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ABSTRACT 
 
 The paper reads the flow of an incompressible, unidirectional, steady third grade non-Newtonian fluid 
between two infinite planes. The flow is symmetric with respect to  x − axis with constant pressure 

gradient. The governing equations for the flow are second order nonlinear differential equations. 
Homotopy Analysis Method is applied to obtain the solution. 
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1. Introduction 
The simplest nonlinear flow model which describes the boundary layer flow is the Newtonian flow model described by 
the Navier-Stokes equations. The solution of this unsteady three dimensional equation by implementing different 

assumptions and boundary or/ initial conditions the number of solutions are obtained  [ ]1 8 .−   It is well known that 

the fluid properties are not completely described through the Navier-Stokes equations, because of the thinning and 
thinning effects, time dependence of the viscosities, and deformations. Therefore, non-Newtonian (differential type, rate 
type, integral type) flows are introduced which fulfill all these properties. Among these differential type fluids are of our 
interest which also exhibit the elastic effects (for small deformations), thinning-thickening effects, which are the 

properties of non-Newtonian fluids  [ ]9 12− . 

 A number of researchers in this direction solved the non-Newtonian fluid problems with or without boundary conditions  
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[ ]13 18 .−   

To find the solution of non-Newtonian flow problems, perturbation approach played an important role, because, with the 
assumption of making the non-Newtonian parameter as small the nonlinear part is perturbed and linear systems are 

made to solve the governing systems [ ]19 22−  . However, it was not applicable for large parameters. Liao 

[ ]23 28−  is the first to introduce a method which is advanced and better than the perturbation and it gives the 

analytic solution, namely, Homotopy Analysis Method. The beauty of the procedure is that it solves the nonlinear partial 
differential equations without prescribing the small or large parameter, and almost gives the exact solution. 
The present paper is an attempt to study the third grade unidirectional flow between two infinite boundaries influenced 
by a constant pressure gradient. The fluid is flowing in x-direction and is symmetric. The flow equations arising are 
steady nonlinear second order differential equation. Homotopy Analysis Method is used to find the solutions of two 
layers separately. The graphs are also sketched to see the physical impacts of non-Newtonian parameters. 
 

2. Problem Formulation and Governing Equations 
We study the flow of two immiscible incompressible third grade fluids between two straight infinite plates under a 

constant pressure gradient. The flow geometry under consideration is depicted in Figure  1  . 

We choose the  x  -axis in the direction of the mid line and  y  -axis normal to it. The gap between these two plates is 

defined as  2b   and the flow between these plates is in the   

x -direction. The system is symmetric with respect to the horizontal axis. The fluid is filled between two regions. In the 

fluid region 1, the fluid is dense, and supposed to be non-Newtonian, whereas in the fluid region 2, we assume a 
Newtonian fluid. The equations of flow for each fluid layer, in the absence of body forces, can be expressed as  

2,10)( == kdiv kV                                              (1) 
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Here  
( k )V   is the velocity vector,  

( k )ρ   is the density of each layer and the superscript  k   denotes the layer 

number. The operator  d / dt   denotes the material time derivative and  p   is the pressure. The extra stress tensor  

S   for each layer is defined by  
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In equation  3( )  ,  
( k )μ  is the coefficient of viscosities and  1

( k )α  ,  1
( k )α  ,  1

( k )β  ,  2
( k )β  and  3

( k )β  are 

material constants for fluids 1 and 2. The Rivlin-Ericksen tensors  
( k )

nA   are defined by the relation  
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The flow is steady and fully developed, and the velocity fields and the extra stress are assumed to be the following form:  
 



Muhammad R. Mohyuddin, Muhammad A. Sadiq, A.M. Siddiqui / TJMCS   Vol .1  No.2 (2010) 90-101 

92 
 

]0,0),([ )()( yu kk =V     (6) 
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By substitution these relations into the field equations, we find that equations  1( )   is satisfied identically and equations  

2( )   takes the following form:  
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where the components of extra stress  ( k )S   are calculated separately by making use of equations  5( )   in  4( )   

and  3( ).  Equation  6( )   in component form can be written as  
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If we introduce generalized pressure  
)
p   as 
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we may rewrite the above system as  
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Equation  11( )   implies that  
)
p   is independent of  y   and accordingly the equation  ( )10   reduces to  
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The expression for  ( k )
xyS   in combination with  12( )   yields the following differential equation:  
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On letting  
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we rewrite  15( )   as  
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Thus the resulting differential equations for each layer are  
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2.1 The Boundary Conditions 
 

The boundary conditions associated with the problem under consideration are: 
 

(a) Shear stress at the interface is the same for both fluids. That is 
 

)2()1(0 xyxy SSyat ==    (20) 

 
(b) Velocity is continuous at the interface of both fluids. That is  
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(c) No slip at the channel walls. That is  
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We point out that equations  18( )   and  19( )   are two non-linear second order differential equations and the exact 

solution subject to boundary conditions  20 22( ) ( )−   seems to be impossible. To solve this we apply the Homotopy 

Analysis Method (HAM) as introduced by Liao [ ]23 28− . 

 
3. HAM Solution 
 

The base function for equations (18) and (19) is  
 

}1,{ ≥mym      (23) 

The solution for the equations can be written as  
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The initial solutions for the equation (18) and (19) are  
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The linear operators chosen are  
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where  1C , 2C ,  3C and 4C are integral constants. The non-linear operators are  
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The HAM deformation equations are  
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and the corresponding boundary conditions are  
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where  0 1q [ , ]ε   is an embedding parameter, when  0q =   then from  ( )34   to  ( )37   we get  
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using (40,41), we expand  1( y,q )φ   and  2( y,q )φ   in the Taylor Serious with respect to  q  , i.e  
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The above series convergence at  q 1    
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4. Higher-Order Deformation Equations 
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Differentiating the HAM deformation equations (34) and (35)  m   and  n   times with respect to  q  , then setting  

0q =   and dividing by  m! ,  we have the m th-order deformation equations  
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subject to the boundary conditions   
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5. Result and Discussion 
 

The figures ( 2 5−  ) are plotted for different values of 1β and 2β ( )0 05 0 1. .− ;  1 1 2( / )μ  ,  2 1 5( / )μ ;  

1 20G( / ) and 3 2( / ).−h   The figue 2 is sketched for the    curve that provides us the convergence region i.e.  

0 4.< < −h   The figure 3 is sketched for  1 1 5/β =  ,  2 1 10/β =  ;  1 1 2/ )μ =  ,  2 1 5/μ =  ;  1 20G( / )  

;  3 2( / )−h   and it shows the convergence for  2u   with  20th  ,  30th   and  40th   order approximations. In 

figures 4 and 5, we assume different values of  ( )1 1 5 1 10 1 100/ ; / ; /β   and 
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( )2 1 10 1 100 1 1000/ ; / ; /β   and provide the  20th   order result for  1u   and  2u .   It is 

observed that with an increase in the third grade parameters the velocity boundary layer thickness decreases. It is worth 

mentioning here that the solutions for both the cases exist and converge[ ]22 28− , and also these satisfy all the 

previous findings (regarding the third grade fluids)[ ]9 21− . 
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Figure 1. Geometry of the problem 
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Figure 2. h  curve 
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Figure 3. The convergence of 2( )u  with 3 2/= −h  
 
 
 

 

Figure 4. The sketch of 
( )1u  for different values of 

( )1β  and 
( )2β  
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Figure 5. The sketch of 
( )2u  for different values of 

( )1β  and 
( )2β  
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