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Abstract.

In this paper, we will consider variational iteration method (VIM) for solving
systems of integral—differential equation. This method is based on the use of
Lagrange multipliers for identification of optimal value of a parameter in a
functional. Using the variational iteration method, it is possible to find the
exact solution or an approximate solution of the problem. In this paper,
variational iteration method is introduced to overcome the difficulty arising in
calculating Adomian polynomials.
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1. Introduction

A system of integral—differential equations can be considered, in general form, as:

(310 = £, 5,0, .3, O, f; 9, (£.7,(),7,(5), 0.7, () ds), ¥,(0) =y,
] 73 = £,7,0,5,0, 5,0, [} 9, (63,6).9,(), .3, () ) ds),  7,(0) = ay,

() = £, 0,5, 3, (0. f 9, (65,6, 3,(5), 03, () d), 3, 0) = a,
(1)

where each equation represents the first derivative of one of the unknown functions as a
mapping involving the independent variable ¢ and 7 unknown functions f, f5,, - . . , fm
which have appeared appeared partly in the integral sign.

* Corresponding author. (E-mail address: m.matinfar@umz.ac.ir )

In this paper, we use variational iteration method for solving system (1).This method
was first proposed by J. He [7,8], and systematically illustrated in [5].

2. Variational iteration method

In this section, we use the following non-homogeneous system of differential
equations

Liuq(t) + Nl(ul (), u, (1), ...,um(t)) = g,(t),
Lyt () + Na(u (), up (0, ..., up (1)) = g2 (1),

LLmum(t) + Nm(ul (®), uz @), ... rum(t)) = gm(t)
(2)

to illustrate the basic idea of the variational iteration method. In the above system of
equations L,, L,, . . . L, are linear differential operators with respect to tand N;, N,, . . .
,N,, are nonlinear operators and g,(t) , g.(t), . . . , gm(t) are some given functions.
According to the variational iteration method, we can construct a correct functional as
follows :

|{ u1n+1(t) =uy, () + f /11(T){L1u1n('f) + N; (u1n Uy, - ﬁmn) - g:(0)}dr,
{ uy () =u, () + fo Ay ({Lyuz, (©) + No(y,, Uy, -, i, ) — G2 (D) }dT, 3)

lumnﬂ(t) = U, () + f; A (O {LinUm,, (©) + Nip (81, Tz, s ) Tomy ) — G (D},

where 1,(1), 1,(1), ..., A,;,(T) are general Lagrange multipliers, which can be identified
optimally via variational theory. The second terms on the right-hand side in (3) are called
the correction and the subscript 7 denotes the nth order approximation. Under a suitable
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restricted variational assumptions (i.e. 1, @y, ..., &i,,), then the Lagrange multipliers are
identified. Now we may start the procedures with the given initial approximation and using
the above iteration formulas to obtain the approximate solutions. For more see [1], [3-6]
and [11-13].

We should now point that after obtaining value A, (1), A,(7), ..., 4,,(7) itis better to
use below iteration formulas (4) instead of above iteration formulas (2) for obtaining
better and closer approximations to the exact solution.

Uy, () =y, (O) + fot /11(‘[){[41711,1('[) + N, (ﬁ1n» Uy, wes ﬁmn) —01 (T)}d‘l',
U, () = Uy, () + [ 2 (D{Lotty, (T) + Ny (i, T,y oo Ty, ) — G2 (D}dT,
) us, ., (t) =us, () + fot A3 (T){L3u3n(‘f) + N3 (ﬁ1n'ﬁ2n: ---'ﬁmn) — 93 (T)}d‘fr )

Uy () = U () + [ A O Loy, (O + Ny (B, Ty e Tim,) — g (D},
The iteration formula (4) will give several approximations of
U, (1), u, (1), ..., U, (t) and the exact solutions are obtained at the limit of the resulting
successive approximations .i.e.
u () = limn—wouln(t)
1, (£) = limy oz, (£)

U (t) = limy, Uy, (£)
3. Test problems

In this section, we present four examples. These examples are considered to illustrate
the method for linear and nonlinear system of ordinary integral-differential equations.

Example 1. In this example the following system of integral—differential equations is
solved, the exact solution are yi(x) = x+ e*, yo(x) = x-e”~.

