The Journal of
Mathematics and Computer Science

Available online at
http://www.TIMCS.com
The Journal of Mathematics and Computer Science Vol. 4 No. 3 (2012) 386-391

Existence of Three Weak Solutions for Elliptic Dirichlet Problem

G.A. Afroiuzi ${ }^{1 *}$, T.N. Ghara ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran afrouzi@umz.ac.ir
${ }^{2}$ Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran tahere.noruzi5@gmail.com

Received: February 2012, Revised: May 2012
Online Publication: July 2012

Abstract

The aim of this paper is to establish the existence of at least three weak solutions for the elliptic Dirichlet problem. Our main tool is a three critical point theorem and Therorem3.1. of Gabriele Bonanno, Giovanni Molica Bisci [4].

Keywords: Dirichlet problem; Critical points; Three noitulos

1. Introduction

In this paper we investigate the following elliptic Dirichlet problem

$$
\left\{\begin{array}{lc}
-\Delta u=\lambda f(x, u)-a(x) u & \text { in } \Omega \tag{1.1}\\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where Ω is a non empty bounded open subset of the Euclidean space ($\left.R^{N},||.\right), \mathrm{N} \geq 3$, with boundary of class C^{1}, λ is a positive parameter and $\mathrm{f}: \Omega \times R \rightarrow R$ is a function, and the positive weight function $\mathrm{a}(\mathrm{x}) \in C(\bar{\Omega})$.
Existence of three solutions for different kinds of Dirichlet problem has been widely studied in literature, see for instance[1, 3, 5, 6,7].

2. Preliminaries

Our main tool is the following critical point theorem.

[^0]Theorem 2.1. Let X be a reflexive real Banach space, $\phi: X \rightarrow R$ be a coercive, continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a continuous invers on $X^{*}, \psi: X \rightarrow R$ be a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact such that $\phi(0)=\psi(0)=0$.
Assume that there exist $\mathrm{r}>0$ and $\bar{x} \in X$, with $\mathrm{r}<\phi(\bar{x})$, such that:
$\left(a_{1}\right) \frac{\sup _{\phi(x) \leq r} \psi(x)}{r}<\frac{\psi(\bar{x})}{\phi(\bar{x})} ;$
$\left(a_{2}\right)$ hcae $\left.\operatorname{rof} \lambda \in \Lambda_{r}:=\right] \frac{\psi(\bar{x})}{\phi(\bar{x})}, \frac{r}{\sup _{\phi(x) \leq r} \psi(x)}$ [the functional $\phi-\lambda \psi$ is coercive.
Then, for each $\lambda \in \Lambda_{r}$, the functional $J_{\lambda}:=\phi-\lambda \psi$ has at least three distinct critical points in X. Here and in the sequal, $\mathrm{f}: \Omega \times R \rightarrow R$ is a Caratheodory function such that $\left(h_{1}\right)$ There exist two non negative constants a_{1}, a_{2} and $\left.\mathrm{q} \in\right] 1, \frac{2 N}{(N-2)}$ [such that

$$
\begin{equation*}
|\mathrm{f}(\mathrm{x}, \mathrm{t})| \leq a_{1}+a_{2}|t|^{q-1} \tag{2.1}
\end{equation*}
$$

for every (x, t) $\in \Omega \times R$.
We recall that the symbol $H_{0}^{1}(\Omega)$ indicates the closure of $C_{0}^{\infty}(\Omega)$ in the Sobolev space $W^{1,2}(\Omega)$, with respect to the norm

$$
\|\mathrm{u}\|:=\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)^{\frac{1}{2}}
$$

and we define

$$
\left|\mid u \|_{I}:=\left(\int_{\Omega}\left(|\nabla u(x)|^{2}+a(x)|u(x)|^{2}\right) d x\right)^{\frac{1}{2}}\right.
$$

then there exist positive suitable constants c_{1}, c_{2} such that

$$
c_{1}\|u\| \leq\|u\|_{I} \leq c_{2}\|u\|
$$

and a function $\mathrm{u}: \Omega \rightarrow R$ is said to be a weak solution of (1.1) if $\mathrm{u} \in H_{0}^{1}(\Omega)$ and

$$
\int_{\Omega} \nabla u(x) \nabla v(x) d x-\lambda \int_{\Omega} f(x, u(x)) v(x) d x=-\int_{\Omega} a(x) u(x) v(x) d x
$$

for all $v \in H_{0}^{1}(\Omega)$.
In order to study problem (1.1), we will use the functionals $\phi, \psi: H_{0}^{1}(\Omega) \rightarrow R$ defined by putting

$$
\phi(u):=\frac{\|u\|_{I}^{2}}{2}
$$

and

$$
\psi(u):=\int_{\Omega} F(x, u(x)) d x, \quad \forall u \in H_{0}^{1}(\Omega)
$$

