Available online at www.isr-publications.com/jmcs J. Math. Computer Sci., 17 (2017), 255–265 Research Article Online: ISSN 2008-949x # **Journal of Mathematics and Computer Science** Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs ## Characterizations of upper and lower $\alpha(\mu_X, \mu_Y)$ -continuous multifunctions Napassanan Srisarakham, Chawalit Boonpok* Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Mahasarakham, Thailand. #### **Abstract** A new class of multifunctions, called upper (lower) $\alpha(\mu_X, \mu_Y)$ -continuous multifunctions, has been defined and studied. Some characterizations and several properties concerning upper (lower) $\alpha(\mu_X, \mu_Y)$ -continuous multifunctions are obtained. ©2017 All rights reserved. Keywords: Generalized topological space, μ - α -open, upper $\alpha(\mu_X, \mu_Y)$ -continuous multifunction, lower $\alpha(\mu_X, \mu_Y)$ -continuous multifunction. 2010 MSC: 54A05, 54C08. #### 1. Introduction General topology has shown its fruitfulness in both the pure and applied directions. In reality it is used in data mining, computational topology for geometric design and molecular design, computer-aided design, computer-aided geometric design, digital topology, information system, non-commutative geometry and its application to particle physics, one can observe the influence made in these realms of applied research by general topological spaces, properties and structures. Continuity is a basic concept for the study of generalized topological spaces. This concept has been extended to the setting of multifunctions and has been generalized by weaker forms of open sets such as α -open sets [18], semi-open sets [15], preopen sets [16], β -open sets [1] and semi-preopen sets [3]. Multifunctions and of course continuous multifunctions stand among the most important and most researched points in the whole of the mathematical science. Many different forms of continuous multifunctions have been introduced over the years. Some of them are semi-continuity [22], α -continuity [17], precontinuity [24], quasi-continuity [23], γ -continuity [2] and δ -precontinuity [21]. Most of these weaker forms of continuity, in ordinary topology such as α-continuity and β-continuity, have been extended to multifunctions [20, 25–28]. Császár [5] introduced the notions of generalized topological spaces and generalized neighbourhood systems. The classes of topological spaces and neighbourhood systems are contained in these classes, respectively. Specifically, he introduced the notions of continuous functions on generalized topological spaces and investigated the characterizations of Email address: chawalit.b@msu.ac.th (Chawalit Boonpok) doi:10.22436/jmcs.017.02.07 ^{*}Corresponding author generalized continuous functions. Kanibir and Reilly [14] extended these concepts to multifunctions. The purpose of the present paper is to define the notion of upper (lower) $\alpha(\mu_X, \mu_Y)$ -continuous multifunctions and to obtain several characterizations and several properties of these multifunctions. #### 2. Preliminaries Let X be a set and denote $\mathfrak{P}(X)$ the power set of X. We call a class $\mu \subseteq \mathfrak{P}(X)$ a generalized topology (briefly GT) on X, if $\emptyset \in \mu$ and an arbitrary union of elements of μ belongs to μ [5]. A set with a GT is said to be a generalized topological space (briefly GTS). For a GTS (X,μ) , the elements of μ are called μ -open sets and the complements of μ -open sets are called μ -closed sets. For $A \subseteq X$, we denote by $c_{\mu}(A)$ the intersection of all μ -closed sets containing A and by $i_{\mu}(A)$ the union of all μ -open sets contained in A. Then we have $i_{\mu}(i_{\mu}(A)) = i_{\mu}(A)$, $c_{\mu}(c_{\mu}(A)) = c_{\mu}(A)$ and $i_{\mu}(A) = X - c_{\mu}(X - A)$. According to [11], for $A \subseteq X$ and $x \in X$, we have $x \in c_{\mu}A$ iff $x \in M \in \mu$ implies $M \cap A \neq \emptyset$. Let $\mathcal{B} \subseteq \mathcal{P}(X)$ satisfy $\emptyset \in \mathcal{B}$. Then all unions of some elements of \mathcal{B} constitute a GT $\mu(\mathcal{B})$ and \mathcal{B} is said to be a base for $\mu(\mathcal{B})$ [10]. Let μ be a GT on a set $X \neq \emptyset$. Observe that $X \in \mu$ must not hold, if all the same $X \in \mu$ then we say that the GT μ is strong [7]. In general, let M_{μ} denote the union of all elements of μ , of course, $M_{\mu} \in \mu$ and $M_{\mu} = X$, iff μ is a strong GT. Let us now consider those GT's μ that satisfy the condition: if M, $M' \in \mu$ then $M \cap M' \in \mu$. We shall call such a GT quasi-topology (briefly QT) [9], the QT's clearly are very near to the topologies. A subset A of a generalized topological space (X, μ) is said to be μ -semi-open [8] (resp. μ -preopen, μ - α -open, μ - β -open), if $A \subseteq c_{\mu}(i_{\mu}(A))$ (resp. $A \subseteq i_{\mu}(c_{\mu}(A))$, $A \subseteq i_{\mu}(c_{\mu}(i_{\mu}(A)))$, $A \subseteq c_{\mu}(i_{\mu}(c_{\mu}(A)))$). The family of all μ -semi-open (resp. μ -preopen, μ - α -open, μ - β -open) sets of X containing a point $x \in X$ is denoted by $\sigma(\mu, x)$ (resp. $\pi(\mu, x)$, $\alpha(\mu, x)$, $\beta(\mu, x)$). The family of all μ -semi-open (resp. μ -preopen, μ - α -open) sets