials in terms of Taylor basis, Yousefi and Behroozifar [10] have found the 
operational matrices of differentiation, integration and product of B-polynomials. 

 

2.2 Properties of B-polynomials 
 

2.2.1 B-polynomials:  

As we mentioned, 𝑚𝑚-degree B-polynomials [29] are a set of polynomials defined 
on[0,1]: 

𝐵𝐵𝑖𝑖 ,𝑚𝑚(𝑥𝑥) = �𝑚𝑚𝑖𝑖 � 𝑥𝑥
𝑖𝑖(1 − 𝑥𝑥)𝑚𝑚−𝑖𝑖 ,        0 ≤ 𝑖𝑖 ≤ 𝑚𝑚, 

where �𝑚𝑚𝑖𝑖 � means 

𝑚𝑚!
𝑖𝑖! (𝑚𝑚 − 𝑖𝑖)!

, 

In this paper, we use the 𝜓𝜓𝑚𝑚(𝑥𝑥) notation to show 

𝜓𝜓𝑚𝑚 (𝑥𝑥) = [𝐵𝐵0,𝑚𝑚 (𝑥𝑥) 𝐵𝐵1,𝑚𝑚(𝑥𝑥) ⋯ 𝐵𝐵𝑚𝑚 ,𝑚𝑚(𝑥𝑥)]𝑇𝑇 , 

We should remember that [10] 

𝜓𝜓𝑚𝑚(𝑥𝑥) = 𝐴𝐴𝑚𝑚 × 𝑇𝑇𝑚𝑚 (𝑥𝑥), 

(1) 

where 

𝑇𝑇𝑚𝑚(𝑥𝑥) = �𝑥𝑥0𝑥𝑥1 ⋯  𝑥𝑥𝑚𝑚�𝑇𝑇 , 

(2) 

and the (𝑖𝑖 + 1)𝑡𝑡ℎ  row of matrix 𝐴𝐴 is 

𝐴𝐴𝑖𝑖+1 = �0 0 ⋯ 0���������
𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑠𝑠0,𝑖𝑖,𝑚𝑚 𝑠𝑠1,𝑖𝑖,𝑚𝑚 ⋯ 𝑠𝑠𝑚𝑚 ,𝑖𝑖 ,𝑚𝑚
� 

(3) 

where 

𝑠𝑠𝑗𝑗 ,𝑖𝑖 ,𝑚𝑚 = (−1)𝑗𝑗 �𝑚𝑚𝑖𝑖 � �
𝑚𝑚 − 𝑖𝑖
𝑗𝑗 � 

Matrix 𝐴𝐴 is an upper triangular matrix and 

𝑑𝑑𝑑𝑑𝑑𝑑(𝐴𝐴) = ��𝑚𝑚𝑖𝑖 �
𝑚𝑚

𝑖𝑖=0

; 

so, 𝐴𝐴 is an invertible matrix. Then, we can obtain 𝐴𝐴−1 using the following formula 
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�𝐴𝐴−1�𝑖𝑖 ,𝑗𝑗=0
𝑚𝑚 =

⎩
⎪
⎨

⎪
⎧�
𝑚𝑚 − 𝑖𝑖
𝑗𝑗 − 𝑖𝑖 �

�
𝑚𝑚
𝑗𝑗 �

, 𝑗𝑗 ≥ 𝑖𝑖

0, 𝑗𝑗 < 𝑖𝑖

� 

(4) 

Now, to overcome the challenges of EOM approach, we should firstly introduce some 
relations and matrices. 

 

2.3 EOM-related relations 
 

2.3.1 Recursive relation to differentiate B-polynomials: 

A known relation about the differentiation of B-polynomials is 
𝑑𝑑
𝑑𝑑𝑑𝑑

𝐵𝐵𝑖𝑖 ,𝑚𝑚 (𝑥𝑥) = �𝑚𝑚𝑖𝑖 � 𝑖𝑖𝑥𝑥
𝑖𝑖−1(1 − 𝑥𝑥)𝑚𝑚−𝑖𝑖 − �𝑚𝑚𝑖𝑖 � (𝑚𝑚 − 𝑖𝑖)𝑥𝑥𝑖𝑖(1 − 𝑥𝑥)𝑚𝑚−𝑖𝑖−1 ,

= 𝑚𝑚�𝑚𝑚 − 1
𝑖𝑖 − 1 � 𝑥𝑥

𝑖𝑖−1(1 − 𝑥𝑥)𝑚𝑚−𝑖𝑖 − 𝑚𝑚 �𝑚𝑚 − 1
𝑖𝑖 � 𝑥𝑥𝑖𝑖(1 − 𝑥𝑥)𝑚𝑚−𝑖𝑖−1 ,

= 𝑚𝑚�𝐵𝐵𝑖𝑖−1,𝑚𝑚−1(𝑥𝑥) − 𝐵𝐵𝑖𝑖 ,𝑚𝑚−1(𝑥𝑥)�  ,                              0 ≤ 𝑖𝑖 ≤ 𝑚𝑚.

 

(5) 

2.3.2 Finding the coordinate vector of a polynomial with respect to the basis: 

We aim to find a vector 𝑏𝑏 = [𝑏𝑏0 𝑏𝑏1 ⋯ 𝑏𝑏𝑚𝑚 ]𝑇𝑇  to be the Bernstein coordinate 
vector of the arbitrary polynomial∑ 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖𝑚𝑚

𝑖𝑖=0 . 

�𝑏𝑏𝑖𝑖 �
𝑚𝑚
𝑖𝑖 � 𝑥𝑥

𝑖𝑖(1 − 𝑥𝑥)𝑚𝑚−𝑖𝑖
𝑚𝑚

𝑖𝑖=0

= �𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖
𝑚𝑚

𝑖𝑖=0
𝑏𝑏𝑇𝑇𝜓𝜓𝑚𝑚(𝑥𝑥) = 𝑐𝑐𝑇𝑇𝑇𝑇𝑚𝑚 (𝑥𝑥).

 

with respect to the matrix 𝐴𝐴𝑚𝑚×𝑚𝑚  in (1), we can write 

𝑏𝑏𝑇𝑇𝐴𝐴𝑚𝑚×𝑚𝑚𝑇𝑇𝑚𝑚 (𝑥𝑥) = 𝑐𝑐𝑇𝑇𝑇𝑇𝑚𝑚(𝑥𝑥), 

So, we have 

𝑏𝑏 =  �𝐴𝐴−1�𝑇𝑇𝑐𝑐 , 

(6) 

As an immediate result, we can propose a general formula for 𝑥𝑥𝑖𝑖  as follows: 

𝑥𝑥𝑖𝑖 = 𝑑𝑑𝑖𝑖 ,𝑚𝑚𝑇𝑇 𝜓𝜓𝑚𝑚(𝑥𝑥) , 𝑚𝑚 ≥  𝑖𝑖 ,

𝑑𝑑𝑖𝑖 ,𝑚𝑚 = ��0 0 ⋯ 0���������
𝑖𝑖

1 0 0 ⋯ 0���������
𝑚𝑚−𝑖𝑖

� 𝐴𝐴𝑚𝑚−1�
𝑇𝑇  

(7) 

 

2.4 EOM-related matrices 
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2.4.1 Working with K matrices: 

Firstly, we introduce a simple and useful matrix which we name it K-matrix: 

𝐾𝐾𝑚𝑚 ,𝑖𝑖 = [𝐼𝐼𝑚𝑚 0𝑚𝑚×𝑖𝑖]𝑚𝑚×(𝑚𝑚+𝑖𝑖) 

(8) 

𝐾𝐾𝑚𝑚 ,𝑖𝑖
′ = [0𝑚𝑚×𝑖𝑖 𝐼𝐼_𝑚𝑚]𝑚𝑚×(𝑚𝑚+𝑖𝑖) 

(9) 

We can embed 𝑖𝑖 zero columns at the right and the left end of arbitrary𝑍𝑍𝑚𝑚×𝑚𝑚 , using 
𝑍𝑍 × 𝐾𝐾𝑚𝑚 ,𝑖𝑖  and 𝑍𝑍 × 𝐾𝐾𝑚𝑚 ,𝑖𝑖

′ , respectively and 𝑖𝑖 zero rows at the bottom and top of the 
arbitrary 𝑍𝑍𝑚𝑚×𝑚𝑚 ,using 𝐾𝐾𝑚𝑚 ,𝑖𝑖

𝑇𝑇 × 𝑍𝑍 and 𝐾𝐾𝑚𝑚 ,𝑖𝑖
′𝑇𝑇 × 𝑍𝑍, respectively. 

2.4.2 The increaser matrix: 

To obtain the so-called EOMs, first of all, we need to transform 𝜓𝜓𝑚𝑚 (𝑥𝑥) to 𝜓𝜓𝑚𝑚+𝑖𝑖(𝑥𝑥) 
and to find a matrix, 𝐸𝐸𝑚𝑚 ,𝑚𝑚+𝑖𝑖 , such that 

𝜓𝜓𝑚𝑚 (𝑥𝑥) = 𝐸𝐸𝑚𝑚 ,𝑖𝑖𝜓𝜓𝑚𝑚+𝑖𝑖(𝑥𝑥) . 

Using (1) and (8), we can write: 

𝐴𝐴𝑚𝑚𝑇𝑇𝑚𝑚 (𝑥𝑥) = 𝐸𝐸𝑚𝑚 ,𝑖𝑖𝐴𝐴𝑚𝑚+𝑖𝑖𝑇𝑇𝑚𝑚+𝑖𝑖(𝑥𝑥),
𝐴𝐴𝑚𝑚𝐾𝐾𝑚𝑚+1,𝑖𝑖𝑇𝑇𝑚𝑚+𝑖𝑖(𝑥𝑥) =  𝐸𝐸𝑚𝑚 ,𝑖𝑖𝐴𝐴𝑚𝑚+𝑖𝑖𝑇𝑇𝑚𝑚+𝑖𝑖(𝑥𝑥). 

