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Abstract

In this paper, we solve nonlinear fractional differential equations by Bernstein polynomials.
Firstly, we derive the Bernstein polynomials (BPs) operational matrix for the fractional derivative
in the Caputo sense, which has not been undertaken before. This method reduces the problems to a
system of algebraic equations. The results obtained are in good agreement with the analytical
solutions and the numerical solutions in open literatures. Also, the solutions approach to classical
solutions as the order of the fractional derivatives approach to 1.
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1. Introduction

Differential equations of fractional order have been the focus of many studies due to their
frequent appearance in various applications in fluid mechanics, viscoelasticity, biology, physics and
engineering. Recently, a large amount of literatures developed concerning the application of
fractional differential equations in nonlinear dynamics [1-4]. Several methods have been suggested
to solve fractional differential equations, for example, homotopy methods [5-8], Adomian’s
decomposition method [9-11], variation iteration method [12, 13] and differential transform
method [14].
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In this work, we consider the nonlinear fractional differential equations as follows:

D*y() = gt y(t), 0<t<I, ®

and the initial condition
y(l)(o): y(lj’ i :0111'-'1|_a—‘_11 (2)
where ¢ is constantand ¢ :[O,l]x R — R is polynomial function.

The rest of this paper is as follows. In Section 2, we present some preliminaries in fractional
calculus. In Section 3, BPs are introduced and then we approximate functions by using BPs and we
show the properties of BPs by several Lemmas and corollaries. We make a new operational matrix
for fractional derivative by BPs in Section 4. In Section 5, we apply BPs for solving nonlinear
fractional differential equations. In Section 6, numerical examples are simulated to demonstrate the
high performance of the proposed method. Finally, Section 7 concludes our work in this paper.

2. Some preliminaries in fractional calculus

In this section, we give some basic definitions and properties of the fractional calculus which are
used further in this paper.

Definition 2.1. (See [15]) We define
C,= {f (t)‘ f(t)>0 fort>0and f(t)=t"f(t) wherep> g and f, (t) e C[O,oo)}, and

Cl={f®]f () eC, | where neN, ueR.

Definition 2.2. (See [15]) The Riemann-Liouville fractional integral operator of order « >0, of a
function f e Cy , 4 >-1,is defined as

1 t
1“f(t)=——| (t-x)“"f(x)dx, a>0,t>0,
INC)) I 0 3
1°F(t) = (1),
and for n-1<a<n,neN,t>0, f eC", the fractional derivative of f(t) in the Caputo sense

is defined as
Def(t)=1""D"f(t) = #J- t(t —x)" £ (x) dx 4
'h—a)’o '

Property 2.3. (See [16-18]) For f €C,, u>-1, &, >0 we have

I'(y+1

1“4 = —~2 7
IN'a+y+1)

e, ()

andfor n—1l<a<n,neNand f € C; , 4 = —1 we see the following properties

1. D1 f (t) = f (1), (6)
21D f (t) = f(t)—gf(k’(o*)%, t>0, (7
3.D?f(t)=1"/D"f(1). 8)
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3. Bernstein polynomials and their properties

The Bernstein polynomials (BPs) of mth-degree are defined on the interval [0,1] as follows:
m i m—i H
Bi,m(x): i X (1_X) ’ |:0!1!"'1m- (9)

Corollary 3.1. Set {BO,m (X), B, (X),--, By, (X)} is a complete basis in Hilbert space L*[0,1] and

polynomials of degree M can be expanded in terms of linear combination of
B, n(X) (1=0,1---,m) as follows

PO =6 B, (0. 10)

Lemma 3.2. We can write @ (X)=AT_(X), where A is a matrix upper triangular,

T, () =L,x....x"]" and @, (x) =[B,(X),B,(X)..... B, ()]

Proof. Using binomial expansion of (1—x)™", we have

oo s

S oy (?J(mk_ijxi“ L i=0L...m.

