
H. Saberi Najafi, S.A. Edalatpanah / TJMCS Vol .4 No.4 (2012) 527-535 
 

527 
 

 
 
 
 
 
 

 
Available online at 

http://www.TJMCS.com 
  
The Journal of Mathematics and Computer Science Vol .4 No.4 (2012) 527-535 

 
 

The Block AOR Iterative Methods for Solving Fuzzy Linear Systems 

 
H. Saberi Najafi 

Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran 
e-mail :  hnajafi@guilan.ac.ir 

 
S.A. Edalatpanah *   

Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran 
Young Researchers Club, Lahijan Branch, Islamic Azad University, Lahijan, Iran 

email: saedalatpanah@gmail.com 
 

 
 
 
Received:  July 2011, Revised: November 2012 
Online Publication: November 2012 
* Corresponding author. 
 
 
Abstract 
In this article the block AOR Iterative methods are used for solving fuzzy linear systems. The 
convergence of the methods and functional relationship between eigenvalues in block AOR is 
investigated.   
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1.   Introduction. 
Unfailing real world problems in economics, finance, mechanics etc. can lead to solving a system of 
linear equations. There are many methods for solving linear systems, see [3,11-12,14-15,18] and 
the references therein. Nevertheless, when coefficients of a system are ambiguous and there is 
some inexplicit information about the exact amount of parameters, how can the linear equation 
system be solved? To solve this problem, first attempt researchers made was through accidental 
events and caring to probabilities. However, yet, scientists believe that the only way to improve 
efficiency is to increase accuracy. Thus, fuzzy logic was proposed by Zadeh in1965 [13,20]. The 
solutions of fuzzy linear systems (FLS) have been considered by many researchers, for example 
[1,4-5]. In [4] , Friedman et al. use the embedding method and replaced the fuzzy linear system by a 

The Journal of 
Mathematics and Computer Science 

http://www.tjmcs.com/
mailto:hnajafi@guilan.ac.ir
mailto:saedalatpanah@gmail.com


H. Saberi Najafi, S.A. Edalatpanah / TJMCS Vol .4 No.4 (2012) 527-535 
 

528 
 

2n × 2n crisp linear system and studied the uniqueness of the fuzzy solution. This model has been 
modified later by some other researchers; see [2-3,8-10,16-17] and the references therein.  In this 
article we consider the block AOR iterative methods to solve the fuzzy linear system. 
 
2 .Preliminaries 
 In this section we provide some basic notations and definitions of fuzzy number and fuzzy linear 
system. 
Definition 2.1. 
  An arbitrary fuzzy number is represented, in parametric form, by an ordered pair of functions  

))(),(( ruru , 0 ≤ r ≤ 1, which satisfy the following requirements(see [1,4-5]): 
  
(i)  )(ru  is a bounded monotonic increasing left continuous function over[0,1]; 

(ii) )(ru is a bounded monotonic decreasing left continuous function over[0,1]; 

(iii)  .10),()( ≤≤≤ rruru  

 A crisp number α can be simply expressed as .10,)()( ≤≤== rruru α  
  
 The addition and scalar multiplication of fuzzy numbers previously can be described as follows: 
  (i) x = y if and only if  )()( ryrx =  and  )()( ryrx = , 
  (ii) x+y=( )()(),()( ryrxryrx ++ ), 

  (iii) .
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  Definition 2.2. Consider the n × n linear system of equations: 
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Where the coefficient matrix A=( ija ), 1≤i,j≤n is a crisp matrix and niEbi ≤≤∈ 1;1 ,is called a fuzzy 

linear system(FLS). 
 

Definition 2.3. A fuzzy number vector X = T
nxxx ),,,( 21  , given by parametric form 

,10,1)),(),(( ≤≤≤≤= rnirxrxX iii  
is called a solution of the fuzzy linear system (1) if 
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Friedman et al.[4-5], in order to solve the system given by(2) have solved a 2n×2n crisp linear 
system as: 
                                                       SX=B ,                                                                                 (3) 
 where )( ijsS = ,are determined as follows; 
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and any  )( ijs which is not determined by (4) is zero.    

