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Abstract 
     In this paper ,  using the fixed point alternative approach ,  we investigate the Hyers Ulam-Rassias 
stability of the quadratic functional equation  
 

 )(2)(2)()( yfxfyxfyxf +=−++  
in Menger probabilistic normed spaces. 
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   1.   Introduction. 
      In [1] K .  Menger proposed the probabilistic concept of distance by replacing the number 

),( qpd  ,  as distance between points ),( qp by a distribution function ),( qpF  . This idea led to a large 
development of probabilistic analysis [1],[2]. 
    Probabilistic normed spaces were first defined by Serstnev in [3].  So ,  a fruitful theory concordant 
with that of ordinary normed spaces and with that of probabilistic metric spaces was initiated .  The 
theory of probabilistic normed spaces is important as a random generalization of deterministic 
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linear normed space theory .  in the same time it gives also new tools in the study of random 
operator equations .  For important results of probabilistic functional analysis we refer to [1],[2],[4]. 
      A classical question in the theory of functional equations is the  following :  When is it true that a 
function which approximately  satisfies a functional equation must be close to an exact  solution of 
the equation? If the problem accepts a solution ,  we say that the equation is  stable .  The first stability 
problem concerning group homomorphisms  was raised by Ulam [5] in 1940.  In the next year D.H . 
 Hyres [6],  gave a positive answer to  the above question for additive groups under the assumption 
that the groups are Banach spaces. 
    Subsequently the result of Hyers was generalized by Aoki [8] for additive mapping and by Th .  M . 
 Rassias [4] for linear mapping by considering an unbounded cauchy difference .  The paper of Th .  M . 
 Rassias [4] has provided a lot of influence in the development of what we call the Hyers-Ulam 
stability or the Hyers-Ulam-Rassias stability of functional equations.  
     The functional equation  

)(2)(2)()( yfxfyxfyxf +=−++  
 is called a quadratic functional equation  .  In particular , every solution of the quadratic functional 
equation is said to be  a quadratic mapping .  A generalized Hyers-Ulam stability  problem for the 
quadratic functional equation was proved by Skof  [8] for mappings YXf →:  where X is a 
normed  space and Y is a Banach space. 
    In 1996 ,  G .  Isac and Th .  M .  Rassias [6] were the first to provide applications of stability theory of 
functional equations for the proof of new fixed point theorems with applications .  Some authors 
considered the stability of quadratic functional equation random normed space [22]  .  By fixed point 
methods ,  the stability problems of several functional equations have been extensively investigated 
by a number of authors(see [9],[10],[11]) .  
 
 Definition 1.1.  A function ]1,0[: →Rf  is called adistribution function if it is nondecreasing and 
left-continuous ,  with 1)(sup =∈ tFRt  and  0)(inf =∈ tFRt . 
The class of all distribution functions F with 0)0( =F  is denoted by +D  . 0ε is the element of +D  
define by  





≤
>

=
00
01

0 t
t

ε  

  Definition 1.2. A binary operation ]1,0[]1,0[]1,0[: →×∗ is said to be a t-norm if it satisfies the 
following condition : 
  (1) * is commutative and associative;  
 (2)  * is continuous;  
 (3) aa =1*  for all ];1,0[∈a  
 (4) dcba ** ≤  whenever ca ≤ and db ≤ for all ]1,0[,,, ∈dcba . 
 
  Definition1.3. [13] Let X  be a real vector space , F a mapping from X to +D  (for any Xx∈  , 

),(XF is denoted by xF ) and * a t-norm .  The triple ,*),( FX is called a Menger probabilistic normd 
spaces (briefly Menger PN-space) if the following conditions are satisfied : 
(1) 0)0( =xF , for all Xx∈ ; 
(2) 0)0( ε=xF iff θ=x ; 

(3) )
||

()(
αα
tFtF xx = for all 0, ≠∈ αα R and ;Xx∈  

(4) )()()( 2121 tFtFttF yxyx ∗≥++ for all Xyx ∈, and 21,tt >0. 
 