Where

$$
\mathrm{F}(\mathrm{x}, \xi):=\int_{0}^{\xi} f(x, t) d t
$$

for every $(\mathrm{x}, \xi) \in \Omega \times R$.
From [4] clearly $\phi: X \rightarrow R$ is a coercive, continuously G \hat{a} teaux differentiable and sequentially weakly lower semi continuous functional whose Gâteaux derivative admits a continuous inverse on X^{*}. On the other hand, ψ is well defined, continuously G \hat{a} teaux differentiable and with compact derivative. More precisely, one has

$$
\begin{gathered}
\dot{\phi}(u)(v)=\int_{\Omega}(\nabla u(x) \cdot \nabla v(x)+a(x) u(x) v(x)) d x \\
\dot{\psi}(u)(v)=\int_{\Omega} f(x, u(x)) v(x) d x,
\end{gathered}
$$

G.A. Afroiuz, T.N. Ghara / TJMCS Vol. 4 No. 3 (2012) 386-391

for every $\mathrm{u}, \mathrm{v} \in H_{0}^{1}(\Omega)$.
A critical point of the functional $J_{\lambda}:=\phi-\lambda \psi$ is a function $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\dot{\phi}(u)(v)-\lambda \dot{\psi}(u)(v)=0 \tag{2.2}
\end{equation*}
$$

for every $\mathrm{v} \in H_{0}^{1}(\Omega)$. Hence the critical points of the functional J_{λ} are weak solutions of problem (1.1). Now, put $2^{*}=\frac{2 N}{(N-2)}$ and denote, as usual, with Γ the Gamma function defined by

$$
\Gamma(t):=\int_{0}^{+\infty} z^{t-1} e^{-z} d z, \quad \forall t>0
$$

From the Sobolev embedding theorem there exist $\mathrm{c} \in R^{+}$such that

$$
\begin{equation*}
\|u\|_{L^{2^{*}}(\Omega)} \leq c| | u \|, \quad u \in H_{0}^{1}(\Omega) . \tag{2.3}
\end{equation*}
$$

The best constant that appears in (2.3) is

$$
\begin{equation*}
\mathrm{c}=\frac{1}{\sqrt{N(N-2) \pi}}\left(\frac{N!}{2 \Gamma\left(1+\frac{N}{2}\right)}\right)^{\frac{1}{N}} \tag{2.4}
\end{equation*}
$$

Fixing $\mathrm{q} \in\left[1,2^{*}\left[\right.\right.$, again from the Sobolev embedding theorem, there exists a positive constant c_{q} such that

$$
\begin{equation*}
\|u\|_{L^{q}(\Omega)} \leq c_{q}\|u\|, \quad u \in H_{0}^{1}(\Omega) \tag{2.5}
\end{equation*}
$$

and, in particular, the embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{q}(\Omega)$ is compact.
Due to (2.4) , as simple consequence of Holder's inequality, it follows that

$$
\begin{equation*}
c_{q} \leq \frac{\operatorname{meas}(\Omega)^{\frac{2^{*}-q}{2^{*} q}}}{\sqrt{N(N-2) \pi}}\left(\frac{N!}{2 \Gamma\left(1+\frac{N}{2}\right)^{\frac{1}{N}}}\right)^{\frac{1}{N}} \tag{2.6}
\end{equation*}
$$

where meas (Ω) denotes the Lebesgue measure of the set Ω.
Moreover, let

$$
\begin{equation*}
\mathrm{D}:=\sup _{x \in \Omega} \operatorname{dist}(x, \partial \Omega) \tag{2.7}
\end{equation*}
$$

Simple calculations show that there is $x_{0} \in \Omega$ such that $\mathrm{B}\left(x_{0}, \mathrm{D}\right) \subseteq \Omega$.
Finally, we set

$$
\begin{equation*}
\mathrm{k}:=\frac{D \sqrt{2}}{2 \pi^{\frac{N}{4}}}\left(\frac{\Gamma\left(1+\frac{N}{2}\right)}{D^{N}-\left(\frac{D}{2}\right)^{N^{2}}}\right)^{\frac{1}{2}}, \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{1}:=\frac{2 \sqrt{2} c_{1}\left(2^{N}-1\right)}{D^{2}}, \quad K_{2}:=\frac{2^{\frac{q+2}{2}} c_{q}^{q}\left(2^{N}-1\right)}{q D^{2}} \tag{2.9}
\end{equation*}
$$