𝐾𝐾𝑚𝑚+1,𝑖𝑖𝑇𝑇𝑚𝑚+𝑖𝑖(𝑥𝑥) = 𝑇𝑇𝑚𝑚 (𝑥𝑥). This entails the following: 

𝐸𝐸𝑚𝑚 ,𝑖𝑖 =  𝐴𝐴𝑚𝑚𝐾𝐾𝑚𝑚+1,𝑖𝑖𝐴𝐴𝑚𝑚+𝑖𝑖
−1 . 

The size of matrix 𝐸𝐸𝑚𝑚 ,𝑖𝑖  is (𝑚𝑚 + 1) × (𝑚𝑚 + 1 + 𝑖𝑖). By using Equations(3), (4) and (8), 
we have 

�𝑬𝑬𝑚𝑚 ,𝑖𝑖 �𝑝𝑝=0,𝑞𝑞=0
𝑚𝑚 ,𝑚𝑚+𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧ �

𝑚𝑚
𝑝𝑝�

�𝑚𝑚 + 𝑖𝑖
𝑞𝑞 �

�(−1)𝑗𝑗 �
𝑛𝑛 − 𝑝𝑝
𝑗𝑗 � �𝑛𝑛 + 𝑖𝑖 − 𝑝𝑝 − 𝑗𝑗

𝑞𝑞 − 𝑝𝑝 − 𝑗𝑗 �
𝑞𝑞−𝑝𝑝

𝑗𝑗=0

, 𝑗𝑗 ≥ 𝑖𝑖

0, 𝑗𝑗 < 𝑖𝑖

� 

(10) 

Now, we can increase the size of the Bernstein basis vector, using 𝐸𝐸𝑚𝑚 ,𝑖𝑖  as follows 

𝜓𝜓𝑚𝑚(𝑥𝑥) = 𝐸𝐸𝑚𝑚 ,𝑖𝑖𝜓𝜓𝑚𝑚+𝑖𝑖(𝑥𝑥). 

(11) 

For example, if 𝑚𝑚 = 3 and 𝑖𝑖 = 2, then 

𝐸𝐸3,2 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 

2
5

1
10

 0  0  0

0 
3
5

3
5

3
10

 0  0

0  0 
3
10

3
5

3
5

 0

0  0  0 
1
10

2
5

 1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

2.4.3 The differentiation matrix: 

Here, we intend to find a matrix to differentiate𝜓𝜓𝑚𝑚(𝑥𝑥). Using (5), we have: 
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𝑑𝑑
𝑑𝑑𝑑𝑑

𝜓𝜓𝑚𝑚(𝑥𝑥) =  𝑚𝑚�� 0
𝜓𝜓𝑚𝑚−1(𝑥𝑥)� − �𝜓𝜓𝑚𝑚−1(𝑥𝑥)

0
�� , 

Now, using (8) and (8) 

, we can write 
𝑑𝑑
𝑑𝑑𝑑𝑑

𝜓𝜓𝑚𝑚(𝑥𝑥) = 𝑚𝑚�(𝐾𝐾′)𝑚𝑚 ,1
𝑇𝑇 −  𝐾𝐾𝑚𝑚 ,1

𝑇𝑇 �𝜓𝜓𝑚𝑚−1(𝑥𝑥),

𝑑𝑑
𝑑𝑑𝑑𝑑

𝜓𝜓𝑚𝑚(𝑥𝑥) = 𝐷𝐷𝑚𝑚𝜓𝜓𝑚𝑚−1(𝑥𝑥),
 

(12) 

So, we obtain the following 

𝐷𝐷𝑚𝑚 =  𝑚𝑚�(𝐾𝐾′)𝑚𝑚 ,1
𝑇𝑇 −  𝐾𝐾𝑚𝑚 ,1

𝑇𝑇 �, 

2.4.4 The integration Matrix: 

Considering (5), we have 
𝑑𝑑
𝑑𝑑𝑑𝑑

𝐵𝐵𝑖𝑖 ,𝑚𝑚(𝑥𝑥) = 𝑚𝑚�𝐵𝐵𝑖𝑖−1,𝑚𝑚−1(𝑥𝑥) −  𝐵𝐵𝑖𝑖 ,𝑚𝑚−1(𝑥𝑥)� , 0 ≤ 𝑖𝑖 ≤ 𝑚𝑚 ,

𝐵𝐵𝑖𝑖 ,𝑚𝑚(𝑥𝑥) =  𝑚𝑚�� 𝐵𝐵𝑖𝑖−1,𝑚𝑚−1(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑥𝑥

0
−� 𝐵𝐵𝑖𝑖 ,𝑚𝑚−1(𝑥𝑥)𝑑𝑑𝑑𝑑

𝑥𝑥

0
� + �𝑚𝑚𝑖𝑖 � 0𝑖𝑖 , 0 ≤ 𝑖𝑖 ≤ 𝑚𝑚 ,

 

(13) 

Using (13), while summing two consecutive B-polynomials, the middle terms cancel 
each other out 

𝐵𝐵𝑖𝑖 ,𝑚𝑚 (𝑥𝑥) +  𝐵𝐵𝑖𝑖+1,𝑚𝑚 (𝑥𝑥)

= 𝑚𝑚�� 𝐵𝐵𝑖𝑖−1,𝑚𝑚−1(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑥𝑥

0
−� 𝐵𝐵𝑖𝑖 ,𝑚𝑚−1(𝑥𝑥)𝑑𝑑𝑑𝑑

𝑥𝑥

0
+ � 𝐵𝐵𝑖𝑖 ,𝑚𝑚−1(𝑥𝑥)𝑑𝑑𝑑𝑑

𝑥𝑥

0
�

    −𝑚𝑚�� 𝐵𝐵𝑖𝑖+1,𝑚𝑚−1(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑥𝑥

0
+ �𝑚𝑚𝑖𝑖 � 0𝑖𝑖 + � 𝑚𝑚

𝑖𝑖 + 1� 0𝑖𝑖+1�

= 𝑚𝑚�� 𝐵𝐵𝑖𝑖−1,𝑚𝑚−1(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑥𝑥

0
−  � 𝐵𝐵𝑖𝑖+1,𝑚𝑚−1(𝑥𝑥)𝑑𝑑𝑑𝑑

𝑥𝑥

0
+ �𝑚𝑚𝑖𝑖 � 0𝑖𝑖� ,

 

0 ≤ 𝑖𝑖 ≤ 𝑚𝑚. 

To sum more than two consecutive B-polynomials, we can follow up the same 
procedure 

�𝐵𝐵𝑘𝑘 ,𝑚𝑚(𝑥𝑥)
𝑚𝑚

𝑘𝑘=𝑖𝑖

=  𝑚𝑚�� 𝐵𝐵𝑖𝑖−1,𝑚𝑚−1(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑥𝑥

0
−� 𝐵𝐵𝑚𝑚 ,𝑚𝑚−1(𝑥𝑥)𝑑𝑑𝑑𝑑

𝑥𝑥

0
+ �𝑚𝑚𝑖𝑖 � 0𝑖𝑖 + � �𝑚𝑚𝑘𝑘� 0𝑘𝑘

𝑚𝑚

𝑘𝑘=𝑖𝑖+1

�

=  𝑚𝑚�� 𝐵𝐵𝑖𝑖−1,𝑚𝑚−1(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑥𝑥

0
−� 𝐵𝐵𝑚𝑚 ,𝑚𝑚−1(𝑥𝑥)𝑑𝑑𝑑𝑑

𝑥𝑥

0
+ �𝑚𝑚𝑖𝑖 � 0𝑖𝑖� ,

 

0 ≤ 𝑖𝑖 ≤ 𝑚𝑚. 

𝐵𝐵𝑚𝑚 ,𝑚𝑚−1(𝑥𝑥) =  𝐵𝐵−1,𝑚𝑚−1(𝑥𝑥) =  0; So, we have 
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�𝐵𝐵𝑘𝑘 ,𝑚𝑚 (𝑥𝑥)
𝑚𝑚

𝑘𝑘=𝑖𝑖

=  𝑚𝑚�� 𝐵𝐵𝑖𝑖−1,𝑚𝑚−1(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑥𝑥

0
+ �𝑚𝑚𝑖𝑖 � 0𝑖𝑖� , 0 ≤ 𝑖𝑖 ≤ 𝑚𝑚,

� 𝐵𝐵𝑖𝑖 ,𝑚𝑚(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑥𝑥

0
=

1
𝑚𝑚 + 1

� 𝐵𝐵𝑘𝑘 ,𝑚𝑚+1(𝑥𝑥)
𝑚𝑚+1

𝑘𝑘=𝑖𝑖+1

− � 𝑚𝑚
𝑖𝑖 + 1� 0𝑖𝑖+1, 0 ≤ 𝑖𝑖 ≤ 𝑚𝑚,

� 𝐵𝐵𝑖𝑖 ,𝑚𝑚(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑥𝑥

0
=  𝑝𝑝𝑖𝑖 ,𝑚𝑚𝑇𝑇 𝜓𝜓𝑚𝑚+1(𝑥𝑥),

 

where 

𝑝𝑝𝑖𝑖 ,𝑚𝑚 =
1

𝑚𝑚 + 1
�0⋯ 0
𝑖𝑖+1���

1⋯ 1
𝑚𝑚+1−𝑖𝑖����

𝑇𝑇
, 

So, 

� 𝜓𝜓𝑚𝑚(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑥𝑥

0
=  𝑃𝑃𝑚𝑚𝜓𝜓𝑚𝑚+1(𝑥𝑥), 

(14) 

where 

𝑃𝑃𝑚𝑚 = [𝑝𝑝0,𝑚𝑚 ⋯𝑝𝑝𝑚𝑚 ,𝑚𝑚 ](𝑚𝑚+1)×(𝑚𝑚+2)
𝑇𝑇 . 