Definition 1.4. Let ),,( ∗FX be a Menger PN-space and let }{ nx be a sequence in X . Then }{ nx is 
said to be convergent if there exists Xx∈ such that  
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1)(lim =−∞→
tF xxn n

 

For all 0.>t In this case, x is called the limit of }{ nx . 
 
Definition 1.5.   The sequence }{ nx in Menger PN-space ),,( ∗FX is called Cauchy if for each  

0> and 0> δε   there exists some 0n such that εδ -1 >)(
mn xxF −  for all . >, 0nnm   

Clearly ,  every convergent sequence in Menger PN-space is Cauchy .  If each Cauchy sequence is 
convergent sequence in a Menger PN-space ),,,( ∗FX then ),,( ∗FX is called Menger probabilistic 
Banach space (briefly ,  Menger PB-space) . 
 
Definition 1.6. Let X  be a set .  A function  ],0[: ∞→× XXd  is called a generalized metric  
 on X if satisfies the following conditions : 
   (1) 0),( =yxd if and only if yx = for all ;, Xyx ∈  
   (2) ),(),( xydyxd = for all ;, Xyx ∈  
   (3) ),(),(),( zydyxdzxd +≤ for all ;,, Xzyx ∈  
 Note that the only substantial difference of the generalized  metric from the metric is that the range 
of generalized metric  includes the infinity . 
 
Theorem 1.1. Let (X,d) be a complete generalized metric space  and  XXJ →: be a strictly 
contractive mapping with  Lipschitz constant L <1. Then for all ,Xx∈  either 

∞=+ ),( 1xJxJd nn  
 for all non-negative integers n  or there exists a positive  integer 0n  such that  

(1)  ∞+ <),( 1xJxJd nn  for all  ;0nn ≥  

(2)  the sequence  }{ xJ n converges to a fixed point ∗y  of  ;J  
(3)  ∗y is the unique fixed point of J  in the set };<),(;{ 0 ∞∈= yxJdXyY n  

(4)  ),(
1

1),( Jyyd
L

yyd
−

≤∗  for all  .Yy∈  

 
2. Main results 
Throughout this section, using fixed point method, we prove the Hyers-Ulam-Rassias stability of 
quadratic functional equation in Menger probabilistic normed spaces.    
Definition 2.1. Let ( , ,*)X F  be a Menger PN-spaces and ( , ,*)Y G  be a menger PB-spaces. A 
mapping :f X Y→  is said to be P-approximately quadratic if 
 
 ( ) ( ) 2 ( ) 2 ( ) ( ) ( )* ( )f x y f x y f x f y x yG t s F t F s+ + − − − + ≥                       (2.2) 

for all , 0.t s >  
Theorem 2.1. Let :f X Y→  be a P-approximately quadratic functional equation and there exists 

10
4

α< <  such that 

                                                               (2 ) ( )x xF t F tα≥                                                                   (2.3) 

Then there exists a unique quadratic mapping :Q X Y→  such that 

                                                         ( ) ( )
1 4( )

2f x Q x xG t F tα
α−

− ≥  
 

                                                           (2.4) 

Proof. Puttin x y=  and s t=  in (2.2), we have 
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                                                        (2 ) 4 ( ) (2 ) ( )f x f x xG t F t− ≥                                                                       (2.5)                                                        

Replacing x  by 
2
x

 in (2.5), we have 

                                                         
( ) 4 ( )

2 2

(2 ) ( ).x xf x f
G t F t

−
≥                                                                      (2.6)                                                        

With the definition (1.3) and replacing t  by 
2
t

 in (2.6) we obtain 

                                                              
( ) 4 ( )