3. Conclusion

Our main result is the following theorem.
eroehTm 3.1. Let f: $\Omega \times R \rightarrow R$ be a Caratheodory function such that (h_{1}) holds. Assume that $\left(h_{2}\right) F(x, \xi) \geq 0$ for every $(\mathrm{x}, \xi) \in \Omega \times R^{+}$;
$\left(h_{3}\right)$ there exist two positive constants b and $\mathrm{s}<2$ such that

$$
\mathrm{F}(\mathrm{x}, \xi) \leq b\left(1+|\xi|^{s}\right)
$$

for almost every $\mathrm{x} \in \Omega$ and for every $\xi \in R$;
$\left(h_{4}\right)$ there exist two positive constants γ and δ, with $\delta>\gamma k$ such that

$$
\frac{i n f_{x \in \Omega} F(x, \delta)}{E \delta^{2}}<a_{1} \frac{K_{1}}{\gamma}+a_{2} K_{2} \gamma^{q-2}
$$

where a_{1}, a_{2} are given in (h_{1}) and k, K_{1}, K_{2} are given by (2.8) and (2.9).
Then, for each parameter λ belonging to

$$
\left.\Lambda_{(\gamma, \delta)}:=\right] \frac{2\left(2^{N}-1\right)}{D^{2}} \frac{\delta^{2} E}{i n f_{x \in \Omega} F(x, \delta)}, \frac{2\left(2^{N}-1\right)}{D^{2}} \frac{1}{\left(a_{1} \frac{K_{1}}{\gamma}+a_{2} K_{2} \gamma^{q-2}\right)}
$$

the problem (1.1) possesses at least three weak solutions in $H_{0}^{1}(\Omega)$.
Proof: Let us apply theorem 2.1 with $\mathrm{X}=H_{0}^{1}(\Omega)$ and

$$
\phi(u):=\frac{\|u\|_{I}^{2}}{2}, \quad \psi(u):=\int_{\Omega} F(x, u(x)) d x
$$

for every $\mathrm{u} \in X$. Let $\lambda>0$ and put

$$
J_{\lambda}(u):=\phi(u)-\lambda \psi(u), \quad \forall u \in X
$$

As observed in section $2, \phi: X \rightarrow R$ is a coercive, continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a
 derivative and $\phi(0)=\psi(0)=0$.

Owing to $\left(h_{1}\right)$, one has that

$$
\begin{equation*}
\mathrm{F}(\mathrm{x}, \xi) \leq a_{1}|\xi|+a_{2} \frac{|\xi|^{q}}{q} \tag{3.1}
\end{equation*}
$$

for every $(\mathrm{x}, \xi) \in \Omega \times R$.
Let $\mathrm{r} \in] 0,+\infty$ [and consider the function

$$
\chi(r):=\frac{\sup _{u \in \phi^{-1}([-\infty, r])} \psi(u)}{r} .
$$

Taking into account (3.1) it follows that

$$
\psi(u)=\int_{\Omega} F(x, u(x)) d x \leq a_{1}\|u\|_{L^{1}(\Omega)}+\frac{a_{2}}{q}\|u\|_{L^{q}(\Omega)}^{q}
$$

Then, for every $\mathrm{u} \in X: \phi(u) \leq r$, due to (2.5), we get

$$
\psi(u) \leq\left(\sqrt{2 r} c_{1} a_{1}+\frac{2^{\frac{q}{2}} c_{q}^{q} a_{2}}{q} r^{\frac{q}{2}}\right)
$$

Hence

$$
\begin{equation*}
\sup _{\left.\left.u \in \phi^{-1}(]-\infty, r\right]\right)} \psi(u) \leq\left(\sqrt{2 r} c_{1} a_{1}+\frac{2^{\frac{q}{2}} c_{q}^{q} a_{2}}{q} r^{\frac{q}{2}}\right) \tag{3.2}
\end{equation*}
$$

Since, from (3.2), the following inequality holds

$$
\begin{equation*}
\chi(r) \leq\left(\sqrt{\frac{2}{r}} c_{1} a_{1}+\frac{2^{\frac{q}{2}} c_{q}^{q} a_{2}}{q} r^{\frac{q}{2}-1}\right) \tag{3.3}
\end{equation*}
$$

for every $\mathrm{r}>0$.
Next, put

$$
u_{\delta}(x):=\left\{\begin{array}{cc}
0 & \text { if } x \in \Omega-B\left(x_{0}, D\right) \tag{3.4}\\
\frac{2 \delta}{D}\left(D-\left|x-x_{0}\right|\right) & \text { if } x \in B\left(x_{0}, D\right)-B\left(x_{0}, \frac{D}{2}\right) \\
\delta & \text { if } x \in B\left(x_{0}, \frac{D}{2}\right)
\end{array}\right.
$$