2.4.5 The product matrix: 

Here, we will describe the following property of the product of two B-Polynomials: 

𝐵𝐵𝑖𝑖 ,𝑚𝑚(𝑥𝑥)𝐵𝐵𝑗𝑗 ,𝑛𝑛(𝑥𝑥) = �𝑚𝑚𝑖𝑖 � �
𝑛𝑛
𝑗𝑗� 𝑥𝑥

𝑖𝑖+𝑗𝑗 (1 − 𝑥𝑥)𝑚𝑚+𝑛𝑛−(𝑖𝑖+𝑗𝑗 ),

= 𝑎𝑎𝑖𝑖 ,𝑗𝑗 ,𝑚𝑚 ,𝑛𝑛𝐵𝐵𝑖𝑖+𝑗𝑗 ,𝑚𝑚+𝑛𝑛(𝑥𝑥),
 

(15) 

where 

𝑎𝑎𝑖𝑖 ,𝑗𝑗 ,𝑚𝑚 ,𝑛𝑛 =
�𝑚𝑚𝑖𝑖 � �

𝑛𝑛
𝑗𝑗�

�
𝑚𝑚 + 𝑛𝑛
𝑖𝑖 + 𝑗𝑗 �

. 

By using (15), we have: 

𝜓𝜓𝑚𝑚(𝑥𝑥)𝜓𝜓𝑛𝑛𝑇𝑇(𝑥𝑥)

=

⎣
⎢
⎢
⎢
⎡ 𝑎𝑎0,0,𝑚𝑚 ,𝑛𝑛𝐵𝐵0,𝑚𝑚+𝑛𝑛(𝑥𝑥) ⋯ 𝑎𝑎0,𝑗𝑗 ,𝑚𝑚 ,𝑛𝑛𝐵𝐵𝑗𝑗 ,𝑚𝑚+𝑛𝑛(𝑥𝑥)  ⋯ 𝑎𝑎0,𝑛𝑛 ,𝑚𝑚 ,𝑛𝑛𝐵𝐵𝑛𝑛 ,𝑚𝑚+𝑛𝑛(𝑥𝑥)

⋮ ⋱ ⋮ ⋰ ⋮
𝑎𝑎𝑖𝑖 ,0,𝑚𝑚 ,𝑛𝑛𝐵𝐵𝑖𝑖 ,𝑚𝑚+𝑛𝑛(𝑥𝑥) ⋯ 𝑎𝑎𝑖𝑖 ,𝑗𝑗 ,𝑚𝑚𝐵𝐵𝑖𝑖+𝑗𝑗 ,𝑚𝑚+𝑛𝑛(𝑥𝑥) ⋯ 𝑎𝑎𝑖𝑖 ,𝑛𝑛 ,𝑚𝑚 ,𝑛𝑛𝐵𝐵𝑖𝑖+𝑛𝑛 ,𝑚𝑚+𝑛𝑛(𝑥𝑥)

⋮ ⋰ ⋮ ⋱ ⋮
𝑎𝑎𝑚𝑚 ,0,𝑚𝑚 ,𝑛𝑛𝐵𝐵𝑚𝑚 ,𝑚𝑚+𝑛𝑛(𝑥𝑥) ⋯ 𝑎𝑎𝑚𝑚 ,𝑗𝑗 ,𝑚𝑚 ,𝑛𝑛𝐵𝐵𝑚𝑚+𝑗𝑗 ,𝑚𝑚+𝑛𝑛(𝑥𝑥) ⋯ 𝑎𝑎𝑚𝑚 ,𝑛𝑛 ,𝑚𝑚 ,𝑛𝑛𝐵𝐵𝑚𝑚+𝑛𝑛 ,𝑚𝑚+𝑛𝑛(𝑥𝑥)⎦

⎥
⎥
⎥
⎤

.
 

Consequently, for an arbitrary vector 𝑐𝑐, we can write: 

𝑐𝑐𝑇𝑇𝜓𝜓𝑚𝑚(𝑥𝑥)𝜓𝜓𝑛𝑛𝑇𝑇(𝑥𝑥) =  𝜓𝜓𝑚𝑚+𝑛𝑛
𝑇𝑇 (𝑥𝑥) × 𝐶̃𝐶𝑚𝑚 ,𝑛𝑛 , 

(16) 

where 𝐶̃𝐶𝑚𝑚 ,𝑛𝑛  is an (𝑚𝑚 + 𝑛𝑛 + 1) × (𝑛𝑛 + 1) product operational matrix for the vector 𝑐𝑐 
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𝐶̃𝐶𝑚𝑚 ,𝑛𝑛 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑐𝑐0𝑎𝑎0,0,𝑚𝑚 ,𝑛𝑛 0 ⋯ ⋯ ⋯  0
𝑐𝑐1𝑎𝑎1,0,𝑚𝑚 ,𝑛𝑛 𝑐𝑐0𝑎𝑎0,1,𝑚𝑚 ,𝑛𝑛 ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋮
𝑐𝑐𝑗𝑗 𝑎𝑎𝑗𝑗 ,0,𝑚𝑚 ,𝑛𝑛 𝑐𝑐𝑗𝑗−1𝑎𝑎𝑗𝑗−1,1,𝑚𝑚 ,𝑛𝑛 ⋱ 𝑐𝑐0𝑎𝑎0,𝑗𝑗 ,𝑚𝑚 ,𝑛𝑛 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ 0
𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚 ,0,𝑚𝑚 ,𝑛𝑛 𝑐𝑐𝑚𝑚−1𝑎𝑎𝑚𝑚1,1,𝑚𝑚 ,𝑛𝑛 ⋱ 𝑐𝑐𝑚𝑚−𝑗𝑗+1𝑎𝑎𝑚𝑚−𝑗𝑗+1,𝑗𝑗 ,𝑚𝑚 ,𝑛𝑛 ⋱ 𝑐𝑐0𝑎𝑎0,𝑛𝑛 ,𝑚𝑚 ,𝑛𝑛

0 𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚 ,1,𝑚𝑚 ,𝑛𝑛 ⋱ 𝑐𝑐𝑚𝑚−𝑗𝑗+2𝑎𝑎𝑚𝑚−𝑗𝑗+2,𝑗𝑗 ,𝑚𝑚 ,𝑛𝑛 ⋱ 𝑐𝑐1𝑎𝑎1,𝑛𝑛 ,𝑚𝑚 ,𝑛𝑛
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚 ,𝑗𝑗 ,𝑚𝑚 ,𝑛𝑛 ⋱ 𝑐𝑐𝑗𝑗−1𝑎𝑎𝑗𝑗−1,𝑛𝑛 ,𝑚𝑚 ,𝑛𝑛
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ ⋯ ⋯ 0 𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚 ,𝑛𝑛 ,𝑚𝑚 ,𝑛𝑛 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

or 

�𝐶̃𝐶𝑚𝑚 ,𝑛𝑛�𝑖𝑖 ,𝑗𝑗 = �
0 , 𝑖𝑖 ∉ [𝑗𝑗, 𝑗𝑗 + 𝑚𝑚]
𝑐𝑐𝑖𝑖−𝑗𝑗 𝑎𝑎(𝑖𝑖−𝑗𝑗 ),(𝑗𝑗−1),𝑚𝑚 ,𝑛𝑛 , 𝑜𝑜.𝑤𝑤

� , 

Also, by transposing (16), we have: 

𝜓𝜓𝑛𝑛(𝑥𝑥)𝜓𝜓𝑚𝑚𝑇𝑇 (𝑥𝑥)𝑐𝑐 = 𝐶𝐶𝑛𝑛 ,𝑚𝑚�𝜓𝜓𝑚𝑚+𝑛𝑛(𝑥𝑥),
𝐶𝐶𝑛𝑛 ,𝑚𝑚� = 𝐶̃𝐶𝑚𝑚 ,𝑛𝑛

𝑇𝑇 ,
 

(17) 

2.4.6 The power matrix: 

Suppose that𝑦𝑦(𝑥𝑥) = 𝑐𝑐𝑇𝑇𝜓𝜓𝑚𝑚(𝑥𝑥), we aim to introduce 𝐶𝐶𝑚𝑚 ,𝑛𝑛������ operational matrix by which 
𝑦𝑦𝑛𝑛(𝑥𝑥) =  𝐶𝐶𝑚𝑚 ,𝑛𝑛𝜙𝜙𝑛𝑛𝑛𝑛 (𝑥𝑥). Using (17), we have: 𝑦𝑦2(𝑥𝑥) =  𝑐𝑐𝑇𝑇𝜓𝜓𝑚𝑚(𝑥𝑥)𝜓𝜓𝑚𝑚𝑇𝑇 (𝑥𝑥)𝑐𝑐 =  (𝑐𝑐𝑇𝑇)𝐶𝐶𝑚𝑚 ,𝑚𝑚�𝜓𝜓2𝑚𝑚(𝑥𝑥),