of X is denoted by $\sigma(\mu)$ (resp. $\pi(\mu)$, $\alpha(\mu)$, $\beta(\mu)$). It is shown in [8, Lemma 2.1] that $\alpha(\mu) = \sigma(\mu) \cap \pi(\mu)$ and it is obvious that $\sigma(\mu) \cup \pi(\mu) \subseteq \beta(\mu)$. The complement of a μ -semi-open (resp. μ -preopen, μ - α -open, μ - β -open) set is said to be μ -semi-closed (resp. μ -preclosed, μ - α -closed, μ - β -closed). The intersection of all μ -semi-closed (resp. μ -preclosed, μ - α -closed, μ - β -closed) sets of X containing A is denoted by $c_{\sigma}(A)$. $c_{\pi}(A)$, $c_{\alpha}(A)$ and $c_{\beta}(A)$ are defined similarly. The union of all μ -semi-open (resp. μ -preopen, μ - α -open, μ - β -open) sets of X contained in A is denoted by $i_{\sigma}(A)$, $i_{\pi}(A)$, $i_{\alpha}(A)$ and $i_{\beta}(A)$, respectively. Now let $K \neq \emptyset$ be an index set, $X_k \neq \emptyset$ for $k \in K$, and $X = \prod_{k \in K} X_k$ the Cartesian product of the sets X_k . We denote by p_k the projection $p_k : X \to X_k$. Suppose that, for $k \in K$, u_k is a given GT on X_k . Let us consider all sets of the form $\prod_{k \in K} X_k$ where $M_k \in \mu_k$ and with the exception of a finite number of indices k, $M_k = Z_k = M_{\mu_k}$. We denote by $\mathcal B$ the collection of all these sets. Clearly $\emptyset \in \mathcal B$ so that we can define a GT $\mu = \mu(\mathcal B)$ having $\mathcal B$ for base. We call μ the product [12] of the GT's μ_k and denote it by $\mathbf P_{k \in K} \mu_k$. Let us write $i=i_{\mu}$, $c=c_{\mu}$, $i_k=i_{\mu_k}$, $c_k=c_{\mu_k}$. Consider in the following $A_k\subseteq X_k$, $A=\prod_{k\in K}A_k$, $x\in\prod_{k\in K}X_k$ and $x_k=\mathfrak{p}_k(x)$. **Proposition 2.1** ([12]). $cA = \prod_{k \in K} c_k A_k$. **Proposition 2.2** ([32]). Let $A = \prod_{k \in K} A_k \subseteq \prod_{k \in K} X_k$ and K_0 be a finite subset of K. If $A_k \in \{M_k, X_k\}$ for each $k \in K - K_0$, then $iA = \prod_{k \in K} i_k A_k$. Throughout this paper, the spaces (X, μ_X) and (Y, μ_Y) (or simply X and Y) always mean generalized topological spaces. By a multifunction $F: X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F: X \to Y$, we shall denote the upper and lower inverse of a set G of Y by $F^+(G)$ and $F^-(G)$, respectively, that is $F^+(G) = \{x \in X : F(x) \subseteq G\}$ and $F^-(G) = \{x \in X : F(x) \cap G \neq \emptyset\}$. In particular, $F^-(y) = \{x \in X : y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$. Then F is said to be a surjection, if F(X) = Y or equivalently, if for each $y \in Y$ there exists an $x \in X$ such that $y \in F(x)$. **Definition 2.3** ([4]). Let (X, μ_X) and (Y, μ_Y) be generalized topological spaces. A multifunction $F: X \to Y$ is said to be: - (1) upper $\beta(\mu_X, \mu_Y)$ -continuous at a point $x \in X$, if for each μ_Y -open set V of Y such that $F(x) \subseteq V$, there exists $U \in \beta(\mu_X, x)$ such that $F(U) \subseteq V$; - (2) lower $\beta(\mu_X, \mu_Y)$ -continuous at a point $x \in X$, if for each μ_Y -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists $U \in \beta(\mu_X, x)$ such that $F(z) \cap V \neq \emptyset$, for every $z \in U$; - (3) upper (resp. lower) $\beta(\mu_X, \mu_Y)$ -continuous, if F has this property at each point of X. #### 3. Characterizations In this section, the notion of upper (lower) $\alpha(\mu_X, \mu_Y)$ -continuous multifunctions is introduced and some characterizations and basic properties of upper (lower) $\alpha(\mu_X, \mu_Y)$ -continuous multifunctions are investigated and obtained. **Definition 3.1.** Let (X, μ_X) and (Y, μ_Y) be generalized topological spaces. A multifunction $F: X \to Y$ is said to be: - (1) upper $\alpha(\mu_X, \mu_Y)$ -continuous at a point $x \in X$, if for each μ_Y -open set V of Y such that $F(x) \subseteq V$, there exists $U \in \alpha(\mu_X, x)$ such that $F(U) \subseteq V$; - (2) lower $\alpha(\mu_X, \mu_Y)$ -continuous at a point $x \in X$, if for each μ_Y -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists $U \in \alpha(\mu_X, x)$ such that $F(z) \cap V \neq \emptyset$, for every $z \in U$; - (3) upper (resp. lower) $\alpha(\mu_X, \mu_Y)$ -continuous, if F has this property at each point of X. **Example 3.2.** Let $X = \{1,2,3\}$ and $Y = \{\alpha,b,c\}$. Define a generalized topology $\mu_X = \{\emptyset,\{1\},\{1,2\}\}$ on X and a generalized topology $\mu_Y = \{\emptyset,\{\alpha\},\{\alpha,b\}\}$ on Y. A multifunction $F:(X,\mu_X) \to (Y,\mu_Y)$ is defined as follows: $F(1) = F(2) = \{\alpha\}$ and $F(3) = \{c\}$. Then F is upper $\alpha(\mu_X,\mu_Y)$ -continuous. *Remark* 3.3. For a multifunction $F: X \to Y$, the following implication hold: upper $$\alpha(\mu_X, \mu_Y)$$ -continuity \implies upper $\beta(\mu_X, \mu_Y)$ -continuity. The converse of the implication is not true in general as shown by the following example. **Example 3.4.** Let $X = \{1, 2, 3\}$ and $Y = \{a, b, c\}$. Define a generalized topology $$\mu_X = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\},\$$ on X and a generalized topology $\mu_Y = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\}$ on Y. A multifunction $F : (X, \mu_X) \to (Y, \mu_Y)$ is defined as follows: $F(1) = F(2) = \{b\}$ and $F(3) = \{a\}$. Then F is upper $\beta(\mu_X, \mu_Y)$ -continuous but not upper $\alpha(\mu_X, \mu_Y)$ -continuous, since $\{a\}$ is μ_Y -open but $F^+(\{a\}) = \{3\}$ is not μ_X - α -open. **Lemma 3.5.