{y; =1+x+x2 =y, = [f01(0) +y2(0))dt, y1(0) = 1;
yll =—1l—-x—y; — fox(yl(t) +y.())dt, y,(0) =-1
(5)

According to the variational iteration method we consider the correction functional in the
following form (see [1, 3-6, 11-13]):

Vines ) =y1,0) + [y M@y +5, = [[F, () +7, ())ds —1—1—72}dr, ©
Voo () = y2,(0) + [y A2(T) {ygn =¥y, oV, ) =¥, ())ds+1+ T} dr,

where 1;(7) and A, (t) are the general Lagrange multipliers which its optimal value is

found by using variational theory. the value of y; and y, are initial approximations and

must be chosen suitably and 7, and 7, are the restricted values i.e. 5y, =0and 45y, =
0. Now we have
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{6y1n+1(x) =6y, +8 [ @y +5, — [ ¥, )+, ()ds—1-1—12}dr,

8920, () = 82,0 +8 [ 2@ {y; =T, + 3T, () =F, ($))ds +1+1}dz,
7)

to find the optimal value of 2,

81000 (¥) = 871, (0) + 6 [} 1y () {1 }dT = 87, (0) + 624 (D)7, (1) Loy = 8 [} A1 (D, (DT, .
8ya,,, () = 8y, (x) +6 fox A (T) {yz/n} dt = 8y, (x) + 6A2(D)y,, (1) lp=x = 6 fox A;(r)yzn(r)dr,

and this yields to the following stationary conditions:

1 +2_1(T) == Ol‘[:x ) A{(T) = 0|T=x )

(9)

1+ 25(7) = 0]p=y, A5(7) = 0l p=y .
(10)

Therefore the Lagrange multipliers is defined as the following form:

A(T) = -1, A (1) =—-1
(11)

substituting Eq. (11) into the correctional functional Eq. (6) we get the following
iteration formula :

{ylnﬂ(x) =y, + {ylln ©+y, (©)— fOT(yln(s) +y, (s)ds—1—1— Tz} dt,

Vo @ = Y2, + [ {5, @ 47, @ =[5 (71, +5,,9) ds + 1 + T} dr.
(12)

As say before, it is better to use below iteration formulas (13) instead of above
iteration formulas (12) for obtaining better and closer approximations to the exact
solution.

Vi @ =31, @ + [T{y1, @ + 9, @ = [§ (¥, +5,, &) ds =1 -7 =2} dr,

Vo ) = 2, () + [ {yzln @+y, , ©- Iy (y1n+1(s) + yzn(s)> ds+1+ r} dr
(13)
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We start with initial approximations y, (x) = yi(0) and y, (x) = y4(0), then by the
iteration formulas (13) and MATLAB software we have

1 1
y1i,(x0) =1+2x+-x*+ <§x3>,

2
1 1 1 1
yzl(x):—1—§x2—€x3—ﬁx4+(—ﬁx5),
1 1 1 1 1 1
= 2.3, ~ 4, .5, " 6., ~ _7
ylz(x) 1+2x+2x +6x +24x + ( 60x +720x +2520x ),

11115+(16171819)

= —1--x?——x3——xt—— ———xf 4+ + -
Y2, (*) 2% 78 T24* T 1207 360" 5040 " 40320° 181440

1.1 1 1 1 1 1
1A 2 o x? o xB3  —xt b 45 4 46 ( 7 _ 9 ),
Vi, () = 1420 +2x% 4 ox” + 90X+ 50 + o0 X"+ 108 “90720° T

1,1, 1, 1 . 1 . 17+(18 19+...),

= - Sxl oIy oyt o xS xb_ —
¥, () 2% 76" T24* T120 T720" 5040 T\20160° " 90720°
1 1 1 1 1 1 1
:1+2 +_2+_3+_ 4+_ 5+_ 6+ 7+ 8
¥, () A T T 120" T720" Ts040" T 303207
+(— - x? + - x1°+---)
60480 1814400 ’
1 1 1 1 1 1 1 1 1
_ 1 _ 2 _ N3 _ 4 N5 .6 _ 7 _ 8 _ 9 _ 10 11
Y2, () = —1=5x% = x® =X = 0 T 720 “5040” 40320° 362880° T T 725760°  t9979200"
and so on. Thus, we obtain
yi(x) = rlle1n(x)
:1+2x+1x2+lx3+ix4+ix5+ix6+ L o L s Lo ! 10

2 e o 0" 720" T50a0” T20320° T362880° T 36288007
+...,

y2(0) = lim y () =

=—1——x2——x3—ix4— 1 s_ixe 1 7 1 8 1 9 1 04 .