𝑦𝑦3(𝑥𝑥) =  𝑐𝑐𝑇𝑇𝐶𝐶𝑚𝑚 ,𝑚𝑚�𝜓𝜓2𝑚𝑚 (𝑥𝑥)𝜓𝜓𝑚𝑚𝑇𝑇 (𝑥𝑥)𝑐𝑐 =  𝑐𝑐𝑇𝑇𝐶𝐶𝑚𝑚 ,𝑚𝑚�𝐶𝐶2𝑚𝑚 ,𝑚𝑚� 𝜓𝜓3𝑚𝑚 (𝑥𝑥) ,
⋮

 

Also, a similar result will be obtained for 𝑦𝑦𝑛𝑛(𝑥𝑥) 

𝑦𝑦𝑛𝑛(𝑥𝑥) =  𝑐𝑐𝑇𝑇�𝐶𝐶𝑖𝑖𝑖𝑖 ,𝑚𝑚�𝜓𝜓𝑛𝑛𝑛𝑛 (𝑥𝑥)
𝑛𝑛−1

𝑖𝑖=1

𝑛𝑛 ≥ 2 ,

= 𝐶𝐶𝑚𝑚 ,𝑛𝑛𝜓𝜓𝑛𝑛𝑛𝑛 (𝑥𝑥), 𝑛𝑛 ≥ 2

 

(18) 

where 

𝐶𝐶𝑚𝑚 ,𝑛𝑛 =  𝑐𝑐𝑇𝑇�𝐶𝐶𝑖𝑖𝑖𝑖 ,𝑚𝑚�
𝑛𝑛−1

𝑖𝑖=1

,𝑛𝑛 ≥ 2 . 

We name 𝐶𝐶𝑚𝑚 ,𝑛𝑛  the Bernstein power operational matrix. 

2.4.7 The Q Matrix: 

Suppose that we want to solve𝒩𝒩[𝑢𝑢(𝑥𝑥)] =  0. Firstly, we choose an 𝑚𝑚 value by which 
the approximated 𝑢𝑢(𝑥𝑥) would be 

𝑢𝑢(𝑥𝑥) ≈ 𝑦𝑦(𝑥𝑥) =  �𝑐𝑐𝑖𝑖𝐵𝐵𝑖𝑖 ,𝑚𝑚 (𝑥𝑥)
𝑚𝑚

𝑖𝑖=0

=  𝑐𝑐𝑇𝑇𝜓𝜓𝑚𝑚 (𝑥𝑥),

𝑐𝑐 =  [𝑐𝑐0𝑐𝑐1  ⋯𝑐𝑐𝑚𝑚 ]𝑇𝑇 ,

 

where the coefficients 𝑐𝑐𝑖𝑖s are unknown.Then, we substitute the operations in 𝒩𝒩[𝑦𝑦(𝑥𝑥)] 
by the exact operational matrices to reach the exact residual function𝒩𝒩[𝑐𝑐𝑇𝑇𝜓𝜓𝑚𝑚(𝑥𝑥)]; 
nevertheless, if the equation possesses some functions which does not exist in 
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𝑌𝑌𝑚𝑚 =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 �𝐵𝐵0,𝑚𝑚 (𝑥𝑥),𝐵𝐵1,𝑚𝑚(𝑥𝑥),⋯ ,𝐵𝐵𝑚𝑚 ,𝑚𝑚(𝑥𝑥)� , 

(19) 

then, it would not be possible to have an exact residual function, which is because of 
the approach nature. However, we can write the new (exact) residual function as 
𝑅𝑅1×𝑁𝑁 .𝜓𝜓𝑁𝑁(𝑥𝑥). We aim to set 𝑐𝑐𝑖𝑖s so that the obtained residual function becomes as near 
as possible to zero. In this research, our interpretation of "best residual function'' or 
"the nearest residual function to zero'' for a specific defined norm ‖ ‖ is the function 
𝑟𝑟(𝑥𝑥) for which 

∀𝑓𝑓(𝑥𝑥) ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝐹𝐹𝑚𝑚 (𝑥𝑥)�: ‖𝑟𝑟(𝑥𝑥)‖ ≤ ‖𝑓𝑓(𝑥𝑥) − 𝑟𝑟(𝑥𝑥)‖ 

(20) 

In other words, we can say, 𝑟𝑟(𝑥𝑥) is a function which, its best approximation in 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝐹𝐹𝑚𝑚 (𝑥𝑥)� is the zero function. To do so, firstly, consider the following theorem 

Theorem 2.1 

Consider the inner product space 𝐻𝐻 = 𝐿𝐿2[𝑎𝑎, 𝑏𝑏] and one of its finite-dimensional 
subspaces 

𝐹𝐹𝑚𝑚 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝑓𝑓0(𝑥𝑥), 𝑓𝑓1(𝑥𝑥),⋯ , 𝑓𝑓𝑚𝑚 (𝑥𝑥)�, 

with the inner product defined by 

〈𝑓𝑓(𝑡𝑡),𝑔𝑔(𝑡𝑡)〉 = � 𝑓𝑓(𝑡𝑡)𝑔𝑔(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
. 

If 𝑝𝑝(𝑥𝑥) ∈  𝐹𝐹𝑚𝑚  is the best approximation of 𝑞𝑞(𝑥𝑥) ∈  𝐻𝐻, then 

〈𝑞𝑞(𝑥𝑥) −  𝑝𝑝(𝑥𝑥), 𝑓𝑓 〉 =  0 , 

where 

𝑓𝑓 = [𝑓𝑓0(𝑥𝑥)𝑓𝑓1(𝑥𝑥)⋯𝑓𝑓𝑚𝑚(𝑥𝑥)]𝑇𝑇 ,
〈𝑓𝑓(𝑥𝑥), 𝑓𝑓 〉 =  [〈𝑓𝑓(𝑥𝑥), 𝑓𝑓0(𝑥𝑥)〉〈𝑓𝑓(𝑥𝑥), 𝑓𝑓1(𝑥𝑥)〉⋯ 〈𝑓𝑓(𝑥𝑥), 𝑓𝑓𝑚𝑚 (𝑥𝑥)〉] 

Proof. 

A complete proof is given in [10].■ 

Consider two inner product spaces 𝐻𝐻 = 𝐿𝐿2[0,1] and 𝑌𝑌𝑚𝑚  with the inner product defined 
by 

〈𝑓𝑓(𝑡𝑡),𝑔𝑔(𝑡𝑡)〉 = � 𝑓𝑓(𝑡𝑡)𝑔𝑔(𝑡𝑡)𝑑𝑑𝑡𝑡
1

0
. 

We want the best approximation of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥), in𝑌𝑌𝑚𝑚 , to be zero. Using Theorem 
2.1, we have 

〈(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) −  0),𝜓𝜓𝑚𝑚 (𝑥𝑥)〉 =  0 ,
〈�𝑅𝑅1×(𝑁𝑁+1) × 𝜓𝜓𝑁𝑁(𝑥𝑥) −  0�,𝜓𝜓𝑚𝑚 (𝑥𝑥)〉 =  0 ,𝑁𝑁 ≥ 𝑚𝑚 ,
𝑅𝑅1×(𝑁𝑁+1) × 〈𝜓𝜓𝑁𝑁(𝑥𝑥),𝜓𝜓𝑚𝑚 (𝑥𝑥)〉 =  0 , 𝑁𝑁 ≥ 𝑚𝑚 ,

 

therefore, 

𝑅𝑅1×(𝑁𝑁+1) × 𝑄𝑄(𝑁𝑁,𝑚𝑚) =  0 , 

(21) 

where 𝑄𝑄(𝑁𝑁,𝑚𝑚) is an (𝑁𝑁 +  1) ×  (𝑚𝑚 +  1) matrix 
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𝑄𝑄(𝑁𝑁,𝑚𝑚) =  �𝑞𝑞𝑖𝑖𝑖𝑖 �𝑁𝑁+1×𝑚𝑚+1
,𝑞𝑞𝑖𝑖𝑖𝑖 =  〈𝐵𝐵𝑖𝑖−1,𝑁𝑁(𝑥𝑥),𝐵𝐵𝑗𝑗−1,𝑚𝑚(𝑥𝑥)〉, 𝑖𝑖 ≤  𝑁𝑁, 𝑗𝑗 ≤ 𝑚𝑚 , 

then, using (21), we solve 

𝑅𝑅𝑚𝑚∗ =  0 , 

(22) 

where 

𝑅𝑅𝑚𝑚∗ =  𝑅𝑅1× (𝑁𝑁+1) ×  𝑄𝑄(𝑁𝑁,𝑚𝑚). 

Also, we know that 

𝑞𝑞𝑖𝑖𝑖𝑖 = 〈𝐵𝐵𝑖𝑖−1,𝑁𝑁(𝑥𝑥),𝐵𝐵𝑗𝑗−1,𝑚𝑚(𝑥𝑥)〉,

=  � 〖� 𝑁𝑁
𝑖𝑖 − 1� �

𝑚𝑚
𝑗𝑗 − 1� 𝑥𝑥

𝑖𝑖+𝑗𝑗−2(1 − 𝑥𝑥)𝑁𝑁+𝑚𝑚−𝑖𝑖−𝑗𝑗+2𝑑𝑑𝑑𝑑 �
1

0
,

=
� 𝑁𝑁
𝑖𝑖 − 1� �

𝑚𝑚
𝑗𝑗 − 1� �𝑁𝑁 + 𝑚𝑚 + 2 − (𝑖𝑖 + 𝑗𝑗)�! + (𝑖𝑖 + 𝑗𝑗 − 2)!

𝑁𝑁 + 𝑚𝑚 + 1
.

