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Abstract 

 Convex optimization has provided both a powerful tool and an intriguing mentality to the analysis 
and design of communication systems over the last few years. 
This paper presents the results of investigation on dual bounds for nonconvex quadratic 
programming with a nonlinear constraint and an overview of the nonconvex optimization problem 
in the networked communication systems. 
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 1. Introduction. 

There has been two major “waves” in the history of optimization theory: the first started with linear 

programming and simplex method in late 1940s, and the second with convex optimization and 

interior point method in late 1980s. Each has been followed by a transforming period of 

appreciation-application cycle: as more people appreciate the use of LP/convex optimization, more 

look for their formulations in various applications; then more work on its theory, efficient 

algorithms and softwares; the more powerful the tools become; then more people appreciate its 

usage. Communication systems benefit significantly from both waves, including multicommodity 

flow solutions (e.g., Bellman Ford algorithm) from LP, and basic network utility maximization. and 

robust transceiver design from convex optimization. 

Much of the current research frontier is about the potential of the third wave,on nonconvex 

optimization. A variety of approaches have been proposed, from nonlinear transformation to turn 

an apparently nonconvex problem into a convex problem, to characterization of attraction regions 
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and systematically jumping out of a local optimum, from successive convex approximation to 

dualization, from leveraging the specific structures of the problems (e.g., Difference of Convex 

functions, concave minimization, low rank nonconvexity) to developing more efficient branch-and-

bound procedures. Researchers in communications and networking have been examining 

nonconvex optimization using domain-specific structures in important problems in the areas of 

wireless networking, Internet engineering, and communication theory. Perhaps four typical topics 

best illustrate the variety of challenging issues arising from nonconvex optimization in 

communication systems: 

 

 Nonconvex objective to be minimized. An example is congestion control for inelastic 

applications. 

 Nonconvex constraint set. An example is power control in low SIR regimes. 

 Integer constraints. Two important examples are single path routing and multiuser 

detection. 

 Constraint sets that are convex but require an exponential number of inequalities to 

explicitly describe. An example is optimal scheduling. 

The last results of latest researches about two first options are studied in [4]. 

2. On duality bound for general quadratic programming 

  The general quadratic programming problem with one additional quadratic constraint is 

formulated as follows:  
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2.1. Lower bound 

  For each rectangle  
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We intend to compute a lower bound µ(R) of the function f over R∩D. 

In other words, we compute a lower bound for the optimal value of the problem 

 

 

  RQ 

  

 

 Q  
 

 












Rxhxc

CxxdAxxD

h

bxaxRba

Acq

n

nn

nmn









 

,,

,,:

:,,

,,

 

Rx

hxcCxx

dAxts

xqQxxxf













,,

.

,,)(min

 



A. Ahadizadeh, S. Anbarzadeh / TJMCS Vol .5 No.4 (2012) 304 - 312 
 

306 

 

The main idea of our method for computing a lower bound µ(R) is to construct from Problem 

(Q(R)) an equivalent problem by replacing the quadratic terms with corresponding bilinear forms, 

and then solving the Lagrange dual of the resulting problem ([1], Proposition 2.6.1) 

  

For this purpose let  ,,,  be vectors of n  defined by 
 

 RxxQii  :,min                                       (1) 

  iii RxxQ   :,max    
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where for each ni ,...,1 , Qi and Ci are the i th rows of the matrices Q and C, respectively. 

 with the help of two additional variables nzy ,  the problem can be written as  
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It is well known that the optimal value of the lagrangian dual of problem P(R) gives a lower bound 

for the 

optimal value of Q(R) ([7], Proposition 2.1).Denote this lower bound by µ(R).The following was 

shown in[7]: 

  

(i) ([7], Proposition 2.2) µ(R) is the optimal value of the linear program LP (R): 
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(ii) ([7], Propositions 2.3) The bound µ(R) is at least as good as any bound obtained by convex 

relaxation of P(R). 

 

 

 



A. Ahadizadeh, S. Anbarzadeh / TJMCS Vol .5 No.4 (2012) 304 - 312 
 

307 

 

Assertion (i) is proved in [7] by showing, through tiring computations, that the lagrangian dual of 

P(R) reduces to the linear program LP(R). However, it will be shown shortly that these 

computations are unnecessary because µ(R) is merely the optimal value of a trivial linear relaxation 

of Q(R), which can be derived immediately without any use of Lagrange relaxation. On the other 

hand, (ii) is refuted by the following counter-example. 

 

 

Counter-example. Consider the quadratic program with one variable Rx  : 

    443 22  xxxxx ,:min      (3)  

 
whose optimal value is obviously 0. As can easily be verified, here 
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Solving this linear program yields   12R  , a bound much inferior to the optimal value  of 
Q(R) Furthermore, µ(R) is inferior to the bound provided by the convex relaxation of P(R) that is 
obtained by replacing xy  and xz  with their convex envelopes on R, namely 
  

 1644  yx,max   ,  1644  zx,max   

This convex relaxation of P(R) reduces to the linear program 
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whose optimal value equals − 6, a much better bound than   12R . Therefore, assertion (ii) is 

not true.   
It is also worth noticing that the lagrangian dual of problem (3) itself is 
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while the optimal value of (3) is 0 we have by the weak duality theorem[2] 
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Thus, for certain problems the lagrangian dual of the original quadratic program Q(R) may give a 

better bound than the lagrangian dual of P(R). It may even happen, as in the example under 

consideration, that the duality gap is zero for Q(R), but is positive for P(R), although the two 

problems are equivalent.This should be kept in mind when using lagrangian relaxation to estimate 

bounds. 