2% 78" T24" T120" T720" T 5040 T 20320" T 362880° 362880

)

which are quite close to the Taylor series of their exact solutions y,(x) = x + exand y,(x) =
X — e
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Example 2. In this example the following system of integral—differential equations is
solved, the exact solution are y,(x) = sin(x), y.(x) = cos(x).

{yl' =—x+y,+ [ (V2 +y2®)dt,  ¥,(0) = 0;

vz = —x+yi+ [ (07O +¥3©)dt,  y,(0) = 1.
(14)

According to the variational iteration method we consider the correction functional in
the following form (see [1, 3-6, 11-13]):

{yl,m(x) =31, + [y @ {y1, = 52, = [y (72,) + 73,()) ds + 7} dr, 5)

Vanar (00 = ¥2,00) + J3 L) {y5, + 31, + 5 (72,() + 33,()) ds — 7} dr,

Where 1,(7) and 1,(z) are the general Lagrange multipliers which its optimal value is
found by using variational theory. The value of y, and y, are initial approximations and

must be chosen suitably and 7, and y, are the restricted values i.e. 67, = 0and &y, =
0. As previous example, we can obtain stationary conditions in the following form:

14 21(7) = 0]y=y, (1) = 0lr=y,
(16)

1+ 2A2(7) = Olz=, /12/(1-) = Olr=x,
(17)

Therefore the Lagrange multipliers is defined as the following form:

A (T) = -1, A (1) =—-1.
(18)

Substituting Eq. (18) into the correctional functional Eq. (16) we get the following iteration
formula:

{yln+1(x) = y,,(0) — [y {y{n N N (y%n (s) +y3, (s)) ds + r} dr, (19)

Vo @) = Y2, = [ {ya, +v1, + Jg (v2,(5) + ¥3,()) ds — 7} dr,

As say before, it is better to use below iteration formulas (20) instead of above
iteration formulas (19) for obtaining better and closer approximations to the exact
solution.
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Vines ) = 11,00 = [ {vi, =2, = Jy (v2,() +¥2,(5) ) ds + 7} dr,

x(. ; (20)
Vones ) = ¥2,00 = [y, + Viy + Iy (¥2,,,(9) +32,()) ds — 7} ar.

We start with initial approximations y,  (x) = y.(0) and y,, (x) = y:(0), then by the
iteration formulas (20) and MATLAB software we have

Vi, (x) =x,

1 1
Y2, 00 = 1= 50 + (= xt),

1 1 1 1 1
— a3 _ A5 6 8 10
Y1, (1) = x =X +< 60" T360° Te72° T12060" )

1 1 11 1 4
4 ( 7 _ 8 9 10 11_|_,,,>,

1. 1
— 1.2 - —_x8_ -
V2,0 =1 =5+ X+ (" 2550" T720% " #5360” T12960° 155925

y (x)=x—1x3+—x5+<ix7— ! x8 — ! x? — 59 x10 13 u )
13 6 120 360 2016 11340 6604800 2494800 '

_ 8 9 10 11
20160° T 15120% T 1814200" T 19958200"

1 1 1 13 1 253 1
}’23(x)=1_§x2+ﬁx4—mxﬁ+< >,

S NS 7+< 1B o, 10 9 )

V=X T 150" T 5040 181440 " 604800° ' 19958400 ’
— _E 24 = 4_i 6 1 8 1 10 _ 1 11 _ 1549 12 4 ..

¥2,(0) = 1= o2 4 X = o5 * F 20320” +<45360x 246400" 239500800 )

and so on. Thus, we obtain

1 1 1 1 1 1
=k =y ——x3 4+ —— S — 74 9 _ 1y 12
() = lim yy, () = x =2+ 5% 500 % + 362880° 39916800 T 479001600

1. 1 1 1 1
=1 =1 ——x2 4 —xt———xb 8 _ 10 12 4.
Y2 () = lim y,, (x) 2 Y24 720" T 20320° " 3628800° T a790001600F T

which are quite close to the Taylor series of their exact solutions yi(x) = sin(x) and
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yi(x) = cos(x).