 

So, we have found the matrix 𝑄𝑄(𝑁𝑁,𝑚𝑚) =  �𝑞𝑞𝑖𝑖𝑖𝑖 �𝑁𝑁+1× 𝑚𝑚+1, by which the 𝑚𝑚 final 
equations (𝑅𝑅𝑚𝑚∗ ) are obtained. By solving the obtained algebraic system, we will find 
𝑚𝑚 + 1 unknown coefficients (elements of vector 𝑐𝑐𝑚𝑚 ) and, finally, find the 
𝑦𝑦(𝑥𝑥) ≃  𝑐𝑐𝑚𝑚𝑇𝑇 × 𝜓𝜓𝑚𝑚(𝑥𝑥). 

It is worth mentioning that the logic behind of the 𝑄𝑄 matrix is exactly the logic of the 
Galerkin method; so, both of the results are the same and we call the 𝑄𝑄 matrix as the 
Galerkin matrix. 

 
3 The error bound of the solution 
 

Before discussing about error bound of the solution, we describe the notation used in 
this section in brief. Suppose that ℋ = 𝐶𝐶(Γ) denote the set of continuous functions in 
a linear space on a given closed intervalΓ = [𝑎𝑎, 𝑏𝑏]. A norm in 𝐶𝐶[𝑎𝑎, 𝑏𝑏], for all 
𝑓𝑓 ∈ 𝐶𝐶[𝑎𝑎, 𝑏𝑏], can be defined by 

‖𝑓𝑓‖∞ = max
𝑎𝑎  ≤𝑥𝑥  ≤𝑏𝑏

|𝑓𝑓(𝑥𝑥)| . 

Let �𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛� ⊂ ℋ and suppose that 

𝑱𝑱 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛�, 

(23) 

be the set of all polynomials of degree at most 𝑛𝑛. Since ℋ is Hilbert space and 𝑱𝑱 is the 
finite-dimensional subspace, dim 𝑱𝑱 = 𝑛𝑛 + 1, so 𝑱𝑱 is a closed subspace of ℋ; therefore, 
𝑱𝑱is a complete subspace of ℋ [31]. 

Let 𝑓𝑓 be an arbitrary element in ℋ, therefore, 𝑓𝑓 has a unique best approximation 
from 𝐽𝐽, say  𝑗𝑗̂ ∈ 𝑱𝑱, that is [31] 

∃𝑗𝑗̂  ∈ 𝑱𝑱;  |𝑓𝑓 − 𝑗𝑗̂|∞ = inf
∀𝑗𝑗∈ 𝑱𝑱

|𝑓𝑓 − 𝑗𝑗|∞ , 

(24) 

The Weierstrass Approximation Theorem is a famous theorem in mathematical 
analysis. It asserts that every continuous function defined on a closed interval can be 
uniformly approximated as closely as desired by a polynomial function [32]. 
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Theorem 3.1(The Weierstrass Approximation Theorem) 

Let𝑓𝑓 ∈ ℋ. For any 𝜖𝜖 > 0, there exists a polynomial function 𝑝𝑝 such that for all 𝑥𝑥 in 
[𝑎𝑎, 𝑏𝑏], we have 

‖𝑓𝑓(𝑥𝑥) − 𝑝𝑝(𝑥𝑥)‖∞ < 𝜖𝜖. 

Proof; Refer to[33]■ 

By a linear substitution, the interval [𝑎𝑎, 𝑏𝑏] can be transformed into the unit interval 
[0, 1]. Thus, the original statement of the theorem holds if and only if the theorem 
holds for every continuous function 𝑓𝑓 defined on the interval [0, 1]. Define the 𝑛𝑛th 
Bernstein polynomial for 𝑓𝑓 to be 

𝐵𝐵𝑚𝑚 (𝑓𝑓; 𝑥𝑥) =  �𝑓𝑓�
𝑘𝑘
𝑚𝑚
�𝐵𝐵𝑘𝑘 ,𝑚𝑚(𝑥𝑥)

𝑚𝑚

𝑘𝑘=0

, 

Theorem 3.2(The Bernstein Theorem)[34] 

Let 𝑓𝑓 be a continuous function defined on the closed interval[0, 1]. For any 𝜖𝜖 > 0, 
there exists a positive integer 𝑀𝑀 such that for all 𝑥𝑥 in [0, 1] and integer 𝑚𝑚 ≥  𝑀𝑀, we 
have 

‖𝑓𝑓(𝑥𝑥) − 𝐵𝐵𝑚𝑚 (𝑓𝑓; 𝑥𝑥)‖∞ < 𝜖𝜖 . 

Remark 3.1; Note that the function 𝐵𝐵𝑚𝑚 (𝑓𝑓 ;  𝑥𝑥) is a polynomial on 𝑥𝑥. Thus, on the basis 
of the Bernstein Theorem, the Weierstrass Approximation Theorem holds. 

Given a power-form polynomial 𝑔𝑔 of degree 𝑛𝑛, it is well known that for any 𝑚𝑚 ≥
 𝑛𝑛, 𝑔𝑔 can be uniquely converted into a Bernstein polynomial of degree 𝑚𝑚[35]. 

 Now, given that the known function 𝑓𝑓 is m times continuously differentiable, the 
following lemma can be presented as an upper bound for estimating the error. 

Lemma 3.1; Let the function𝑔𝑔 ∶  [𝑎𝑎, 𝑏𝑏] → ℝ is 𝑚𝑚 +  1 times continuously 
differentiable,𝑔𝑔 ∈ 𝐶𝐶𝑚𝑚+1[𝑎𝑎, 𝑏𝑏 ], and 

𝑌𝑌 =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 �𝐵𝐵0,𝑚𝑚(𝑥𝑥),𝐵𝐵1,𝑚𝑚 (𝑥𝑥), . . . ,𝐵𝐵𝑚𝑚 ,𝑚𝑚 (𝑥𝑥)�. 

 If𝑐𝑐𝑇𝑇𝜓𝜓𝑚𝑚  (𝑥𝑥) is the best approximation to 𝑔𝑔 from 𝑌𝑌, then the mean error bound is 
presented as follows: 

‖𝑔𝑔 − 𝑐𝑐𝑇𝑇𝜓𝜓𝑚𝑚(𝑥𝑥)‖2 ≤
𝑀𝑀(𝑏𝑏 − 𝑎𝑎)

2𝑚𝑚+3
2

(𝑚𝑚 + 1)!√2𝑚𝑚 + 3
, 

where 𝑀𝑀 = max
𝑎𝑎  ≤𝑥𝑥  ≤𝑏𝑏

= �𝑔𝑔𝑚𝑚+1(𝑥𝑥)� ,‖𝑓𝑓‖2 = 〈𝑓𝑓, 𝑓𝑓〉
1
2 and〈𝑓𝑓,𝑔𝑔〉 = ∫ 𝑓𝑓(𝑡𝑡)𝑔𝑔(𝑡𝑡)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎 . 

Proof; A complete proof is given in [9]■. 

Definition 3.1; Let𝑓𝑓(𝑥𝑥) be defined on[𝑎𝑎, 𝑏𝑏], the modulus of continuity of 𝑓𝑓 (𝑥𝑥) 
on[𝑎𝑎, 𝑏𝑏], 𝑤𝑤(𝛿𝛿), is defined by 

𝑤𝑤(𝛿𝛿) =  𝑠𝑠𝑠𝑠𝑝𝑝|𝑥𝑥−𝑦𝑦|<𝛿𝛿 |𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)| ,             𝑓𝑓𝑓𝑓𝑓𝑓  𝛿𝛿 > 0 , 

 We continue this section by stating two theorems concerned with estimating the 
error𝑓𝑓(𝑥𝑥)– 𝐵𝐵𝑛𝑛(𝑓𝑓;  𝑥𝑥). The first one is the theorem of Elizaveta V. Voronovskaya 
(1898-1972), which gives an asymptotic error term for the Bernstein polynomials for 
functions that are twice differentiable. 

There is the following result that gives an upper bound for the error𝑓𝑓(𝑥𝑥) − 𝐵𝐵𝑛𝑛(𝑓𝑓;  𝑥𝑥) 
in terms of the modulus of continuity 
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Theorem 3.3[36] 

If 𝑓𝑓 is bounded on[0, 1], then  

‖𝑓𝑓 − 𝐵𝐵𝑛𝑛(𝑓𝑓; 𝑥𝑥)‖∞ ≤
3
2
𝑤𝑤 �

1
√𝑛𝑛

� . 

Theorem 3.4 

If 𝑓𝑓 is bounded on[0, 1] and𝑌𝑌 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝐵𝐵0,𝑚𝑚 (𝑥𝑥),𝐵𝐵1,𝑚𝑚(𝑥𝑥), . . . ,𝐵𝐵𝑚𝑚 ,𝑚𝑚(𝑥𝑥)�, then 

‖𝑓𝑓 − 𝑐𝑐𝑇𝑇𝜓𝜓𝑚𝑚 (𝑥𝑥)‖2 ≤
3
2

 𝑤𝑤 �
1
√𝑚𝑚

� . 

Where𝑐𝑐𝑇𝑇𝜓𝜓𝑚𝑚 (𝑥𝑥) is the best approximation of 𝑓𝑓in 𝑌𝑌. 