 Then refer to [4] we have ; 
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Where 2121 ,0, ssAss −=≥  . 
 

Theorem 2.1.[4]. The matrix S is nonsingular if and only if the matrices A and 21 ss +  are both 
nonsingular. 

Theorem 2.2.[4]. If  1−S  exists it must have the same structure as S, i.e. .1








=−
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Theorem 2.3.[4]. Let S be nonsingular. Then the unique solution X is always a fuzzy vector for 
arbitrary vector B , if and only if 1−S is nonnegative. 
Theorem 2.4.[7].The inverse of a nonnegative matrix A is nonnegative if and only if A is a 
generalized permutation matrix.  
 
 Definition 2.4[4]. Let  denote nirxrxX ii ≤≤−= 1)),(),((    the unique solution of SX = B. The 

fuzzy number vector ))(),(( ruruU ii=    defined by 

                                                                
)},1(),(),(max{)(
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 is called the fuzzy solution of SX = B. 
If ))(),(( rxrxX ii −=  are all triangular fuzzy numbers then )()(),()( rxrurxru iiii ==   and U is 

called a strong fuzzy solution. Otherwise is a weak fuzzy solution .  
  
  
3.The block AOR iterative method for fuzzy linear systems  
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Let S be nonsingular ,Sii≠ 0 and  S=D-L-U, where; 
             

                )7(.
0

,
0

,
0

0

1

21

12

1

1

1








=








=








=

U
sU

U
Ls

L
L

D
D

D  

And,                                                              

              

,,,,2,1),( 1111,1 SULDnisdiagD ii =−−==       

and L1 ,U1 are strictly lower and upper triangular matrices ,respectively. 
 
The iterative method for SX=B  is; 
                 

                            ( 1) 1 ( ) 1 , 0,1...i iX M NX M b i+ − −= + =   

where S=M-N, det (M) ≠ 0 and )0(X  is any initial vector .The method is convergent if  
1)( 1 <− NMρ (we denote the spectral radius of S by ρ (S)). 

In the following, first, we will survey Non-Block AOR method for FLS. This method is defined 
in[6]and for FLS is used in [2] . 
This method is given by the following; 
                           )8(,.1,0,)( 1)(

,
)1( =−+= −+ iwbrLDXLX i

wr
i  

and the iterative matrix is; 
                           )9(,])()1[()( 1

, wULrwDwrLDL wr +−+−−= −  

where (w, r) are real parameters with w≠0.  

 Then for solving FLS, by some algebra and  
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And the iterative matrix for AOR in FLS is;
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Dehghan and Hashemi in[2] proposed sufficient condition for the convergence of the AOR method 
when S is a strictly diagonally dominant.(see[2,Theorem4.8]).The following theorem indicates a  
necessary condition for the convergence of this method ,in generally . 
This theorem has been proved in [19] for a crisp linear system. Here we prove this theorem for FLS 
and constructed matrix S. 
 
Theorem3.1 
If the AOR method for solving FLS, converges for some w ,r≠0 .Then we have only one of the 
following expressions: 
(i) ),,0()0,(&)2,0( +∞∪−∞∈∈ wr  
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(ii) ).2,0()0),2/(2(&),2[)0,( ∪−∈+∞∪−∞∈ rrwr  
And when r=0, for convergence we must have 0< w <2  . 
 

Proof.   If in (11), r = w then the iterative matrix of AOR is SOR, i.e. SORT  ,then for  convergence  we 

have: 
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Where, 
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 And with elementary row operations determinant of  Lrr, we have; 
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Where iξ  are eigenvalues of iterative matrix SOR. As we know the AOR method for r≠0  is an 

extrapolation of SOR method with t=w/r. So we have;  
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where iλ are eigenvalues of iterative matrix AOR. Since )2,...,1(,1 nii =<λ ,we have,  
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Now use Theorem2.1 of [19].  
 