Therefore we can write

@, (x)=AT,(x), (11)

D m)(m-—i i<
where A:(a-y-)imj:l and &, ; j,; = IR -7 Lj=0,1,...m o

Lemma 3.3. (See [19]) Let L° [O,l] be a Hilbert space with the inner product
1
<f,g >=j . f(x)g(x)dx, and yel? [O,l]. Then, we can find the unique vector

c=|c,.c,,-+,c,]" such that

Y09 = 26, By (9 =0, (0. 12

Corollary 3.4. In lemma 3.3, we have ¢ =< f D > Qfl, such that
1 m+. .
<f, @, >:I0f(x)®m(x)T dX:[< f,Bym><Tf,B > <f B, >] and Q :(QLJ.)U_:l1 is

as follows
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i)
e[

Lemma 3.5. Suppose that C,,,., is an arbitrary vector. The operational matrix of product

, i,j=0L1---m. 13)

Qi+1,j+1 = J:Bi,m(x) Bj,m(x) dx =

A

C

(mi1)x(ms1) USINg BPs can be given as follows:

', (XD (X) =D _(x)"C. (14)
Proof. From (11) we have
¢’ ()P, (X)T =c"D_(x) (Tm(x)T AT )z [CTCDm(X),X(CTq)m (x)),..., xm(ch)m(x))]AT

:{ici Bi,m(x),icixBi’m(x),...,icixmBi’m(x)} AT,

Now, we approximate all functions X B; . (X) in terms of @ (X).Thus we define

e ; =[e£vi CBh L e ,eﬂi]T,thenby(lZ)wecanwrite
X“B; n(X) ~e, @, (x), i,k=0,1,..,m
So, we get

S =Q’lU :(kaiym(x))CDm(x)dx)

:Q’l[f “X“B, () By, () dx, [ [ X“B, ,(X) B, , () dx,.., [ | X“B, , (X) Bm,m(x>de

Q i 0 1 m .
= ] Yooy y |,k=0,1,...,m.
2m+k+1| (2m+k 2m+k 2m+k
(i+k J [i+k+1j (i+k+mj

Then, we have

i=0 j=0

.
m m
=c1)m(x)T[Zcie,?’i, ciei’i,...,Zcieﬂi}

m
i=0 i=0 i=0

=D, (x)" [ek‘o NN ek'm]c =d_(X)'V,c,

where V| (k =0,1,...m) is an (M+1)x(M+1) matrix that has vectors €, ; (i=0,1,...,m) for each
column’s. If we define C = [VOC V.C,.. .,VmC], then we get
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c'®, ()P, ()" =@, (x)"CAT, (15)
and therefore we obtain the operational matrix of product C=CA".
Corollary 3.6. Suppose Yy(t)~c'® (1), x({t)~d ®_(t) and é(m+1)x(m+l) be the operational

matrix of product using BPs for vector €. We can get the approximate function for X(t) y(t) using
BPs as follows:

yOx(t) =@, " Cd. (16)
Proof. By using Lemma 3.5, it is clear.
Corollary 3.7. Suppose y(t) ~c'®, () and é(m+l)><(m+l) be the operational matrix of product using
BPs for vector C. We can get the approximate function for yk (t) (k € N), using BPs as follows:

Y (®) =, 1)"C,, 7)
where ék = C*c.
Proof. By using induction, we can obtain approximation for y*(t), (k € N) as follows:

For k =1 by (12) we have y(t) = c'®_(t) . Also, for k = 2 by Lemma 3.5 we obtain
y:t)~c'®,t)®, 0 c~d,(t) Cc.
Then, for k =3 we get y3(t)=c'®@ (1)@, (1) Cc~d (t)"C3c.
So, by induction we can write

Y@=, O, 1) Cexd,1)'C,,

where C, =C*"c.o

4. BPs operational matrix for fractional derivative

In this section, we obtain the operational matrix for the fractional derivative. We can write

D*®_(t) :;t”’“*l*d)f:’(t), 0<t<y, (18)

'n—«a)
where * denotes the convolution product.