Proof.; A complete proof is given in [9].■ 

Definition 3.2; Let𝑓𝑓(𝑥𝑥) ∈  𝐶𝐶[0,1] and𝜙𝜙: [0,1] → ℝ be an admissible step-weight 
function (for details see [37]), the Ditzian-Totik modulus of smoothness of second 
order of 𝑓𝑓(𝑥𝑥) on[0, 1],𝑤𝑤𝜙𝜙2 (𝛿𝛿), is defined by 

𝑤𝑤𝜙𝜙2 (𝛿𝛿) = sup
|ℎ|≤𝛿𝛿

� sup
𝑥𝑥±ℎ𝜙𝜙(𝑥𝑥)∈ [0,1]

(|𝑓𝑓(𝑥𝑥 − 𝜙𝜙(𝑥𝑥)ℎ) − 2𝑓𝑓(𝑥𝑥) + 𝑓𝑓(𝑥𝑥 + 𝜙𝜙(𝑥𝑥)ℎ)|)� ,

𝑓𝑓𝑓𝑓𝑓𝑓 𝛿𝛿 > 0 ,
 

 

Theorem 3.5 

Let𝜑𝜑(𝑥𝑥) = �𝑥𝑥(1 − 𝑥𝑥) and let𝜙𝜙: [0,1] → ℝ,𝜙𝜙 ≠ 0 be an admissible step-weight 

function of the Ditzian-Totik modulus of smoothness such that𝜙𝜙2 and𝜑𝜑
2

𝜙𝜙2 are concave. 
Then, for any𝑓𝑓 ∈  𝐶𝐶[0,1] and𝜆𝜆 ∈  [0,1] 

‖𝑓𝑓(𝑥𝑥) − 𝐵𝐵𝑛𝑛(𝑓𝑓; 𝑥𝑥)‖∞ ≤  𝐶𝐶 𝑤𝑤𝜙𝜙𝜆𝜆
2 �

1
�√𝑛𝑛�

𝜑𝜑(𝑥𝑥)1−𝜆𝜆�  ,    𝑥𝑥 ∈  [0,1]. 

(25) 

Proof. A complete proof is given in [38]■ 

Remark 3.2; The case 𝜆𝜆 = 0 in (25) gives the classical local estimate [39], 
whereas 𝜆𝜆 = 1 gives the global norm estimate developed by Ditzian and Totik [37]. 

 Felten has,recently, showed the following theorem in [40]: 

Theorem 3.6 

Let𝜑𝜑(𝑥𝑥) = �𝑥𝑥(1 − 𝑥𝑥) and let𝜙𝜙: [0,1] → ℝ, 𝜙𝜙 ≠ 0 be an admissible step-weight 

function of the Ditzian-Totik modulus of smoothness such that𝜙𝜙2 and𝜑𝜑
2

𝜙𝜙2 are concave. 
Then, for 𝑓𝑓 ∈  𝐶𝐶[0,1] 

‖𝑓𝑓(𝑥𝑥) − 𝐵𝐵𝑛𝑛(𝑓𝑓; 𝑥𝑥)‖∞ ≤  𝐶𝐶 𝑤𝑤𝜙𝜙2 �
1
√𝑛𝑛

𝜑𝜑(𝑥𝑥)
𝜙𝜙(𝑥𝑥)� ,    𝑥𝑥 ∈  [0,1]. 

Also for𝛼𝛼 ∈ (0,2), we have 

‖𝑓𝑓(𝑥𝑥) − 𝐵𝐵𝑛𝑛(𝑓𝑓; 𝑥𝑥)‖∞ ≤  𝐶𝐶1 �
1
√𝑛𝑛

𝜑𝜑(𝑥𝑥)
𝜙𝜙(𝑥𝑥)�

𝛼𝛼

,    𝑥𝑥 ∈ [0,1]. 

 which implies that𝑤𝑤𝜙𝜙2 (𝛿𝛿) ≤  𝐶𝐶2𝛿𝛿𝛼𝛼 . 
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Lemma 3.2; In Theorem 3.6 let the function 𝑓𝑓 ∶  [𝑎𝑎, 𝑏𝑏] → ℝ to be 𝑚𝑚 +  1 times 
continuously differentiable,�𝑓𝑓 ∈ 𝐶𝐶𝑚𝑚+1[𝑎𝑎, 𝑏𝑏]� and 

𝑌𝑌 =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝐵𝐵0,𝑛𝑛(𝑥𝑥),𝐵𝐵1,𝑛𝑛(𝑥𝑥), . . . ,𝐵𝐵𝑛𝑛 ,𝑛𝑛(𝑥𝑥)�. 

 If𝑐𝑐𝑇𝑇𝜓𝜓𝑛𝑛(𝑥𝑥) is the best approximation to 𝑓𝑓 in 𝑌𝑌, then the mean error bound is 
presented as follows: 

‖𝑓𝑓(𝑥𝑥) − 𝑐𝑐𝑇𝑇𝜓𝜓𝑛𝑛(𝑥𝑥)‖2 ≤  𝐶𝐶 𝑤𝑤𝜙𝜙2 �
1
√𝑛𝑛

𝜑𝜑(𝑥𝑥)
𝜙𝜙(𝑥𝑥)� ,    𝑥𝑥 ∈  [0,1]. 

Proof; Since𝑐𝑐𝑇𝑇𝜓𝜓𝑛𝑛(𝑥𝑥) is the best approximation of 𝑓𝑓 from 𝑌𝑌 and𝐵𝐵𝑛𝑛(𝑓𝑓; 𝑥𝑥) ∈  𝑌𝑌, 
using‖𝑓𝑓‖2 ≤ ‖𝑓𝑓‖∞  we have 

‖𝑓𝑓(𝑥𝑥) − 𝑐𝑐𝑇𝑇𝜓𝜓𝑛𝑛(𝑥𝑥)‖2 ≤ ‖𝑓𝑓(𝑥𝑥) − 𝐵𝐵𝑛𝑛(𝑓𝑓; 𝑥𝑥)‖2
≤ ‖𝑓𝑓(𝑥𝑥) − 𝐵𝐵𝑛𝑛(𝑓𝑓; 𝑥𝑥)‖∞

≤ 𝐶𝐶𝑤𝑤𝜙𝜙2 �
1
√𝑛𝑛

𝜑𝜑(𝑥𝑥)
𝜙𝜙(𝑥𝑥)� , 𝑥𝑥 ∈  [0,1].

 

 

4 Applications 
 

In this section, we compare the results obtained by EOMs with the results presented in 
[10] (in which OOMs for the Bernstein polynomials are introduced) to show the 
efficiency and accuracy of the present method.[10]includes two examples and some 
reports about them; but, to have a comprehensive comparison, we need some added 
reports.So, we implement OOMs as well as EOMs and run the codes together. 

We compare the results in the first example with the exact solution and compute the 
norm1 of the error and the residual function for each one.In the second example, the 
exact solution is not available except in special cases. Therefore, we only compare 
two methods residual functions. 

We apply the present method to both examples for some increasing values of 𝑚𝑚 and 
report the following fraction formulas to study the convergence rate of both methods: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒1 =
‖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥)‖1   𝑓𝑓𝑓𝑓𝑓𝑓  𝑡𝑡ℎ𝑒𝑒  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑚𝑚
‖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥)‖1   𝑓𝑓𝑓𝑓𝑓𝑓  𝑡𝑡ℎ𝑒𝑒  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚

, 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜1 =
‖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥)‖1  𝑓𝑓𝑓𝑓𝑓𝑓  𝑡𝑡ℎ𝑒𝑒  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑚𝑚
‖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥)‖1  𝑓𝑓𝑓𝑓𝑓𝑓  𝑡𝑡ℎ𝑒𝑒  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚

 , 

𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒2 =
‖𝑢𝑢(𝑥𝑥) − 𝑦𝑦𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥)‖1   𝑓𝑓𝑓𝑓𝑓𝑓  𝑡𝑡ℎ𝑒𝑒  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑚𝑚
‖𝑢𝑢(𝑥𝑥) − 𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥)‖1   𝑓𝑓𝑓𝑓𝑓𝑓  𝑡𝑡ℎ𝑒𝑒  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚

 , 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜2 =
‖𝑢𝑢(𝑥𝑥) − 𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥)‖1   𝑓𝑓𝑓𝑓𝑓𝑓  𝑡𝑡ℎ𝑒𝑒  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚
‖𝑢𝑢(𝑥𝑥) − 𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥)‖1   𝑓𝑓𝑓𝑓𝑓𝑓  𝑡𝑡ℎ𝑒𝑒  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚

 , 

The numerical implementation and all of the executions are performable by 
maplesoft.maple.16.x64, 64-bit Windows7 Ultimate Operating System, alongside 
hardware configuration: Laptop 64-bit Core i3 M380 CPU, 8 GBs of RAM. 

 

4.1 The Bessel differential equation 
 

Consider the following Bessel differential equation of order zero [41] 
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𝒩𝒩[𝑢𝑢(𝑥𝑥)] =  0 , 

where 

𝓝𝓝[𝒖𝒖(𝒙𝒙)] =  𝒙𝒙𝒖𝒖′′ (𝒙𝒙)  +  𝒖𝒖′(𝒙𝒙)  +  𝒙𝒙𝒙𝒙(𝒙𝒙) 
(Error!  Bookmark not defined. ) 

with the initial conditions 

𝑢𝑢(0) =  1   𝑢𝑢′(0) = 0. 

A solution known as the Bessel function of the first kind of order zero denoted 
by𝐽𝐽0(𝑥𝑥) is 

𝐽𝐽0(𝑥𝑥) = �
(−1)𝑞𝑞

(𝑞𝑞!)2 �
𝑥𝑥
2
�

2𝑞𝑞∞

𝑞𝑞=0

. 