** The following are equivalent for a subset A of a generalized topological space (X, μ_X) : - (1) $A \in \alpha(\mu_X)$; - (2) $U \subseteq A \subseteq i_{\mu_X}(c_{\mu_X}(U))$ for some μ_X -open set U; - (3) $U \subseteq A \subseteq c_{\sigma_X}(U)$ for some μ_X -open set U; - (4) $A \subseteq c_{\sigma_X}(i_{\mu_X}(A))$. **Theorem 3.6.** Let (X, μ_X) be a quasi-topological space and (Y, μ_Y) a generalized topological space. The following are equivalent for a multifunction $F: X \to Y$: - (1) F is upper $\alpha(\mu_X, \mu_Y)$ -continuous at $x \in X$; - (2) $x \in c_{\sigma_X}(i_{\mu_X}(F^+(V)))$ for any μ_Y -open set V of Y containing F(x); (3) for any $U \in \sigma(\mu_X, x)$ and any μ_Y -open set V of Y containing F(x), there exists a nonempty μ_X -open set U_V of X such that $U_V \subseteq U$ and $F(U_V) \subseteq V$. Proof. - $(1)\Rightarrow (2)\text{: Let }V\text{ be any }\mu_Y\text{-open such that }F(x)\subseteq V\text{. Then there exists }U\in\alpha(\mu_X)\text{ containing }x\text{ such that }F(U)\subseteq V\text{, hence }x\in U\subseteq F^+(V)\text{. Since }U\text{ is }\mu_X\text{-}\alpha\text{-open, by Lemma 3.5 we have }x\in U\subseteq c_{\sigma_X}(i_{\mu_X}(U))\subseteq c_{\sigma_X}(i_{\mu_X}(F^+(V))).$ - (2) \Rightarrow (3): Let V be any μ_Y -open set of Y such that $F(x) \subseteq V$. Then $x \in c_{\sigma_X}(i_{\mu_X}(F^+(V)))$. Let U be any μ_X -semi-open set containing x. Then $U \cap i_{\mu_X}(F^+(V)) \neq \emptyset$ and $U \cap i_{\mu_X}(F^+(V)) \in \sigma(\mu_X)$. Put $U_V = i_{\mu_X}(U \cap i_{\mu_X}(F^+(V)))$, then U_V is a nonempty μ_Y -open set of X, $U_V \subseteq U$ and $F(U_V) \subseteq V$. - $(3) \Rightarrow (1)$: Let V be any μ_Y -open set of Y containing F(x). For each $U \in \sigma(\mu_X, x)$, there exists a nonempty μ_X -open set U_V such that $U_V \subseteq U$ and $F(U_V) \subseteq V$. Let $W = \cup \{U_V : U \in \sigma(\mu_X, x)\}$. Then W is μ_X -open in X, $x \in c_{\sigma_X}(W)$ and $F(W) \subseteq V$. Put $S = W \cup \{x\}$, then $W \subseteq S \subseteq c_{\sigma_X}(W)$. Therefore, by Lemma 3.5, $x \in S \in \alpha(\mu_X)$ and $F(S) \subseteq V$. This shows that F is upper $\alpha(\mu_X, \mu_Y)$ continuous at x. **Theorem 3.7.** Let (X, μ_X) be a quasi-topological space and (Y, μ_Y) a generalized topological space. The following are equivalent for a multifunction $F: X \to Y$: - (1) F is lower $\alpha(\mu_X, \mu_Y)$ -continuous at $x \in X$; - (2) $x \in c_{\sigma_X}(i_{\mu_X}(F^-(V)))$ for any μ_Y -open set V of Y such that $F(x) \cap V \neq \emptyset$; - (3) for any $U \in \sigma(\mu_X, x)$ and any μ_Y -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a nonempty μ_X -open set U_V of X such that $F(u) \cap V \neq \emptyset$, for every $u \in U_V$ and $U_V \subseteq V$. *Proof.* The proof is similar to that of Theorem 3.6. **Lemma 3.8.** The following are equivalent for a subset A of a generalized topological space (X, μ_X) : - (1) A is μ_X - α -closed in X, if and only if $i_{\sigma_X}(c_{\mu_X}(A)) \subseteq A$; - (2) $i_{\sigma_X}(c_{\mu_X}(A)) = c_{\mu_X}(i_{\mu_X}(c_{\mu_X}(A)));$ - (3) $c_{\alpha_X}(A) = A \cup c_{\mu_X}(i_{\mu_X}(c_{\mu_X}(A))).$ A subset N_x of a generalized topological space (X, μ_X) is said to be μ_X -neighbourhood (resp. μ_X - α -neighbourhood) of a point $x \in X$, if there exists a μ_X -open (resp. μ_X - α -open) set U such that $x \in U \subseteq N_x$. **Theorem 3.9.** Let (X, μ_X) and (Y, μ_Y) be generalized topological spaces. The following are equivalent for a multifunction $F: X \to Y$: - (1) F is upper $\alpha(\mu_X, \mu_Y)$ -continuous; - (2) $F^+(V) \in \alpha(\mu_X)$ for any μ_Y -open set V of Y; - (3) $F^-(M)$ is μ_X - α -closed in X for any μ_Y -closed set M of Y; - (4) $i_{\sigma_X}(c_{\mu_X}(F^-(B))) \subseteq F^-(c_{\mu_Y}(A))$ for any subset A of Y; - (5) $c_{\alpha_X}(F^-(A)) \subseteq F^-(c_{\mu_Y}(A))$ for any subset A of Y; - (6) for each point x of X and each μ_Y -neighbourhood V of F(x), $F^+(V)$ is a μ_X - α -neighbourhood of x; - (7) for each point x of X and each μ_Y -neighbourhood V of F(x), there exists a μ_X - α -neighbourhood U of x such that $F(U) \subseteq V$. Proof. - (1) \Rightarrow (2): Let V be any μ_Y -open set of Y and let $x \in F^+(V)$. By Theorem 3.6, $x \in c_{\sigma_X}(i_{\mu_X}(F^+(V)))$. Therefore, we obtain $F(x) \subseteq c_{\sigma_X}(i_{\mu_X}(F^+(V)))$. It follows from Lemma 3.5 that $F^+(V) \in \alpha(\mu_X)$. - (2) \Leftrightarrow (3): This follows from the fact that $F^+(Y A) = X F^-(A)$ for any subset A of Y. - $(3) \Rightarrow (4)$: Let A be any subset of Y. Then $F^-(c_{\mu_Y})$ is closed in Y. By Lemma 3.8, we have $i_{\sigma_X}(c_{\mu_X}(F^-(A))) \subseteq i_{\sigma_X}(c_{\mu_X}(F^-(c_{\mu_Y}(A)))) \subseteq F^-(c_{\mu_Y}(A))$. - $(4) \Rightarrow (5)$: Let A be any subset of Y. By Lemma 3.8, we have $$c_{\alpha_X}(F^-(A)) = F^-(A) \cup i_{\sigma_X}(c_{\mu_X}(F^-(A))) \subseteq F^-(c_{\mu_Y}(A)).$$ $(5) \Rightarrow (3)$: Let M be any μ_{Y} -closed set of Y. Then we have $$c_{\alpha_{\mathbf{Y}}}(\mathsf{F}^{-}(\mathsf{M})) \subseteq \mathsf{F}^{-}(c_{\mathfrak{u}_{\mathbf{Y}}}(\mathsf{M})) = \mathsf{F}^{-}(\mathsf{M}).