Example 3. In this example the following system of integral—differential equations is
solved, the exact solution are yi(X) = x2, W»(x) = (x+ 1).

[y{ =x—y + [, (020 =y, (®)d, ¥1(0) = 0;
Y5 =3x+3 =y, + [, (20 — y:(©))dt, ¥,(0) = 1.
(21)

According to the variational iteration method we consider the correction functional in
the following form (see [1, 3-6, 11-13]):

{ Vi ) = ¥, + [F 1@ {1, + 1, = Sy (52,(5) + 91, () ) ds — 7} dr,

Vo ) = Y2, + [ 0 {y5, + Y2, + Ji (52,5 +51,()) ds — 3t — 3} dr,
(22)
where 1, () and A,(t) are the general Lagrange multipliers which its optimal value is
found by using variational theory. the value of y; and y, are initial approximations and

must be chosen suitably and 7, and y, are the restricted values i.e.5 5, =0 and § ¥,
= 0. Now we have:

{ayl,m () = 6y1,00 + 6 [y @ {91, +y1, = Jg (F2,(8) + 71, (5)) ds — 7}z, o)

8Y 20, () = 6Y5, () + 8 [3 2 (@) {5, + V2, + Iy (§2,(8) + 71, () ) ds — 37 — 3} dr,
to find the optimal value of 2;

Sy: () = 6y, (1) +6 f Mm@ 4y Y
0
= 531, + S O, Lo + 6 [ (h(0) = (O, (e

X
8Ya0is () = 092, +8 [ o[, + 72, e
0

= 06Y2,(x) + 62, (D) Y2, (T) |r=x + 6 f (A2(7) — 25(D)y,, (DdT (24)
and this yields to the following stationary conditions:
1+ 241(7) = 0=, /11(7:) _/1’1(7:) = 07=x,
(25)
1+ AZ(T) = 0|7:=x ’ /12(7:) - /1,2(‘[) = O|T=x ’
(26)

Therefore the Lagrange multipliers is defined as the following form:

M@ =x—-1—-1, ALh)=x—-1-1
(27)
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substituting Eq. (27) into the correctional functional Eq. (23) we get the following
iteration formula:

{y1n+1(X) =y, @+ [[(x—1—1) {yin +yi,— f, (YZn(S) - yln(S)) ds — T} dr,

Vo ) = Y2, + [ =1 = D) {5, + 2, = [ (¥2,(5) = 1,,,()) ds — 37 — 3} dr,
(28)

As say before, it is better to use below iteration formulas (28) instead of above
iteration formulas (27) for obtaining better and closer approximations to the exact
solution.

{Jﬁnﬂ(x) = }’1n(x) + fox(x -7—1) {y{n + Y1, — fOT (YZn(S) - J’1n(5)) ds — T} dr,

Vo ) = Y2, + [ =1 = D) {5, + 2, + [ (¥2,(5) = ¥1,,, () ds — 37 — 3} dr,
(28)
We start with initial approximations y; (x) = yi(0) and y, (x) = )5(0), then by the
iteration formulas (28) and MATLAB software we have

1
y1,(x) = x% + (—§x3),

2 1 1 1
_ 5
72,00 = x4 23+ 14 (=30 — ot 4 xS - o),

1 1 1 1
2 5 7 8 9
xX)=Xx +(——x + x’ = X"t X ),
ylz( ) 30 840 6720 181440
y (x)=x2+2x+1+(—ix5+ Lo L x° + x1°+-~->
22 157 T360" T 3360° 90720 302400 ’
1 1 1 1 1
— A2 _ 7 8 9 _ 10 R b | Ve
¥, (x) = %% + ( 360" T 10080° T25920° " 181440° T 19958400" T )
1 1 1 1 1
— A2 Y 8 9 _ 10 _ 11
Y2, (1) = X%+ 2x +1 +( 315° T5020° T10080° ~72576° 6652800 T )
V1,5 (%) :x2+<— ! x5+ . x26+--->
Lis 3786916514485104000000 19691965875322540800000 ’

yi,,(0) =x*+2x +1

1 1
+ (— x%5 + x%6 + )
189345825742552000000 984598299376661270400000
and so on. Thus, we obtain

yl(x) = limn—mo Y1n(x) = le
Y2 (x) = limy e ¥, (0) = x* +2x + 1= (x + 1)%
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Example 4 . In this example, we consider the following system of two nonlinear
integral—differential equations, the exact solutions are yi(x) = €~and y(x) = e~ .