Let 𝑦𝑦′′(𝑥𝑥) to be an approximation of 𝑢𝑢′′(𝑥𝑥) in 𝑌𝑌 inner product space(19). Then 

𝑦𝑦′′ (𝑥𝑥) = 𝑐𝑐𝑇𝑇𝜓𝜓𝑚𝑚(𝑥𝑥)  ,
𝑦𝑦′(𝑥𝑥) − 𝑦𝑦′(0) =  𝑐𝑐𝑇𝑇𝑃𝑃𝑚𝑚𝜓𝜓𝑚𝑚+1(𝑥𝑥) ,

 

(26) 

or 

𝑦𝑦′(𝑥𝑥) =  𝑔𝑔𝑇𝑇𝜓𝜓𝑚𝑚+1(𝑥𝑥),
𝑔𝑔 =  𝑃𝑃𝑚𝑚𝑇𝑇𝑐𝑐 .

 

(27) 

Also, using (7) we have 

𝑦𝑦(𝑥𝑥) −  𝑦𝑦(0) =  𝑔𝑔𝑇𝑇𝑃𝑃𝑚𝑚+1𝜓𝜓𝑚𝑚+2(𝑥𝑥),
𝑦𝑦(𝑥𝑥) =  �𝑔𝑔𝑇𝑇𝑃𝑃𝑚𝑚+1 +  𝑑𝑑0,𝑚𝑚+2

𝑇𝑇 �𝜓𝜓𝑚𝑚+2(𝑥𝑥) 

or 

𝑦𝑦(𝑥𝑥) =  ℎ𝑇𝑇𝜓𝜓𝑚𝑚+2(𝑥𝑥),
ℎ =  𝑃𝑃𝑚𝑚+1

𝑇𝑇 𝑔𝑔 +  𝑑𝑑0,𝑚𝑚+2.
 

(28) 

Also, using (26),(28),(7) and (17) we have 

𝑥𝑥𝑦𝑦′′ (𝑥𝑥) =  𝑐𝑐𝑇𝑇𝑑𝑑1,1� 𝑚𝑚 ,1𝜓𝜓𝑚𝑚+1(𝑥𝑥)

𝑥𝑥𝑥𝑥(𝑥𝑥) =  ℎ𝑇𝑇𝑑𝑑1,1� 𝑚𝑚+2,1𝜓𝜓𝑚𝑚+3(𝑥𝑥).
 

Now, consider the Eqs. (Error!  Bookmark not defined.) and (11) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = 𝒩𝒩[𝑦𝑦(𝑥𝑥)]

=  �𝑐𝑐𝑇𝑇𝑑𝑑1,1� 𝑚𝑚 ,1 +  𝑔𝑔𝑇𝑇�𝐸𝐸𝑚𝑚+1,2𝜓𝜓𝑚𝑚+3(𝑥𝑥) +  ℎ𝑇𝑇𝑑𝑑1,1� 𝑚𝑚+2,1𝜓𝜓𝑚𝑚+3(𝑥𝑥)

=  �𝑐𝑐𝑇𝑇𝑑𝑑1,1� 𝑚𝑚 ,1 +  𝑔𝑔𝑇𝑇�𝐸𝐸𝑚𝑚+1,2 +  ℎ𝑇𝑇𝑑𝑑1,1� (𝑚𝑚+2,1)𝜓𝜓𝑚𝑚+3(𝑥𝑥)

=  𝑅𝑅(1× 𝑚𝑚+4)𝜓𝜓𝑚𝑚+3(𝑥𝑥),

 

where 

𝑅𝑅 =  �𝑐𝑐𝑇𝑇𝑑𝑑1,1� 𝑚𝑚 ,1 +  𝑔𝑔𝑇𝑇� 𝐸𝐸𝑚𝑚+1,2 +  ℎ𝑇𝑇𝑑𝑑1,1� 𝑚𝑚+2,1, 

Using (22), the only remaining issue is to solve the following system (𝑚𝑚 + 1 
equations and 𝑚𝑚 + 1 unknown elements of vector 𝑐𝑐) 
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𝑅𝑅𝑚𝑚∗ =  0 , 

(29) 

where 

𝑅𝑅𝑚𝑚∗ =  𝑅𝑅 ×  𝑄𝑄(𝑚𝑚 + 3,𝑚𝑚). 

Eq. (29) is a system of nonlinear algebraic equations, which can be solved by a 
mathematical-software for the unknown elements of vector 𝑐𝑐. 

Although, it is worth mentioning that it is too difficult to solve the systems of 
nonlinear equations even by Newton's method when the number of equation rises up; 
the main difficulty with such systems is how to choose the initial guess to handle the 
Newton method such that it results in low order computations. So, we applied the 
Galerkin method repeatedly. In the first step, we applied the Galerkin method for a 
small 𝑛𝑛 (𝜓𝜓𝑛𝑛(𝑥𝑥)) and set the initial guess to be a zero vector and gained a 
solution 𝑦𝑦(𝑥𝑥) = 𝑐𝑐1×𝑛𝑛𝜓𝜓𝑛𝑛(𝑥𝑥).Afterward, we applied the Galerkin method for a larger 

Figure 2 
Graph of the absolute errors and Residual functions norms obtained by 
EOM and OOM in Example 1. 

Figure 2 
Graph of the absolute errors and Residual functions obtained by EOM and OOM 
for m=10 in Example 1. 
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size ofbasis vector�𝜓𝜓𝑛𝑛+𝑖𝑖(𝑥𝑥)� and set the initial guess to be 𝑐𝑐1×𝑛𝑛𝐸𝐸𝑛𝑛 ,𝑖𝑖  which caused the 
solution of the last step to be the first guess of this step. 

However, solving (29), the vector 𝑐𝑐 and, consequently, 𝑦𝑦(𝑥𝑥) =  ℎ𝑇𝑇𝜓𝜓𝑚𝑚+2(𝑥𝑥) is 
determined.The plots in Figure 2show the absolute error of both, OOM(|𝑢𝑢(𝑥𝑥) −
𝑦𝑦𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥)|) and EOM(|𝑢𝑢(𝑥𝑥) − 𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥)|) results and the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅function of both 
methods for 𝑚𝑚 = 10. In Figure 2, the error functions norm‖𝑢𝑢(𝑥𝑥) − 𝑦𝑦𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥)‖1,[0,1] 
and‖𝑢𝑢(𝑥𝑥) − 𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥)‖1,[0,1],‖. ‖1,[0,1] = ∫ (. )𝑑𝑑𝑑𝑑1

0  is reported. 

Also the norm of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) is shown for various values of 𝑚𝑚 for both EOM and 
OOM; which illustrates the convergence of both methods and the superiority of the 
present method. 

In Table 1, a comparison is made between the absolute errors norm values, the 
residual functions norm values and the convergence rate of both EOM and OOM for 
those 𝑚𝑚 values which Yousefi [10]has reported.Table 2is a comparison of two 
methods for the values reported in Table (1) from [10]. 

Looking at Table 1,Table 2,Figure 2 and Figure 2, it can be observed that EOM 
provides much accurate results than OOM. They, also, show that the accuracy 
increases with the bases size growth. 

Table 1 
Comparison of some important numerical results for the Example 1. 

𝑚𝑚 ‖𝑅𝑅𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂‖1 ‖𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸‖1 𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒1 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜1 

3 0.005633 0.00001919 293.6 - 

8 9.965e-10 4.645e-13 2146. 4.131e-7 

10 8.506e-13 2.412e-16 3526. 1925. 

𝑚𝑚 ‖𝐸𝐸𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂‖1 ‖𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸‖1 𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒2 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜2 

3 0.000057 8.282e-7 68.82 - 

8 1.311e-12 3.296e-15 397.9 2.512e 8 

10 6.880e-16 1.093e-18 629.6 3016. 

 

Table 2 
Comparison of OOM and EOM errors in various x values for the Example 1. 

𝑥𝑥 
𝑚𝑚 = 3 𝑚𝑚 = 6 

OOM EOM Compare OOM EOM Compare 

0.0 0.1973e-3 0 ∞ 0.6665e-11 0 ∞ 

0.1 0.4839e-4 0.7735e-6 62.56 0.1152e-11 0.4791e-14 240.5 
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0.2 0.7942e-4 0.1555e-5 51.08 0.1601e-12 0.8482e-15 188.8 

0.3 0.1811e-4 0.1510e-5 11.99 0.1378e-11 0.7275e-14 189.4 

0.4 0.5003e-4 0.9221e-6 54.26 0.1590e-11 0.2097e-14 758.3 

0.5 0.7556e-4 0.3819e-6 197.8 0.1693e-12 0.9304e-15 182.0 

0.6 0.4399e-4 0.2825e-6 155.7 0.1698e-11 0.6032e-14 281.5 

0.7 0.2552e-4 0.6004e-6 42.51 0.1144e-11 0.2923e-14 391.2 

0.8 0.8186e-4 0.9567e-6 85.56 0.4572e-12 0.1632e-14 280.2 

0.9 0.4384e-4 0.9423e-6 46.52 0.1356e-11 0.4018e-14 337.5 

1.0 0.1977e-3 0.6894e-6 286.7 0.6664e-11 0.2733e-14 2439. 

𝑥𝑥 𝑚𝑚 = 9 

OOM EOM Compare 

0.0 0.3831e-14 0 ∞ 

0.1 0.1126e-14 0.1830e-18 6150. 

0.2 0.9393e-15 0.2330e-17 403.2 

0.3 0.9421e-15 0.3510e-18 2684. 

0.4 0.6206e-15 0.1080e-17 574.6 

0.5 0.7229e-16 0.1958e-17 36.93 

0.6 0.7176e-15 0.4117e-21 0.1743e 7 

0.7 0.9424e-15 0.1752e-17 537.9 

0.8 0.8800e-15 0.6470e-18 1360. 