$$ This shows that $F^-(M)$ is μ_X - α -closed in X. - (2) \Rightarrow (6): Let $x \in X$ and V be a μ_Y -neighbourhood of F(x). Then there exists a μ_Y -open set G of Y such that $F(x) \subseteq G \subseteq V$. Therefore, we obtain $x \in F^+(G) \subseteq F^+(V)$. Since $F^+(G) \in \alpha(\mu_X)$, $F^+(V)$ is a μ_X - α -neighbourhood of x. - (6) \Rightarrow (7): Let $x \in X$ and V be a μ_Y -neighbourhood of F(x). Put $U = F^+(V)$, then U is a μ_X - α -neighbourhood of x and $F(U) \subseteq V$. - $(7)\Rightarrow (1)$: Let $x\in X$ and V be any μ_Y -open set of Y such that $F(x)\subseteq V$. Then V is a μ_Y -neighbourhood of F(x). There exists a μ_X - α -neighbourhood U of x such that $F(U)\subseteq V$. Therefore, there exists $W\in \alpha(\mu_X)$ such that $x\in W\subseteq U$, hence $F(W)\subseteq V$. **Theorem 3.10.** Let (X, μ_X) and (Y, μ_Y) be generalized topological spaces. The following are equivalent for a multifunction $F: X \to Y$: - (1) F is lower $\alpha(\mu_X, \mu_Y)$ -continuous; - (2) $F^-(V) \in \alpha(\mu_X)$ for any μ_Y -open set V of Y; - (3) $F^+(M)$ is μ_X - α -closed in X for any μ_Y -closed set M of Y; - (4) $i_{\sigma_X}(c_{\mu_X}(F^+(A))) \subseteq F^+(c_{\mu_Y}(A))$ for any subset A of Y; - (5) $c_{\alpha_X}(F^+(A)) \subseteq F^+(c_{\mu_Y}(A))$ for any subset A of Y; - (6) $F(c_{\alpha_X}(B)) \subseteq c_{\mu_Y}(F(B))$ for any subset B of X; - (7) $F(i_{\sigma_X}(c_{\mu_X}(B))) \subseteq c_{\mu_Y}(F(B))$ for any subset B of X; - (8) $F(c_{\mu_X}(i_{\mu_X}(c_{\mu_X}(B)))) \subseteq c_{\mu_Y}(F(B))$ for any subset B of X. *Proof.* The proofs except for the following are similar to those of Theorem 3.9 and are thus omitted. $(5) \Rightarrow (6)$: Let B be any subset of X. Since $B \subseteq F^+(F(B))$, we have $$c_{\alpha_X}(B) \subseteq c_{\alpha_X}(F^+(F(B)))$$ $\subseteq F^+(c_{\mu_Y}(F(B))),$ and $F(c_{\alpha_X}(B)) \subseteq c_{\mu_Y}(F(B))$. - $(6) \Rightarrow (7)$: This follows immediately from Lemma 3.8. - $(7) \Rightarrow (8)$: This is obvious by Lemma 3.8. - (8) \Rightarrow (1): Let $x \in X$ and V be any μ_Y -open set such that $F(x) \cap V \neq \emptyset$. Then $x \in F^-(V)$. We shall show that $F^-(V) \in \alpha(\mu_X)$. By hypothesis, we have $$\begin{split} F(c_{\mu_X}(\mathfrak{i}_{\mu_X}(c_{\mu_X}(F^+(Y-V))))) &\subseteq c_{\mu_Y}(F(F^+(Y-V))) \\ &\subset Y-V, \end{split}$$ and hence $c_{\mu_X}(i_{\mu_X}(c_{\mu_X}(F^+(Y-V)))) \subseteq F^+(Y-V) = X-F^-(V)$. Therefore, we obtain $$F^-(V) \subseteq i_{\mu_X}(c_{\mu_X}(i_{\mu_X}(F^-(V))))$$ and hence $F^-(V) \in \alpha(\mu)$. Put $U = F^-(V)$. We have $x \in U \in \alpha(\mu_X)$ and $F(u) \cap V \neq \emptyset$ for every $u \in U$. Thus F is lower $\alpha(\mu_X, \mu_Y)$ -continuous. **Definition 3.11** ([13]). A family $\mathcal{U} = \{U_{\gamma} : \gamma \in \Gamma\}$ of sets in a generalized topological space (X, μ) is called μ -locally finite, if for each $x \in X$ there exists $V \in \mu$ containing x such that V intersects at most finitely many members of \mathcal{U} . **Definition 3.12.** A subset A of a generalized topological space (X, μ_X) is said to be μ_X - α -paracompact, if every cover of A by μ_X -open sets of X is refined by a cover of A which consists of μ_X -open sets of X and is μ_X -locally finite in X. **Definition 3.13.** A subset A of a generalized topological space (X, μ_X) is said to be μ_X - α -regular, if for each point $x \in A$ and each μ_X -open set U of X containing x, there exists a μ_X -open set G of X such that $x \in G \subseteq c_{\mu_X}(G) \subseteq U$. **Lemma 3.14.** If A is a μ_X - α -regular μ_X - α -paracompact subset of a quasi-topological space (X, μ_X) and U is a μ_X -open neighbourhood of A, then there exists a μ_X -open set G of X such that $A \subseteq G \subseteq c_{\mu_X}(G) \subseteq U$. **Definition 3.15.** Let (X, μ_X) and (Y, μ_Y) be generalized topological spaces. A multifunction $F: X \to Y$ is said to be punctually μ - α -paracompact (resp. punctually μ - α -regular), if for each $x \in X$, F(x) is μ_Y - α -paracompact (resp. μ_Y - α -regular). By $c_{\alpha}(F): X \to Y$, we shall denote a multifunction defined as follows: $[c_{\alpha}(F)]^{+}(x) = c_{\alpha_{Y}}(F(x))$ for each point $x \in X$. **Lemma 3.16.** Let (X, μ_X) be a generalized topological space and (Y, μ_Y) a quasi-topological space. If $F: X \to Y$ is punctually μ - α -regular and punctually μ - α -paracompact, then $[c_{\alpha}(F)]^+(V) = F^+(V)$ for every μ_Y -open set V of Y. *Proof.* Let V be any μ_Y -open set of Y and $x \in [c_{\alpha}(F)]^+(V)$. Then $c_{\alpha_Y}(F(x)) \subseteq V$ and hence $F(x) \subseteq V$. Therefore, $x \in F^+(V)$ and hence $[c_{\alpha}(F)]^+(V) \subseteq F^+(V)$. Let V be any μ_Y -open set of Y and $x \in F^+(V)$. Then $F(x) \subseteq V$. Since F(x) is μ_Y - α -regular and μ_Y - α -paracompact, by Lemma 3.14 there exists a μ_Y -open set G such that $F(x) \subseteq G \subseteq c_{\mu_Y}(G) \subseteq V$, hence $c_{\alpha_Y}(F(x)) \subseteq c_{\mu_Y}(G) \subseteq V$. This shows that $x \in [c_{\alpha}(F)]^+(V)$ and hence $F^+(V) \subseteq [c_{\alpha}(F)]^+(V)$. Consequently, we obtain $[c_{\alpha}(F)]^+(V) = F^+(V)$. **Theorem 3.17.