[y{ =yilx+1— [y y1(Sy2(s)ds],  y1(0) =1;

Vs =yalx + 1= [ vi(9)ya()ds],  ¥,(0) = 1.
(29)

According to the variational iteration method we consider the correction functional
in the following form (see [1, 3-6, 11-13]):
{Y1n+1(x) = }’1n(x) + fox 11(7){3’{n —J,lt+1- fOT }71n(s))72n(s)ds]}d‘r,
Vanes ) = ¥2,(X) + fox Az (T){J/én — Vo, [-T—-1+ fOT }71n(5)3~’2n(5)d5]}d7:
(30)
where 1, () and A,(t) are the general Lagrange multipliers which its optimal value is
found by using variational theory. the value of y; and y, are initial approximations and

must be chosen suitably and 7, and ¥, are the restricted values i.e. §y; = 0 and
89,,= 0. Now we have

{ 8Y1,,, () = 8y1,(0) + 6 3 ({1, — Fu, [T+ 1~ [) 91,()F,, (s)ds]}dr,
8Y200, () = 8y2, (1) + 8 [ A, (v, — F2,[—T — 1+ [ 91,,(5)F,, (s)ds]}dr,

(31)
to find the optimal value of A;

{ayl,m () = 81, (x) + 8 [7 L (D{y1, }dt = 8y1, () + 64 (D1, () le=x — 8 f; 21 (D)y, (D d7,
8Y2,,,(0) = 8y, (1) + 8 [T 1,0y, Jdr = 8y, (%) + 62,(1)¥5,(T) lrex — 8 f; 25(D)ys, (Ddr,

(32)
and this yields to the following stationary conditions:
1 + AI(T) = Ol‘[:x ) /1’1(1-) = Ol‘r:x 4
(33)
1 + AZ(T) = 0|1’=x ) AIZ(T) = 0|1'=x )
(34)

Therefore the Lagrange multipliers is defined as the following form:

M) =-1, A,(1) =-1.
(35)
Substituting Eq. (35) into the correctional functional Eq. (30) we get the following iteration
formula:

Vi @) = 31,00 = [ {01, =y, [T+ 1= [T y1,(8)y,, ()ds]}dr,
Vo (0 = y2,00) — [o{v3, = y2, =T = 1+ [ y1,(8)y,, ()ds]}dr,
(36)

As say before, it is better to use below iteration formulas (37) instead of above
iteration formulas (36) for obtaining better and closer approximations to the exact solution
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Vipe (O = 1,00 = [ {yi, = yi, [t + 1= [T 1,8y, (s)ds]}d,
Vo (O = 2,00 = [0 {3, = y2,[-T = 1+ [ 1,,,,(8)ys, ()ds]}dr,

(37)

We start with initial approximations y, =y, (0) and y,  (x) = y,(0), then by the
iteration formulas (37) and MATLAB software we have

yll(x)=1+xl
1

YZl(x)=1—x+(- x3),

ylz(x)—1+x+ x? +( x +Ex ——x _Ex 7,

}’ZZ(X)—l—x+—x +(——x +—x +—x _Lx _ 17 X8 + 853 xg),
2 720 40320 362880

y13(x)=1+x+lx2+—x +(— bl 7 47y 5 48, & x9+...),
2 720 2520 4032 120960

yzs(x):l—x+lx2 ox +( x5 — L x6 + —x7 + —x8 + 2~ x9+...)
2 40 720 1680 5040 60480

_ 1 3,1 ( 1 .7__1 .8 )
y1,06) = 1+x+2x +3 6% + x *\Teo¥ +630x 5760 +5670x +

y24(x)—1—x+;x2——x + 2 X +( Lo 71,y 1 x9+---),

180 5040 2880 1209600

and so on. Thus, we obtain
yl(x)—hmn_,ooyln(t)—1+x+ x%+1 x + + + X6+ ——x7 + -

5040

yz(x)—hmn_,ooyzn(t)—l—x+2x x +x —ix5+ix ——x7 4,

24 120 720 5040

which are quite close to the Taylor serles of their exact solutions y;(x) = exand
y.(X) = e~
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