2

( ) ( )x xf x f
G t F t

−
≥                                                             (2.7) 

for all x X∈ , $t>0$. Consider the set : { : : (0) 0}K g X Y g= → =  and the generalized metric in K  
defined by 
                                             { }( ) ( )( , ) inf [0, ]  |   ( ) ( ) .g x h x xd h g c G ct F t−= ∈ ∞ ≥                                     (2.8) 

Where inf .∅ = +∞  It is easy to show that ( , )K d  is complete (see [22], lemma 2.1.). Now, we 

consider a linear mapping :J K K→  such that ( ) 4 ( )
2
xJh x h= for all .x X∈  First, we prove that 

J  is a strictly contractive mapping with the Lipschitz constant 4 .α  In fact let ,g h K∈  be such that 
( , ) .d g h c<  Then we have 

                                                                    ( ) ( ) ( ) ( )g x h x xG ct F t− ≥                                                               (2.9) 

Whence 
                                                 ( ) ( ) 4 ( ) 4 ( )

2 2

(4 ) (4 )Jg x Jh x x xg h
G ct G ctα α−

−
=                                                 (2.10) 

                           =
( ) ( )
2 2

( )x xg h
G ctα

−
 

      ≥
2

( )xF tα  

        ≥ ( )xF t  

For all x X∈ , 0.t >  Then  
( , ) 4 .d Jg Jh cα<  

This mean that 
                                                           ( , ) 4 ( , )d Jg Jh d g hα≤                                                                  (2.11) 
 
for all , .g h K∈  It follows from (2.7) that  
                                                                         ( , ) 2d f Jf α≤                                                                  (2.12) 
Now, by Theorem (1.1) there exists a mapping :Q X Y→ satisfying the following: 
(1) Q  is a fixed point of J , that is , 

                                                                     
1( ) ( )

2 4
xQ Q x=                                                                     (2.13) 

 
for all x X∈ . The mapping Q  is a unique fixed point of J  in the set  

{ : ( , ) }.h K d g hΩ = ∈ < ∞  
This implies that Q  is a unique mapping satisfying (2.13) such that there exists [0, ]c∈ ∞  satisfying 

                                                                 ( ) ( ) ( ) ( )f x Q x xG ct F t− ≥                                                               (2.14) 

for all x X∈  and 0.t >  
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(2) ( , ) 0nd J f Q →  as .n →∞  This implies the equality 

                                                               lim 4 ( ) ( )
2

n
nn

xf Q x
→∞

=                                                                 (2.15) 

for all .x X∈  

(3) 
( , ) 2( , )
1 1 4

d f Jfd f Q
L

α
α

≤ ≤
− −

 with f ∈Ω  and so 

                                                               ( ) ( )
2 ( ).

1 4f x Q x x
tG F tα
α−

  ≥ − 
                                                     (2.16) 

This implies that 

                                                              ( ) ( )
1 4( ) .

2f x Q x xG t F α
α−

− ≥  
 

                                                     (2.17) 

Then the inequality (2.4) holds. On the other hand 
                                                 

4 ( ) ( ) 2 ( ) 2 ( )
2 22 2 2 2 2 2

( ) ( )* ( )
n

n nn n n n n n
x yx y x y x yf f f f

G t s F t F s + + − − −  

+ ≥                   (2.18) 

By definition (1.3) and (2.3) we have 
          

2

( ) ( )n

n
x x

F t F t
α

≥           
2

( ) ( )n

n
y y

F s F s
α

≥  

So  
                                                        

2 2

( )* ( ) ( )* ( )n n

n n
x y x y

F t F s F t F s
α α

≥                                                   (2.19) 

for all ,x y X∈  and , 0t s > . Now, since lim ( )* ( ) 1n nx yn
F t F s
α α→∞

=  we have 

                                                                  ( ) ( ) 2 ( ) 2 ( ) ( ) 1Q x y Q x y Q x Q yG t s+ + − − − + =                                         (2.20) 

for all ,x y X∈ . This complete the proof.  
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