** Let (X, μ_X) be a generalized topological space and (Y, μ_Y) a quasi-topological space. Let $F: X \to Y$ be punctually μ - α -regular and punctually μ - α -paracompact. Then F is upper $\alpha(\mu_X, \mu_Y)$ -continuous, if and only if $c_{\alpha}(F): X \to Y$ is upper $\alpha(\mu_X, \mu_Y)$ -continuous. *Proof.* Suppose that F is upper $\alpha(\mu_X, \mu_Y)$ -continuous. Let $x \in X$ and V be any μ_Y -open set of Y such that $c_{\mu}(F)(x) \subseteq V$. By Lemma 3.16, we have $x \in [c_{\mu}(F)]^+(V) = F^+(V)$. Since F is upper $\alpha(\mu_X, \mu_Y)$ -continuous, there exists $U \in \alpha(\mu_X)$ containing x such that $F(U) \subseteq V$. Since F(z) is μ_Y - α -regular and μ_Y - α -paracompact for each $z \in U$, by Lemma 3.14 there exists a μ -open set H such that $F(z) \subseteq H \subseteq c_{\mu_Y}(H) \subseteq V$. Therefore, we have $c_{\mu_Y}(F(z)) \subseteq c_{\mu_Y}(H) \subseteq V$ for each $z \in U$ and hence $c_{\mu}(F)(U) \subseteq V$. This shows that $c_{\mu}(F)$ is upper $\alpha(\mu_X, \mu_Y)$ -continuous. Conversely, suppose that $c_{\mu}(F): X \to Y$ is upper $\alpha(\mu_X, \mu_Y)$ -continuous. Let $x \in X$ and V be any μ_Y -open set of Y such that $F(x) \subseteq V$. By Lemma 3.16, we have $x \in F^+(V) = [c_{\mu}(F)]^+(V)$ and hence $c_{\mu}(F)(x) \subseteq V$. Since $c_{\mu}(F)$ is upper $\alpha(\mu_X, \mu_Y)$ -continuous, there exists $U \in \alpha(\mu_X, x)$ such that $c_{\mu}(F)(U) \subseteq V$, hence $F(U) \subseteq V$. This shows that F is upper $\alpha(\mu_X, \mu_Y)$ -continuous. **Lemma 3.18.** Let (X, μ_X) and (Y, μ_Y) be generalized topological spaces. For a multifunction $F: X \to Y$, it follows that for each μ_Y - α -open set V of $Y[c_{\alpha}(F)]^-(V) = F^-(V)$. *Proof.* Suppose that V is any μ_Y - α -open set of Y. Let $x \in [c_{\alpha}(F)]^-(V)$. Then $c_{\mu_Y}(F(x)) \cap V \neq \emptyset$ and hence $F(x) \cap V \neq \emptyset$. Therefore, we obtain $x \in F^-(V)$. This shows that $[c_{\alpha}(F)]^-(V) \subseteq F^-(V)$. Let $x \in F^-(V)$. Then we have $\emptyset \neq F(x) \cap V \subseteq c_{\alpha_Y}(F(x)) \cap V$ and hence $x \in [c_{\alpha}(F)]^-(V)$. This shows that $F^-(V) \subseteq [c_{\alpha}(F)]^-(V)$. Consequently, $[c_{\alpha}(F)]^-(V) = F^-(V)$. **Theorem 3.19.** Let (X, μ_X) and (Y, μ_Y) be generalized topological spaces. A multifunction $F: X \to Y$ is lower $\alpha(\mu_X, \mu_Y)$ -continuous, if and only if $c_{\alpha}(F): X \to Y$ is lower $\alpha(\mu_X, \mu_Y)$ -continuous. *Proof.* By utilizing Lemma 3.18, this can be proved similarly to that of Theorem 3.17. □ For a multifunction $F: X \to Y$, the graph multifunction $G_F: X \to X \times Y$ is defined as follows: $G_F(x) = \{x\} \times F(x)$ for every $x \in X$. **Lemma 3.20** ([19]). The following hold for a multifunction $F: X \to Y$: - (a) $G_F^+(A \times B) = A \cap F^+(B);$ - (b) $G_F^-(A \times B) = A \cap F^-(B);$ *for any subsets* $A \subseteq X$ *and* $B \subseteq Y$. **Definition 3.21** ([32]). A generalized topological space (X, μ) is called to be compact, if each cover of X composed of elements of μ admits a finite subcover. A subset M of a generalized topological space (X, μ_X) is said to be μ_X -compact, if every cover of M by μ_X -open sets has a finite subcover. **Theorem 3.22** ([32]). A generalized topological space (X, μ) is compact, if and only if every family of μ -closed subsets of X which has the finite intersection property has nonempty intersection. **Theorem 3.23.** Let (X, μ_X) be a topological space and (Y, μ_Y) a generalized topological space. Let $F: X \to Y$ be a multifunction such that F(x) is μ_Y -compact for each $x \in X$. Then F is upper $\alpha(\mu_X, \mu_Y)$ -continuous, if and only if $G_F: X \to X \times Y$ is upper $\alpha(\mu_X, \mu_{X \times Y})$ -continuous. *Proof.* Suppose that $F: X \to Y$ is upper $\alpha(\mu_X, \mu_Y)$ -continuous. Let $x \in X$ and W be any $\mu_{X \times Y}$ -open set of $X \times Y$ containing $G_F(x)$. For each $y \in F(x)$, there exists μ_X -open set $U(y) \subseteq X$ and μ_Y -open $V(y) \subseteq Y$ such that $(x,y) \in U(y) \times V(y) \subseteq W$. The family $\{V(y): y \in F(x)\}$ is a μ_Y -open cover of F(x) and there exist a finite number of points, say, $y_1, y_2,...,y_n$ in F(x) such that $F(x) \subseteq \bigcup \{V(y_i): 1 \leqslant i \leqslant n\}$. Set $\mathcal{G} = \bigcap \{U(y_i): 1 \leqslant i \leqslant n\}$ and $\mathcal{H} = \bigcup \{V(y_i): 1 \leqslant i \leqslant n\}$. Then \mathcal{G} is μ_X -open in X and \mathcal{H} is μ_Y -open in Y and Y is Y and Y is upper Y and Y is Y and Y is upper Y and Y is Y and Y is upper Y and Y is Y and Y is upper Y and Y is Y and Y is upper Y and Y is Y and Y is upper Y. By Lemma 3.20, we have Y is shows that Y is upper almost Y and is upper almost Y and Y is upper almost uppe Conversely, suppose that $G_F: X \to X \times Y$ is upper $\alpha(\mu_X, \mu_{X \times Y})$ -continuous. Let $x \in X$ and V be any μ_Y -open set of Y containing F(x). Since $X \times V$ is $\mu_{X \times Y}$ -open in $X \times Y$ and $G_F(x) \cap X \times V$, there exists $U \in \alpha(\mu_X)$ containing x such that $G_F(U) \cap X \times V$. Therefore, by Lemma 3.20, $U \subseteq G_F^+(X \times V) = F^+(V)$ and hence $F(U) \subseteq V$. This shows that F is upper $\alpha(\mu_X, \mu_Y)$ -continuous. **Theorem 3.24.