 

 

It is now easy to see why µ(R) can be sometimes very poor. In fact, as can easily be checked, the 

linear program DLP(R) dual to LP(R) is simply (see [7], where xa  ): 
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Which is nothing but the linear program obtained from P(R) by replacing  yx,  with  ya,  

and  zx,  with  za, . Since  ya, ,  za,  are linear functions underestimating  yx,  

,  zx,  for bxay   , , z ≥   , DLP(R) is a most common linear relaxation of P(R). 

We see that no involved computation of the type used in [7] is needed for deriving µ(R). 

 

 
Besides, by writing Q(R) as 
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it is easily seen that a linear relaxation of Q(R) is 
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which is exactly the same as DLP(R), though looking much simpler. 

To sum up, the bound µ(R) can be computed by simple linear relaxation of either P(R) or Q(R). 

No wonder that it is generally poorer than the bounds computed by tighter convex relaxations[3]. 

The thing is,one must be aware that the lagrangian duals of two equivalent problems may be quite 

different , so that by taking inappropriate equivalent formulations of the problem one can obtain 

even very poor bounds, as was demonstrated by example (3). In a general manner, the quality of a 

dual bound depends on the specific equivalent formulation of the original problem used for 

generating the lagrangian dual problem. The formulation P(R) used in [7] is a bad choice, whereas 

by adding the superfluous constraint  )( 4xx  (implied by 4 x ) we get another equivalent 

formulation of (3) with no duality gap: 
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Therefore, contrary to Proposition 2.3 in [7], the bounds computed according to [7] are even 

inferior to those earlier proposed in the literature. 

 

 

 

3. Internet Congestion Control 

 

3.1. Basic network utility maximization 

Since the publication of the seminal paper [5] in 1998, the framework of Network Utility 

Maximization (NUM) has found many applications in network rate allocation algorithms and 

Internet congestion control protocols. 

It has also lead to a systematic understanding the entire network protocol stack in the unifying 

framework. 

By allowing nonlinear concave utility objective functions, NUM substantially expands the scope of 

the classical LP-based Network Flow Problems. 

 

  Consider a communication network with L links, each with a fixed capacity of cl bps, and S sources 

(i.e., end users), each transmitting at a source rate of xs bps. Each source s emits one flow, using a 

fixed set L(s) of links in its path, and has a utility function Us(xs). Each link l is shared by a set S(l) of 

sources. 

Network Utility Maximization (NUM), in its basic version, is the following problem of maximizing 

the total utility of the network  , over the source rates X , subject to linear flow 

constraints  for all links : 
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where the variables are sX  . 

There are many nice properties of the basic NUM model due to several simplifying assumptions of 

the utility functions and flow constraints, which provide the mathematical tractability of problem 

(5) but also limit its applicability. In particular, the utility functions { Us} are often assumed to be 

increasing and strictly concave functions. 

 Assuming that Us(xs) becomes concave for large enough  is reasonable, because the law of 

diminishing marginal utility eventually will be effective. 

 

However, Us may not be concave throughout its domain. In his seminal paper published a decade 

ago, Shenker [6] differentiated inelastic network traffic from elastic traffic. Utility functions for 

elastic traffic were modeled as strictly concave functions. While inelastic flows with nonconcave 

utility functions represent important applications in practice, they have received little attention and 

rate allocation among them has scarcely any mathematical foundation, except three recent 

publications. 

 

3.2. Canonical distributed algorithm 

For network rate allocation problems, a dual-based distributed algorithm has been widely studied 

and is summarized below. 

  Zero duality gap for (5) states that the solving the Lagrange dual problem is equivalent to solving 

the primal problem (5). The Lagrange dual problem is readily derived. We first form the Lagrangian 

of (5): 
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Where l  is the Lagrange multiplier (link congestion price) associated with the linear flow 

constraint on link l. Additivity of total utility and linearity of flow constraints lead to a Lagrangian 

dual decomposition into individual source terms: 
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Where   . For each source s,     s
s

sS
s

ss xxUxL  ,  only depends on local sx  and the 

link prices l  on those links used by source s. 

  The Lagrange dual function g(λ) is defined as the maximized L(X, λ) over X.   This “net utility” 
maximization obviously can be conducted distributively by the each source, as long as the 
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aggregate link price   is available to source s, where source s maximizes a strictly concave 
function over xs for a given  
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 The Lagrange dual problem is 
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where the optimization variable is λ. 

 

The concavity assumption on Us is also related to the elasticity assumption on rate demands by 

users. 

When demands for xs are not perfectly elastic, Us(xs) may not be concave. 

  Suppose we remove the critical assumption that {Us} are concave functions, and allow them to be 

any nonlinear functions. The resulting NUM becomes nonconvex optimization and significantly 

harder to be analyzed and solved, even by centralized computational methods. In particular, a local 

optimum may not be a global optimum and the duality gap can be strictly positive. The standard 

distributive algorithms that solve the dual problem may produce infeasible or suboptimal rate 

allocation, as illustrated in (3). 

 

4. Conclusion 

  Removing the concavity assumption on utility functions, NUM is turned into a nonconvex 

optimization problem with a strictly positive duality gap. Such problems in general are NP hard, 

thus extremely unlikely to be polynomial-time solvable even by centralized computations. Using a 

family of convex semidefinite programming (SDP) relaxations based on the sum-of-squares (SOS) 

relaxation and the Positivstellensatz Theorem in real algebraic geometry, we apply a centralized 

computational method to bound the total network utility in polynomial-time[4]. 
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