Clearly $u_{\delta} \in X$ and we have

$$
\phi\left(u_{\delta}\right)=\frac{1}{2}\left(\int_{\Omega}\left(\left|\nabla u_{\delta}(x)\right|^{2}+a(x)\left|u_{\delta}(x)\right|^{2}\right) d x\right.
$$

G.A. Afroiuz, T.N. Ghara / TJMCS Vol. 4 No. 3 (2012) 386-391

$$
\begin{align*}
& =\frac{1}{2}\left(\int_{B\left(x_{0}, D\right)-B\left(x_{0}, \frac{D}{2}\right) \frac{(2 \delta)^{2}}{D^{2}} d x}+\int_{B\left(x_{0}, D\right)-B\left(x_{0}, \frac{D}{2}\right)} a(x) \frac{(2 \delta)^{2}}{D^{2}}\left|D-\left|x-x_{0}\right|\right|^{2} d x+\right. \\
& \begin{aligned}
\left.\int_{B\left(x_{0}, D\right)} a(x) \delta^{2} d x\right)
\end{aligned} \\
& \quad \leq \frac{1}{2}\left(\frac{(2 \delta)^{2}}{D^{2}} \frac{\pi^{\frac{N}{2}}}{\Gamma\left(1+\frac{N}{2}\right)}\left(D^{N}-\left(\frac{D}{2}\right)^{N}\right)\right. \\
& +\frac{(2 \delta)^{2}}{D^{2}} \sup _{x \in \Omega} \mathrm{a}(\mathrm{x}) \max _{x \in B\left(x_{0}, D\right)-B\left(x_{0}, \frac{D}{2}\right)}\left|D-\left|x-x_{0}\right|\right|^{2} \frac{\pi^{\frac{N}{2}}}{\Gamma\left(1+\frac{N}{2}\right)}\left(D^{N}-\left(\frac{D}{2}\right)^{N}\right) \\
& \left.\quad+\delta^{2} \sup _{x \in \Omega} \mathrm{a}(\mathrm{x}) \frac{\pi^{\frac{N}{2}}}{\Gamma\left(1+\frac{N}{2}\right)} \frac{D^{N}}{2^{N}}\right)
\end{aligned} \quad \begin{aligned}
=\frac{1}{2} \frac{(2 \delta)^{2}}{D^{2}} \frac{\pi^{\frac{N}{2}}}{\Gamma\left(1+\frac{N}{2}\right)}\left(D^{N}-\left(\frac{D}{2}\right)^{N}\right)\left(1+M h+\frac{D^{2}}{2^{2}} M \frac{1}{2^{N}-1}\right) \\
\quad=\frac{E}{2} \frac{(2 \delta)^{2}}{D^{2}} \frac{\pi^{\frac{N}{2}}}{\Gamma\left(1+\frac{N}{2}\right)}\left(D^{N}-\left(\frac{D}{2}\right)^{N}\right) .
\end{align*}
$$

Bearing in mind that $\delta>\gamma k$, it follows that $\gamma^{2}<\phi\left(u_{\delta}\right)$.
At this point, by $\left(h_{2}\right)$ we infer

$$
\begin{align*}
& \quad \psi\left(u_{\delta}\right)=\int_{\Omega} F\left(x, u_{\delta}(x)\right) d x \geq \int_{B\left(x_{0}, \frac{D}{2}\right)} F(x, \delta) d x \geq \\
& \text { inf }_{x \in \Omega} F(x, \delta) \frac{\pi^{\frac{N}{2}}}{\Gamma\left(1+\frac{N}{2}\right)} \frac{D^{N}}{2^{N}} . \tag{3.6}
\end{align*}
$$

Hence, by (3.5) and (3.6) one has

$$
\begin{equation*}
\frac{\psi\left(u_{\delta}\right)}{\phi\left(u_{\delta}\right)} \geq \frac{D^{2}}{2\left(2^{N}-1\right)} \frac{i n f_{x \in \Omega} F(x, \delta)}{\delta^{2} E} \tag{3.7}
\end{equation*}
$$