** Let (X, μ_X) and (Y, μ_Y) be generalized topological spaces. A multifunction $F: X \to Y$ is lower $\alpha(\mu_X, \mu_Y)$ -continuous, if and only if $G_F: X \to X \times Y$ is lower $\alpha(\mu_X, \mu_{X \times Y})$ -continuous. *Proof.* Suppose that $F: X \to Y$ is lower $\alpha(\mu_X, \mu_Y)$ -continuous. Let $x \in X$ and W be any $\mu_{X \times Y}$ -open set of $X \times Y$ such that $G_F(x) \cap W \neq \emptyset$. There exists $y \in F(x)$ such that $(x,y) \in W$ and hence $(x,y) \in U \times Y \subseteq W$ for some μ_X -open set $U \subseteq X$ and μ_Y -open set $V \subseteq Y$. Since $F(x) \cap V \neq \emptyset$, there exists $U_0 \in \alpha(\mu_X)$ containing x such that $F(z) \cap V \neq \emptyset$ for each $z \in U_0$, hence $U_0 \subseteq F^-(V)$. By Lemma 3.20, $U \cap U_0 \subseteq U \cap F^-(V) = G_F^-(U \times V) \subseteq G_F^-(W)$. Moreover, $x \in U \cap U_0 \in \alpha(\mu_X)$ and hence G_F is lower $\alpha(\mu_X, \mu_{X \times Y})$ -continuous. Conversely, suppose that G_F is upper $\alpha(\mu_X, \mu_{X \times Y})$ -continuous. Let $x \in X$ and V be any μ_Y -open set of Y such that $F(x) \cap V \neq \emptyset$. Then $X \times V$ is $\mu_{X \times Y}$ -open in $X \times Y$ and $$\begin{aligned} G_F(x) \cap X \times V &= (\{x\} \times F(x)) \cap (X \times V) \\ &= \{x\} \times (F(x) \cap V) \\ &\neq \emptyset. \end{aligned}$$ There exists $U \in \alpha(\mu_X)$ containing x such that $G_F(z) \cap X \times V \neq \emptyset$ for each $z \in U$. By Lemma 3.20, we obtain $U \subseteq G_F^-(X \times V) = F^-(V)$ and hence $F(U) \subseteq V$. This shows that F is lower $\alpha(\mu_X, \mu_Y)$ -continuous. \square **Definition 3.25.** A generalized topological space (X, μ_X) is said to be μ_X - α -compact, if every cover of X by μ_X - α -open sets has a finite subcover. A subset M of a generalized topological space (X, μ_X) is said to be μ_X - α -compact, if every cover of X by μ_X - α -open sets has a finite subcover. **Theorem 3.26.** Let (X, μ_X) and (Y, μ_Y) be generalized topological spaces. Let $F: X \to Y$ be an upper $\alpha(\mu_X, \mu_Y)$ -continuous surjective multifunction such that F(x) is μ_Y -compact for each $x \in X$. If (X, μ_X) is μ_X - α -compact, then (Y, μ_Y) is μ_Y -compact. *Proof.* Let $\{V_{\gamma} : \gamma \in \Gamma\}$ be a μ_{Y} -open cover of Y. For each $x \in X$, F(x) is μ_{Y} -compact and there exists a finite subset $\Gamma(x)$ of Γ such that $F(x) \subseteq \cup \{V_{\gamma} : \gamma \in \Gamma(x)\}$. Set $$V(x) = \cup \{V_{\gamma} : \gamma \in \Gamma(x)\}.$$ Since F is upper $\alpha(\mu_X, \mu_Y)$ -continuous, there exists $U(x) \in \alpha(\mu_X)$ containing x such that $F(U(x)) \subseteq V(x)$. The family $\{U(x): x \in X\}$ is a μ_X - α -open cover of X and there exist a finite number of points, say, x_1 , x_2, \cdots, x_n in X such that $X = \cup \{U(x_i): 1 \leqslant i \leqslant n\}$. Therefore, we have $Y = F(X) = F(\bigcup_{i=1}^n U(x_i)) = \bigcup_{i=1}^n F(U(x_i)) \subseteq \bigcup_{i=1}^n V(x_i) = \bigcup_{i=1}^n \bigcup_{\gamma \in \Gamma(x_i)} V_{\gamma}$. This shows that (Y, μ_Y) is μ_Y -compact. **Definition 3.27** ([30]). A generalized topological space (X, μ) is said to be μ-Hausdorff, if for any pair of distint points x and y of X, there exist disjoint μ-open sets U and V of X containing x and y, respectively. For a multifunction $F: X \to Y$, the graph G(F) of F is defined as follows: $G(F) = \{(x,y) : x \in X \text{ and } y \in F(x)\}.$ **Theorem 3.28.** Let (X, μ_X) be a generalized topological space and (Y, μ_Y) a quasi-topological space. If $F: X \to Y$ is an upper $\alpha(\mu_X, \mu_Y)$ -continuous multifunction into a μ_Y -Hausdorff space (Y, μ_Y) and F(x) is μ_Y -compact for each $x \in X$, then the graph G(F) is $\mu_{X \times Y}$ - α -closed in $X \times Y$. *Proof.* Let $(x,y) \in X \times Y - G(F)$. Then $y \in Y - F(x)$. For each $z \in F(x)$, there exist μ_Y -open sets V(z) and W(y) containing z and y, respectively, such that $V(z) \cap W(y) = \emptyset$. The family $\{V(z) : z \in F(x)\}$ is a μ_Y -open cover of F(x) and there exist a finite number of points in F(x), say, z_1, z_2, \cdots, z_n such that $F(x) \subseteq \bigcup \{V(z_i) : 1 \le i \le n\}$. Set $\mathcal{G} = \bigcup \{V(z_i) : 1 \le i \le n\}$ and $\mathcal{H} = \bigcap \{W(y_i) : 1 \le i \le n\}$. Since $F(x) \subseteq \mathcal{G}$ and \subseteq$ In the following (D, >) is a directed set, (F_{λ}) is a net of multifunctions $F_{\lambda}: X \to Y, \lambda \in D$ where F is multifunction on X into Y. **Definition 3.29.** Let $(F_{\lambda})_{\lambda \in D}$ be a net of multifunctions on X into Y. A multifunction $F^{\circledast}: X \to Y$ is defined as follows: for each $x \in X$, $F^{\circledast}(x) = \{y \in Y : \text{for each } \mu_Y\text{-neighbourhood of } y \text{ and each } \eta \in D \text{ such that } \lambda > \eta \text{ and } V \cap F_{\lambda}(x) \neq \emptyset \},$ is called the upper generalized topological limit of the net (F_{λ}) . **Definition 3.30.** A net $(F_{\lambda})_{\lambda \in D}$ is said to be equally upper $\alpha(\mu_X, \mu_Y)$ -continuous at $x_0 \in X$, if for every μ_X -open set V_{λ} containing $F_{\lambda}(x_0)$ there exists a μ_X - α -open set U containing x_0 such that $F_{\lambda}(U) \subseteq V_{\lambda}$ for all $\lambda \in D$. **Theorem 3.31.