Recently, in [8] the block SOR iterative methods are applied for solving the FLS .   
Here, we establish the block AOR iterative methods for solving n × n fuzzy linear system.  
 
The Block form of AOR can be written in different forms. Some of them are as follows; 
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where, 
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For  splitting form of (12) we have, 
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Furthermore, the stopping criterion with tolerance 0ε   is; 
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And  for any triangular fuzzy number x = (a+br, c+dr), 0 ≤ r ≤ 1, its norm is defined as; 

                                }.,,,max{ dcbax =

  
Where this is equivalent to Hausdorff distance of fuzzy numbers.

 
 
Some functional relations between the eigenvalues of the iterative matrices for the block SOR 
iterative methods are proposed in [8] . In the following theorem we present the functional relation 
between the eigenvalues )( ,wrTλ of the iterative matrix(16) for the block AOR iterative method . 

Similar functional relations for different Block forms of AOR can be obtained in the same manner. 
 Theorem 3.2. For Block AOR form of (12 ) , we have the following functional relationship  
           

                          
22 )1()1(2)1( µλµλλ −+−−=−− rwwww  

In which λ  is any eigenvalue of iterative matrix wrT ,  except w−= 1λ  ,and µ is any eigenvalue of  

.)( 2
1

21 sss −−   
 
Proof. By refer to the proof of theorem 3.1,if in iterative matrix AOR of (11), r=w then we have the 
iterative matrix SOR . Now let ξ  be the nonzero eigenvalues of rrT , and ttt yx ),( be the 

corresponding eigenvector, then we have ;  
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 It is easy to see that, 
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Since A is nonsingular then )( 21 ss − is nonsingular and also r−≠ 1ξ  therefore from (18) we have,  
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Thus, 

                                           )20()1()1(2)1( 222 µξµξξ −+−−=−− rrrr  
From (20) one can see that if µ be the eigenvalue of 2

1
21 )( sss −− then ξ is an eigenvalue of rrT , and 

vice versa. Now since t=w/r and IttLL rrwr )1(,, −+=  if λ  is an eigenvalue of iterative matrix of 

AOR then the proof is completed.  
We also could have similar theorems for (13),(14). 
  
Finally, in order to show that the block AOR iterative methods are efficient for the fuzzy linear 
systems, consider the following 3×3 fuzzy system 
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The extended 6×6 matrix is; 
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Which S,s1 are invertible. The exact solution is;  
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This is a strong fuzzy solution. In this FLS, since iteration matrix in Non-Block AOR is singular, these 
point methods cannot be used in the above FLS. But our methods work well. The following table 
shows the numerical results of above example with the tolerance ( 00001.0=ε ) 

and [ ]TX 0000000 = . In the Table 1, we reported the number of iterations (Iter) and the 

spectral radius ( ) of the corresponding iterative matrix with different parameters w, r. 
Furthermore,( #) indicates the method is not convergence.  
 
   Table1    Shows the results of example for Block AOR 

Method  Block form of(12 )    Block form of(13 )   Block form of(14 )    
  w       r                        Iter                                  Iter                                     Iter         

    0.1     0.3               0.9480         151               0.9336        128                 0.9380           151                              
    1.0     0.0               0.6667           31               0.6404          29                 1.0000               # 
    0.8     0.5               0.5711           14               0.4342          11                 0.4922              14 
    1.1     1.0               0.4534           18               0.1000            7                 0.6285              29 
    1.5     1.5               1.0000             #               0.5000          21                 1.2500                # 
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In the following we can to see that the approximate solution above example for (w=0.8, r=0.5). 
 

Block form of(12 );
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Block form of(13 );
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Block form of(14 );
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