In view of (3.3) and taking into account (h_{4}), we get

$$
\begin{aligned}
\chi\left(\gamma^{2}\right) & =\frac{\sup _{u \in \phi^{-1}\left(1-\infty, \gamma^{2} D\right.} \psi(u)}{\gamma^{2}} \leq\left(\sqrt{2} \frac{c_{1}}{\gamma} a_{1}+\frac{2^{\frac{q}{2}} c_{q}^{q} a_{2}}{q} \gamma^{q-2}\right) \\
= & \frac{D^{2}}{2\left(2^{N}-1\right)}\left(a_{1} \frac{K_{1}}{\gamma}+a_{2} K_{2} \gamma^{q-2}\right)<\frac{D^{2}}{2\left(2^{N}-1\right)} \frac{i n f_{x \in \Omega} F(x, \delta)}{\delta^{2} E} \leq \frac{\psi\left(u_{\delta}\right)}{\phi\left(u_{\delta}\right)} .
\end{aligned}
$$

Therefore, the assumption $\left(a_{1}\right)$ of theorem 2.1 is satisfied.
Moreover, if $\mathrm{s}<2$, for every $\mathrm{u} \in X,|u|^{s} \in L^{\frac{2}{s}}(\Omega)$ and the Holder's inequality gives

$$
\int_{\Omega}|u(x)|^{s} d x \leq\|u\|_{L^{2}(\Omega)}^{s} \operatorname{meas}(\Omega)^{\frac{2-s}{2}}, \quad \forall u \in X
$$

Then, by (2.5), one has

$$
\begin{equation*}
\int_{\Omega}|u(x)|^{s} d x \leq\left. c_{2}^{s}| | u\right|^{s} \operatorname{meas}(\Omega)^{\frac{2-s}{2}}, \quad \forall u \in X \tag{3.8}
\end{equation*}
$$

From (3.8) and due to condition (h_{3}), it follows that

$$
J_{\lambda}(u) \geq \frac{\|u\|_{I}^{2}}{2}-\lambda b \operatorname{meas}(\Omega)^{\frac{2-s}{2}}\|u\|^{s}-\lambda b \operatorname{meas}(\Omega), \quad \forall u \in X
$$

Therefore, J_{λ} is a coercive functional for every positive parameter, in particular, for every

$$
\left.\lambda \in \Lambda_{(\gamma, \delta)} \subseteq\right] \frac{\phi\left(u_{\delta}\right)}{\psi\left(u_{\delta}\right)}, \frac{\gamma^{2}}{\sup _{\phi(u) \leq \gamma^{2}}}[
$$

Then, also condition $\left(a_{2}\right)$ holds. Hence, all the assumptions of theorem 2.1 are satisfied, so that, for each $\lambda \in \Lambda_{(\gamma, \delta)}$ the functional J_{λ} has at least three distinct critical points that are weak solutions of the problem (1.1).
Example 3.1 Let Ω be an open ball of radius one in $\left.R^{4}, \mathrm{q}:=3 \in\right] 2,4\left[\right.$ and $\mathrm{s}:=\frac{3}{2}<2$.
Pick $\mathrm{r}:=200$ and consider the function $\mathrm{f}: \mathrm{R} \rightarrow R$ defined by
$\mathrm{f}(\mathrm{t}):=\left\{\begin{aligned} 1+t^{2} & \text { if } t \leq 200, \\ 1+2000 \sqrt{2 t} & \text { if } t>200 .\end{aligned}\right.$
and $\mathrm{a}(\mathrm{x})=\frac{1}{e^{2} x^{\frac{1}{3}}}$.
Then, by theorem 3.1, for each
$\lambda \in] \frac{18000 E}{40003}, \frac{12^{\frac{1}{4}}}{1+2 \sqrt{3} \pi^{2}} 4 \pi[$,
the problem(1.1) possesses at least three weak positive solutions in $H_{0}^{1}(\Omega)$.

Acknowledgments

The authors would like to thank the refere for the careful reading of this paper.

References

[1] D. Averna and G. Bonanno, A three critical points theorem and its applications to ordinary Dirichlet problems, Topol. Methods Nonlinear Anal. 22 (2003), 93-103.
[2] G.A. Afrouzi, S. Heidarkhani, Three solutions for a Dirichlet boundary value problem involving the p-Laplacian, Nonlinear. Anal. 66 (2007) 2281-2288.
[3] G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal. 54 (2003), 651-665.
[4] G. Bonanno, G.M. Bisci, Three weak solutions for elliptic Dirichlet problems, J. Math. Anal. Appl. 382 (2011) 1-8.
[5] B. Ricceri, On a three critical points theorem, Arch. Math. (Basel) 75 (2000) 220-226.
[6] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000) 401-410.
[7] B. Ricceri, Existence of three solutions for a class of elliptic eigenvalue problems, Math. Comput. Modelling 32 (2000) 1485-1494.

[^0]: * Corresponding author