** Let $(F_{\lambda})_{\lambda \in D}$ be a net of multifunctions from a generalized topological space (X, μ_X) into a μ_Y -compact generalized topological space (Y, μ_Y) . If the following are satisfied: - (a) $\cap \{(Y F_{\eta}(x)) : \eta > \lambda\} \in \mu_Y$, for each $\lambda \in D$ and each $x \in X$; - (b) (F_{λ}) is equally upper $\alpha(\mu_X, \mu_Y)$ continuous on X; then F^{\circledast} is upper $\alpha(\mu_X, \mu_Y)$ -continuous on X. *Proof.* It is known that $F^{\circledast}(x) = \bigcap \{c_{\mu_Y}(\bigcup \{F_{\eta}(x) : \eta > \lambda\}) : \lambda \in D\}$. From (a), we have $$F^\circledast(x) = \cap \{[\cup \{F_\eta(x): \eta > \lambda\}]: \lambda \in D\}.$$ Since the net $(\bigcup \{F_\eta(x):\eta>\lambda\})_{\lambda\in D}$ is a family of μ_Y -closed sets having the finite intersection property and Y is μ_Y -compact, it follows that $F^\circledast(x)\neq\emptyset$ for each $x\in X$. Now, let $x_0\in X$ and let $V\in\mu_Y$ such that $V\neq Y$ and $F^\circledast(x_0)\subseteq V$. Then $F^\circledast(x_0)\cap(Y-V)=\emptyset$, $F^\circledast(x_0)\neq\emptyset$ and $Y-V\neq\emptyset$. It results that $\cap\{[\bigcup \{F_\eta(x):\eta>\lambda\}]:\lambda\in D\}\cap(Y-V)=\emptyset$. Since Y is μ_Y -compact and the family $\{[\bigcup \{F_\eta(x_0)\cap(Y-V):\eta>\lambda\}]:\lambda\in D\}$ is a family of μ_Y -closed sets with the empty intersection, there exists $\lambda\in D$ such that for each $\eta\in D$ with $\eta>\lambda$ we have $F^\circledast(x_0)\cap(Y-V)=\emptyset$, hence $F_\eta(x_0)\subseteq V$. Since the net $(F_\lambda)_{\lambda\in D}$ is equally upper $\alpha(\mu_X,\mu_Y)$ -continuous on X, it results that there exists a μ_X - α -open set U containing x_0 such that $F_\eta(U)\subseteq V$ for each $\eta>\lambda$, hence $F_\eta(x)\cap(Y-V)=\emptyset$ for each $x\in U$. Then, we have $\bigcup \{F_\eta(x)\cap(Y-V):\eta>\lambda\}=\emptyset$, hence $\bigcap \{[\bigcup \{F_\eta(x):\eta>\lambda\}]:\lambda\in D\}\cap(Y-V)=\emptyset$. This implies that $F^\circledast(U)\subseteq V$. If V=Y, then it is clear that for each μ_X - α -open set U containing x_0 we have $F^\circledast(U)\subseteq V$. Hence, F^\circledast is upper $\alpha(\mu_X,\mu_Y)$ -continuous at x_0 . Since x_0 is arbitrary, so the proof is complete. **Definition 3.32.** The μ_X -α-frontier of a subset A of a generalized topological space (X, μ_X) , denoted by μ_X -α-Fr(A), is defined by μ_X -α-Fr(A) = $c_{\alpha_X}(A) \cap c_{\alpha_X}(X-A) = c_{\alpha_X}(A) - i_{\alpha_X}(A)$. **Theorem 3.33.** Let (X, μ_X) and (Y, μ_Y) be generalized topological spaces. The set of all points of X at which a multifunction $F: X \to Y$ is not upper (resp. lower) $\alpha(\mu_X, \mu_Y)$ -continuous is identical with the union of the μ_X - α -frontier of the upper (resp. lower) inverse images of μ_X -open sets containing (resp. meeting) F(x). *Proof.* We prove only the case for upper $\alpha(\mu_X, \mu_Y)$ -continuous because the case for lower $\alpha(\mu_X, \mu_Y)$ -continuous is similarly shown. Let $x \in X$ at which F is not upper $\alpha(\mu_X, \mu_Y)$ -continuous. There exists a μ_X -open set V of Y containing F(x) such that $U \cap (X - F^+(V)) \neq \emptyset$ for every $U \in \alpha(\mu_X, x)$. Therefore, we have $x \in c_{\mu_X}(X - F^+(V)) = X - i_{\mu_X}(F^+(V))$ and $x \in F^+(V)$. Hence, we obtain $x \in \mu_X$ - α - $F^-(A)$. Conversely, suppose that V is μ_X -open set of Y containing F(x) such that $x \in \mu_X$ - α -Fr(A). If F is upper $\alpha(\mu_X, \mu_Y)$ -continuous at x, there exists $U \in \alpha(\mu_X, x)$ such that $U \subseteq F^+(V)$. This implies that $x \in i_{\alpha_X}(F^+(V))$. This is a contradiction and hence F is not upper $\alpha(\mu_X, \mu_Y)$ -continuous at x. **Definition 3.34** ([31]). A generalized topological space (X, μ) is said to be connected (called μ-connected in [6]), if there are no nonempty disjoint sets $U, V \in \mu$ such that $U \cup V = X$. **Definition 3.35** ([31]). A generalized topological space (X, μ) is said to be α -connected, if $(X, \alpha(\mu))$ is connected. **Definition 3.36.** Let (X, μ_X) and (Y, μ_Y) be generalized topological spaces. A multifunction $F: X \to Y$ is said to be punctually μ -connected, if for each $x \in X$, F(x) is μ_Y -connected. **Theorem 3.37.** Let F be a multifunction from an α -connected generalized topological space (X, μ_X) into a generalized topological space (Y, μ_Y) such that F is punctually μ -connected. If F is upper $\alpha(\mu_X, \mu_Y)$ -continuous, then (Y, μ_Y) is μ_Y -connected. *Proof.* Suppose that (Y, μ_Y) is not μ_Y -connected and let $Y = U \cup V$ be a partition of Y. Then both U and V are μ_Y -open and μ_Y -closed subsets of Y. Since F is upper $\alpha(\mu_X, \mu_Y)$ -continuous, $F^+(U)$ and $F^+(U)$ are μ_X - α -open subsets of X. In view of the fact that $F^+(U)$, $F^+(V)$ are disjoint and F is punctually μ -connected, $X = F^+(U) \cup F^+(V)$ is a partition of X. This is contrary to the α -connectedness of (X, μ_X) . Hence, it is obtained that (Y, μ_Y) is μ_Y -connected. **Definition 3.38** ([29]). A generalized topological space (X, μ) is said to be μ-regular, if for each μ-closed set F of X not containing x, there exist disjoint μ-open sets U and V such that $x \in U$ and $F \subseteq V$. **Definition 3.39.