By (11) we obtain
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1 T
D@ _(t)=—— Alt"* T +*T"(t))= AD*T_(t) = A|D“1, D“t, ..., D“t™| , 19
2O= o Al TP )= ADT, (0 - A ] 19
0 ji=0,...[a]-1,
h D%/ = ' .
where _LU*D e jofa)m
Ir(j+1-e)
Therefore we have
DT, (t) =T, (20)

where T and T are a (m+1)x(m+1) diagonal matrix and a (m+1) x1 matrix, respectively as

follows:
r'(j+1) . ..
~ [~ \m+ ~ —— i, j=|la|,....,mandi=|j,
Zz(zi,j)i’j:lll Zigja =1 +1-a) ’_—‘ (21)
0 otherwise
~ (= [0 i=0,.]a]-1
”dT:ﬁ)ziw —[a]m 2

Now, we approximate t'* (i = |_0(—L..., m) with respect to BPs by using (12). Therefore, we can

write
t™ = P'd, (1), (23

where P, (i=[a],...,m) isavector (m+1)x1.So, we have

P = Ql(j e d)m(t)dtj - Ql[j B, (dt, [ 7B, (dt,..., [ 1B, , (t)dtT

where

v Pl (24)

O

ISi =[|3i,0’

mir(i+ j—a+1)
jIri+m-—a+2)

]

s=[ B, Odt= i =[e],...m and j=0,1,..m. (25)

Now, we suppose P is an (m+1)x(m+1) matrix that has vector zero in !—a—l first column and

vector P, in (i+1)th column’s for i =[a|,...,m.

Finally, from (18)-(25), we obtain
D® (t)~D, @ (t), (26)

where
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D ~AXPT, (27)

is called the Bernstein polynomials operational matrix of fractional derivative.

5. BPs for solving nonlinear fractional differential equations

Using Lemma 3.3, we can approximate the functions Xx(t) as follows:
yt) ~C' @, (1), (28)

where C e R™,

by (28) and (26) we can write

D*y(t) ~C'D,®, (). (29)

Therefore, the problem (1) and (2) reduce to the following problem:

C'D,®, (1) =g(tCT, 1) (30)

and the initial condition

C'D®, (0)=vy,, i=01,...[a]-1 (31

Now, using Lemma 3.3 we can approximate all of the known functions in (30). Then, by using

Lemma 3.5, Corollaries 3.6 and 3.7, since function ¢is polynomial, we obtain the following

approximations:

9(t,y1)~G(C o, @), (32)
where G:R ™ 5 R

Also, by using tau method [20] we can generate algebraic equations from (30) and (32) as follows

G,=[[c"D, -G(C)®, 1) B;,®)dt=0, j=0,...m-[a] (33

and from (31) we set G =C'D,®,(0)-y, fori =0,1,...[a ]-1.

m-{ a J+i+l
Finally, the problem (1) and (2) has been reduced to the system of algebraic equations
G,(c)=0, j=0,...,m. (34)

The above system can be solved for C by Newton'’s iterative method. Then, we get the approximate
value of the functions y(t) from (28).

6. Numerical examples
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To demonstrate the application of the proposed method and its performance, the obtained results
for some examples are presented in this section. We define Y, (t) and y(t) for the approximate

solution and the exact solution, respectively. These examples are considered because either exact
solutions are available for them, or they have also been solved using other numerical schemes, by

other authors.

Example 1. Consider the following fractional differential equation

D1.5y(t):tl.Sy(t)+4\/I_t3.5’ 0<t£1,
T

with the following initial conditions
y(0) =0, y'(0)=0.

We know that the exact solution is Y(t) =t?. The obtained results of BPs for m =10 are reported
in Table 1 and are plotted in Fig 1. We observe that our method is very effective.