0.9 0.1084e-14 0.1221e-17 887.5 

1.0 0.3831e-14 0.8963e-18 4274. 

 

4.2 The Emden-Fowler equation 
 

Consider the Emden-Fowler equation given in [42] 

𝑢𝑢′′ (𝑥𝑥) +
2
𝑥𝑥
𝑢𝑢′(𝑥𝑥) + 𝑥𝑥𝑟𝑟𝑢𝑢𝑛𝑛(𝑥𝑥) = 0, 0 ≤  𝑥𝑥 ≤  1, 𝑛𝑛 ∈ ℕ ∪ {0} 

(30) 
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with the initial conditions 

𝑢𝑢(0) =  1,
𝑢𝑢′(0) =  0 . 

For convenience, we can product both sides in 𝑥𝑥 and have 

𝒩𝒩[𝑢𝑢(𝑥𝑥)] =  0 , 

where 

𝒩𝒩[𝑢𝑢(𝑥𝑥)] =  𝑥𝑥𝑢𝑢′′ (𝑥𝑥) +  2𝑢𝑢′(𝑥𝑥)  +  𝑥𝑥𝑟𝑟+1𝑢𝑢𝑛𝑛(𝑥𝑥) 

(31) 

Let 𝑦𝑦′′(𝑠𝑠) be an approximation of𝑢𝑢′′ (𝑠𝑠) in (31). We have 

𝑦𝑦′′ (𝑥𝑥) =  𝑐𝑐𝑇𝑇𝜓𝜓𝑚𝑚(𝑥𝑥),
𝑦𝑦′(𝑥𝑥) − 𝑦𝑦′(0) =  𝑐𝑐𝑇𝑇𝑃𝑃𝑚𝑚𝜓𝜓𝑚𝑚+1(𝑥𝑥),

 

(32) 

or 

𝑦𝑦′(𝑥𝑥) =  𝑔𝑔𝑇𝑇𝜓𝜓𝑚𝑚+1(𝑥𝑥),
𝑔𝑔 =  𝑃𝑃𝑚𝑚𝑇𝑇  𝑐𝑐 .

 

(33) 

Also, using (7) we have 

𝑦𝑦(𝑥𝑥) −  𝑦𝑦(0) =  𝑔𝑔𝑇𝑇𝑃𝑃𝑚𝑚+1𝜓𝜓𝑚𝑚+2(𝑥𝑥),
𝑦𝑦(𝑥𝑥) =  �𝑔𝑔𝑇𝑇𝑃𝑃𝑚𝑚+1 +  𝑑𝑑0,𝑚𝑚+2

𝑇𝑇 �𝜓𝜓𝑚𝑚+2(𝑥𝑥) 

or 

𝑦𝑦(𝑥𝑥) =  ℎ𝑇𝑇𝜓𝜓𝑚𝑚+2(𝑥𝑥),
ℎ =  𝑃𝑃𝑚𝑚+1

𝑇𝑇 𝑔𝑔 +  𝑑𝑑0,𝑚𝑚+2.
 

(34) 

So, using(18) and (34) we have 

𝑦𝑦𝑛𝑛(𝑥𝑥) = 𝐻𝐻𝑚𝑚+2,𝑛𝑛𝜓𝜓(𝑚𝑚+2)⋅𝑛𝑛(𝑥𝑥). 

(35) 

Also, using (32),(35),(7) and (17) we have 

𝑥𝑥𝑦𝑦′′ (𝑥𝑥) =  𝑐𝑐𝑇𝑇 �𝑑𝑑1,1� 𝑚𝑚 ,1�𝜓𝜓𝑚𝑚+1(𝑥𝑥)

𝑥𝑥𝑟𝑟+1𝑦𝑦𝑛𝑛(𝑥𝑥) = 𝐻𝐻𝑚𝑚+2,𝑛𝑛�𝑑𝑑𝑟𝑟+1,𝑟𝑟+1� �𝑚𝑚+2,𝑟𝑟+1𝜓𝜓(𝑚𝑚+2)⋅ 𝑛𝑛+ 𝑟𝑟+ 1(𝑥𝑥).
 

Now, consider the Equations (31) and (11) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) =  𝑅𝑅1× (𝑚𝑚+2)⋅ 𝑛𝑛+𝑟𝑟+2𝜓𝜓(𝑚𝑚+2)⋅ 𝑛𝑛+𝑟𝑟+1(𝑥𝑥), 

where 

𝑅𝑅 =  �𝑐𝑐𝑇𝑇�𝑑𝑑1,1� �𝑚𝑚 ,1 +  2 ⋅ 𝑔𝑔𝑇𝑇� 𝐸𝐸𝑚𝑚+1,(𝑚𝑚+2)⋅ (𝑛𝑛−1)+ 𝑟𝑟+2 + 𝐻𝐻𝑚𝑚+2,𝑛𝑛�𝑑𝑑𝑟𝑟+1,𝑟𝑟+1� �𝑚𝑚+2,𝑟𝑟+1 

By using (22), the only remaining issue is to solve the following system (𝑚𝑚 + 1 
equations and 𝑚𝑚 + 1 unknown elements of vector 𝑐𝑐): 

𝑅𝑅𝑚𝑚∗ =  0 , 

(36)



 

 

 

where,  

𝑅𝑅𝑚𝑚∗ =  𝑅𝑅 ×  𝑄𝑄�(𝑚𝑚 + 2) ⋅  𝑛𝑛 + 𝑟𝑟 + 1,𝑚𝑚�. 

Equation (37) is a system of nonlinear algebraic equations which its solution yields 
the vector 𝑐𝑐 elements.We solved the above equations system, setting 𝑛𝑛 = 𝑟𝑟 = 3, for 
some increasing 𝑚𝑚 values. 

We would like to state the numerical convergence, again, in the context of this 
example; therefore, in order to be assured of meaningful solutions, the numerical 
results are reported in Figure 3and Table 3, using residual functions norms. It is 
obviously observable that the residual functions norms tend to zero, while increasing 
the size of bases. As mentioned before, the analytic solution of 𝑦𝑦(𝑥𝑥) does not exist, 
thus we only compared the residual functions. 

Table 3 is the numerical report of the information depicted in Figure 3,alongside, a 
comparison between the residual functions norm values related to both methods in the 
3rd column and also the comparison between the convergence rates of EOM in each 
step to its previous step in the 4th column.Paying attention to the table, it can be seen 
that the approximations are improved by increasing the size of the basis, which 
confirms the proposed methods convergence. Also the convergence rate of EOM 
seems to be greater than OOM which shows superiority of the present method. 

 
Table 3 

Comparison of numerical results for Example 2. 

Figure 3 
Graph of the absolute errors norms and residual functions 
norms for EOM and OOM in Example 2. 
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𝑚𝑚 ‖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥)‖1 ‖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥)‖1 𝑅𝑅𝑎𝑎𝑎𝑎𝑒𝑒1 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜1 

4 0.1781e-2 0.4921e-3 3.620 - 

5 0.2454e-2 0.4891e-4 50.18 10.06 

6 0.6502e-3 0.1422e-4 45.73 3.440 

7 0.7988e-4 0.6298e-5 12.68 2.257 

8 0.1725e-4 0.1016e-5 16.97 6.198 

9 0.9499e-5 0.5474e-7 173.5 18.56 

10 0.1077e-5 0.1153e-7 93.42 4.747 

11 0.8083e-8 0.4994e-9 16.19 23.09 

12 0.5047e-8 0.6202e-10 81.37 8.051 

13 0.9102e-9 0.4751e-11 191.6 13.06 

14 0.1202e-9 0.5882e-13 2043. 80.78 

15 0.1012e-10 0.5800e-13 174.4 1.014 

16 0.1486e-12 0.1031e-13 14.42 5.626 

17 0.1149e-12 0.1192e-14 96.46 8.651 

18 0.2130e-13 0.9520e-16 223.8 12.52 

19 0.2515e-14 0.2983e-17 843.4 31.92 

20 0.2163e-15 0.5429e-18 398.3 5.493 

21 0.8191e-17 0.1159e-18 70.68 4.685 

22 0.1086e-17 0.1386e-19 78.36 8.364 

23 0.2605e-18 0.1150e-20 226.4 12.04 

24 0.3145e-19 0.5500e-22 571.9 20.92 

 

5 Concluding Remarks and Future Works 
 

Using operational matrices and also the Galerkin method are two techniques which 
each one, individually, is used for solving dynamical systems.In this paper an idea is 
presented by which the exact operational matrices are achievable; so, we can 
differentiate, integrate and product the vector(s) of basis functions (basis vector(s)) 
exactly. 
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We implemented this idea on the Bernstein basis vector.Using such exact matrices 
and substituting them by equation operators including integration, differentiation and 
product, we reached the exact residual function of the equation, which can be written 
in the form 𝑅𝑅.𝜙𝜙(𝑥𝑥), where 𝑅𝑅 is an algebraic equation vector and 𝜙𝜙(𝑥𝑥) is the basis 
vector.Then, we presented a matrix 𝑄𝑄 for which 𝑅𝑅.𝑄𝑄 would be the output equations 
system of the Galerkin method.Also, we discussed about a technique,presented for 
finding some appropriate starting values, for solving the resulting nonlinear algebraic 
system which may be large and has a high computational complexity. 

Afterward, we solved a linear and a nonlinear problem by using both of the exact and 
the ordinary operational matrices to prove the convergence of methods and also the 
presented method superiority.As some future works, higher-nonlinearity-degree 
problems can be solved by both methods to show the superiority of the new method 
much obviously. 
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