** A generalized topological space (X, μ_X) is said to be μ_X - α - T_2 , if for any pair of distinct points x and y of X, there exist disjoint μ_X - α -open sets U and V such that $x \in U$ and $y \in V$. **Definition 3.40.** Let (X, μ_X) and (Y, μ_Y) be generalized topological spaces. A multifunction $F: X \to Y$ is said to be punctually μ -closed, if for each $x \in X$, F(x) is μ_Y -closed. **Theorem 3.41.** Let $F: X \to Y$ be an upper $\alpha(\mu_X, \mu_Y)$ -continuous multifunction and punctually μ -closed from a generalized topological space (X, μ_X) to a μ_Y -normal generalized topological space (Y, μ_Y) and let $F(x) \cap F(y) = \emptyset$ for each distinct pair $x, y \in X$. Then (X, μ_X) is $\mu_X - \alpha - T_2$. *Proof.* Let x and y be any two distinct points in X. Then we have $F(x) \cap F(y) = \emptyset$. Since (Y, μ_Y) is a μ_Y -normal space, it follows that there exist disjoint μ_Y -open sets U and V containing F(x) and F(y), respectively. Therefore, $F^+(U)$ and $F^+(U)$ are disjoint μ_X - α -open sets containing x and y, respectively. Thus, it is obtained that (X, μ_X) is μ_X - α - T_2 . #### Acknowledgment This research was financially supported by the Faculty of Science, Mahasarakham University. #### References - [1] M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, β -open sets and β -continuous mapping, Bull. Fac. Sci. Assiut Univ. A, **12** (1983), 77–90. 1 - [2] M. E. Abd El-Monsef, A. A. Nasef, On multifunctions, Chaos Solitons Fractals, 12 (2011), 2387–2394. 1 - [3] D. Andrijević, Semi-preopen sets, Math. Vesnik, 38 (1986), 24–32. 1 - [4] C. Boonpok, On upper and lower $\beta(\mu_X, \mu_Y)$ -continuous multifunctions, Int. J. Math. Math. Sci., **2012** (2012), 17 pages. - [5] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351–357. 1, 2 - [6] Á. Császár, γ-connected sets, Acta Math. Hungar., 101 (2003), 273–279. 3.34 - [7] Á. Császár, Extremally disconnected generalized topologies, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 47 (2004), 91–96. 2 - [8] Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106 (2005), 53–66. 2 - [9] Á. Császár, Further remarks on the formula for γ-interior, Acta Math. Hungar., 113 (2006), 325–332. 2 - [10] Á. Császár, Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115 (2007), 29–36. 2 - [11] Á. Császár, δ- and θ-modifications of generalized topologies, Acta Math. Hungar., 120 (2008), 275–279. 2 - [12] Á. Császár, Product of generalized topologies, Acta Math. Hungar., 123 (2009), 127–132. 2, 2.1 - [13] A. Deb Ray, R. Bhowmick, μ -paracompact and g_{μ} -paracompact generalized topological spaces, Hacet. J. Math. Stat., **45** (2016), 447–453. 3.11 - [14] A. Kanibir, I. L. Reilly, Generalized continuity for multifunctions, Acta Math. Hungar., 122 (2009), 283–292. 1 - [15] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41. 1 - [16] M. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, *On precontinuous and weak precontinuous mappings*, Proc. Math. Phys. Soc. Egypt, **53** (1982), 47–53. 1 - [17] T. Neubrunn, *Strongly quasi-continuous multivalued mappings*, General topology and its relations to modern analysis and algebra, VI, Prague, (1986), 351–359, Res. Exp. Math., Heldermann, Berlin, (1988). 1 - [18] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970. 1 - [19] T. Noiri, V. Popa, Almost weakly continuous multifunctions, Demonstratio Math., 26 (1993), 363–380. 3.20 - [20] T. Noiri, V. Popa, On upper and lower almost β-continuous multifunctions, Acta Math. Hungar., 82 (1999), 57–73. 1 - [21] J. H. Park, B. Y. Lee, M. J. Son, On upper and lower δ-precontinuous multifunctions, Chaos Solitons Fractals, 19 (2004), 1231–1237. 1 - [22] V. I. Ponomarev, Properties of topological spaces preserved under multivalued continuous mapping on compacta, Amer. Math. Soc. Translations, **38** (1964), 441–446. 1 - [23] V. Popa, *Sur certaines formes faibles de continuité pour les multifonctions*, (French) [[Some weak forms of continuity for multifunctions]] Rev. Roumaine Math. Pures Appl., **30** (1985), 539–546. 1 - [24] V. Popa, Some properties of H-almost continuous multifunctions, Problemy Mat., 10 (1990), 9-26. 1 - [25] V. Popa, T. Noiri, On upper and lower α -continuous multifunctions, Math. Slovaca, 43 (1993), 477–491. 1 - [26] V. Popa, T. Noiri, On upper and lower almost α-continuous multifunctions, Demonstratio Math., **29** (1996), 381–396. - [27] V. Popa, T. Noiri, On upper and lower β-continuous multifunctions, Real Anal. Exchange, 22 (1996/97), 362–376. - [28] V. Popa, T. Noiri, On upper and lower weakly α-continuous multifunctions, Novi Sad J. Math., 32 (2002), 7–24. 1 - [29] B. Roy, On a type of generalized open sets, Appl. Gen. Topol., 12 (2011), 163-173. 3.38 - [30] M. S. Sarsak, Weak separation axioms in generalized topological spaces, Acta Math. Hungar., 131 (2011), 110-121. 3.27 - [31] R.-X. Shen, A note on generalized connectedness, Acta Math. Hungar., 122 (2009), 231–235. 3.34, 3.35 - [32] R.-X. Shen, Remarks on products of generalized topologies, Acta Math. Hungar., 124 (2009), 363-369. 2.2, 3.21, 3.22