Table 1. Absolute error for different t in example 1.

t 0.1 0.3 0.5 0.7 0.9

Absolute error 3.62030 x10-11 3.40588 x109 8.04365 x10-2 1.32341 x10-8 1.61286 x10-8

Absolute emor y104)

Fig 1. Plot of absolute error function for m =10 in example 1.

Example 2. Consider the nonlinear fractional differential equation [21]

Dey(t) = —y(t)* +1, 0<t<],
subject to the initial condition as

192



Mohsen Alipour, Davood Rostamy / TIMCS Vol .5 No.3 (2012) 185-196

y(0)=0.

The exact solution of the equation for « =1 is given as

e -1
e +1

y(t) =

Numerical results compared to Ref. [21] are given in Table 2 and also, Fig 2 show the absolute error
for our method for & =1 and Fig 3 show behavior Y, (t) for different « .

Table 2. Numerical results for &« =1and m =10 in example 2 with comparison to exact solution
and Ref. [21]

t Exact Present method Ref.[21]
m=10

0.1 0.09966799462495585 0.0996679945194735 0.099668
0.2 0.197375320224904 0.19737532033276264 0.197375
0.3 0.2913126124515909 0.2913126132161784 0.291313
0.4 0.37994896225522495 0.3799489605488069 0.379944
0.5 0.4621171572600097 0.4621171587819068 0.462078
0.6 0.5370495669980353 0.537049567016221 0.536857
0.7 0.6043677771171635 0.6043677753913671 0.603631
0.8 0.664036770267849 0.6640367728588771 0.661706
0.9 0.7162978701990244 0.7162978670585518 0.709919

1 0.7615941559557649 0.7615941454790327 0.746032

B
X
—
=)
|
o
T

Absohite eror y )
[ ]
X
>
1
"0
T

g AR : ; i A
0.0 0.2 0.4 0.6 0.8 1.0

Fig 2. Plot of absolute error function for & =1 and m =10 in example 2.
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¥

Fig 3. Plot of y,,(t) for different & and exact solution for & =1 in example 2.

Example 3. Consider the differential equation of fractional order [21]
Dey(t) = 2y(t) — y(t)* +1, 0<t<],
subject to the initial condition as

y(0) =0.

The exact solution of the equation for & =1 is given as

~ 1, (J2-1
y(t) =1+ \/Etanh(\/iualog[ﬁﬂﬁ.

Numerical results compared to Ref. [21] are given in Table 3 and also, Fig 4 show the absolute error
for our method for & =1 and Fig 5 show behavior Y, (t) for different « .

Table 3. Numerical results for &« =1and m =10 in example 3 with comparison to exact solution
and Ref. [21]

t Exact Present method Ref.[21]
m=10

0.1 0.11029519691696243 0.11029518739630002 0.110294
0.2 0.2419767996211093 0.24197681569579768 0.241965
0.3 0.39510484866037854 0.3951048273012639 0.395106
0.4 0.567812166292939 0.5678121822516022 0.568115
0.5 0.756014393431376 0.7560144002158702 0.757564
0.6 0.953566216471923 0.9535661806115561 0.958259
0.7 1.1529489669796236 1.1529490195918712 1.163459
0.8 1.3463636553683758 1.346363598686117 1.365240
0.9 1.5269113132806247 1.5269113915752475 1.554960
1 1.6894983915943833 1.6894986909366667 1.723810
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Fig 5. Plot of y,,(t) for different @ and exact solution for & =1 in example 3.

7. Conclusion

In this work, we get operational matrices of the product, power and fractional derivative by
Bernstein polynomials. Then by using these matrices, we reduced the nonlinear fractional
differential equations to a system of algebraic equations that can be solved easily. Finally, numerical
examples are simulated to demonstrate the high performance of proposed method. We observed
that the obtained results were in good agreement with the exact solution. Also, we saw that the
solutions approach to the solutions for differential equation with derivative order 1, as the order of

the fractional derivative approaches to 1.
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