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Abstract 

We first introduce fuzzy finite Markov chains and present some of their fundamental properties based 

on possibility theory. We also bring in a way to convert fuzzy Markov chains to classic Markov 

chains. In addition, we simulate fuzzy Markov chain using different sizes. It is observed that the most 

of fuzzy Markov chains not only do have an ergodic behavior, but also they are periodic. Finally, 

using Halton quasi-random sequence we generate some fuzzy Markov chains which compared to the 

ones generated by the RAND function of MATLAB. Therefore, we improve the periodicity behavior 

of fuzzy Markov chains. 

 

Keywords: Fuzzy Markov Chains, Stationary Distribution, Ergodicity, Simulation, Halton Quasi-
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1. Introduction 

        The main motivation of this paper is to begin the expansion of fuzzy Markov chains based on 

possibilities. A reason is that one might prefer subjective possibilities over subjective probabilities to 

model the uncertainties. 

Markov chains are important tools for solving practical problems. Their applications for many 

problems with successful results are well known. The fuzzy Markov chains approaches are given by 

Avrachenkov and Sanchez in [2] and also [8] by using the max-min operator on fuzzy sets to find 

their fuzzy stationary behavior. The theoretical distinction between the fuzzy Markov chains and 

classic Markov chains lies in the functional form of their max-min operators. 

       This paper is divided into five sections. Section 1 is an introductory section. In section 2 some 

concepts of fuzzy Markov chains and their properties are defined [1] and [2]. In section 3, a linear 

transformation of the fuzzy Markov chains into a classic Markov chains is given [7]. In section 4 of 
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this paper, we employ Halton quasi-random sequence to generate membership functions of fuzzy 

Markov chains. At last in section 5 we simulate and compare the generated fuzzy Markov chains 

obtain from both Holton method and the MATLAB RAND function, and finally the section 6 presents 

the concluding remarks. 

 

2. Basic definitions of fuzzy Markov chains and their properties 

        The definition of a fuzzy Markov chain is based on a squared relational matrix represents the 

possibility that a discrete state at instant t becomes into any state at next instant 1t  as follows: 

 

 (1) 

       Here, 
( )( )tP X  is a fuzzy distribution of the process characterized by a membership function. In 

this paper, we use the basic definitions about fuzzy set given by J. Buckley in [3] and fuzzy Markov 

chains given by Avrachenkov and Sanchez in [2]. 

 

       Definition 2.1. Let {1,2, , }S n  . A finite fuzzy set for a fuzzy distribution on S is defined by 

a mapping x  from S to [0,1] represented by a vector 1 2{ , , , },nx x x x   with 0 1ix  ,  i S . 

        In this definition, ix is the membership degree that a state i  has regarding a fuzzy set ,S i S

with cardinality , ( )m S m . All relations and compositions are defined by fuzzy sets theory since 

are useful tools to find a fuzzy stationary distribution.  

       Now, a fuzzy relational matrix P  is defined in a metric space S S by a matrix , 1{ }m

ij i jp   with

0 1, ,ijp i j S   . The complete set of all fuzzy sets is denoted by ( )S  where ( ) .S m   

       We note that it does not need the addition of elements of each row of the matrix P  be equal to 

one [3]. 

This fuzzy matrix P  allows defining all relations among the m  states of the fuzzy Markov chain at 

each time instantt , as follows. 

 

       Definition 2.2. At each instant , 1,2, , ,t t n   the state of system is described by the fuzzy set

( ) ( )tx S . The transition law of a fuzzy Markov chain is given by the fuzzy relational matrix P  

at instant , 1,2, , ,t t n   as follows: 

            
( 1) ( )max { }  , ,t t

j i S j ijx x p j S

                                 (2) 

 

            
( 1) ( ) ,t tx x P                                (3) 

where i  and , , 1,2, ,j i j m   are the initial and final states of the transition and 
(0)x  is the initial 

distribution. Also, 

           
1max { }, , ,t t

ij k S ik kjp p p i j S

                                                                     (4) 

 

          
1.t tP P P      (5) 

       Thomason in [9] showed that the powers of a fuzzy matrix are stable if it is used the max-min 

operator. More information about powers of a fuzzy matrix are, see in [2], [5], [4]. Now, a stationary 

distribution of a fuzzy matrix defined as follow [7]. 

 

       Definition 2.3 (Stationary distribution). Let the powers of the fuzzy transition matrix P  

converge in   steps to a non-periodic solution, and then the associated fuzzy Markov chain is called 

aperiodic fuzzy Markov chain and 
*P P   is its stationary fuzzy transition matrix. 

 

 

( ) ( 1) ( 1)( | ) .t t tP X s X x  
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       Definition 2.4 (Strong Ergodicity and Week Periodicity). A fuzzy Markov chain is called strong 

Ergodic if it is aperiodic and its stationary transition matrix has identical rows. 

 

       A fuzzy Markov chain is called weakly Ergodic if it is aperiodic and its stationary transition 

matrix is stable with no identical rows. 

       Now, if the stationary distribution of P  is given by 
*P P  where

*lim n

n
P P


 , then P  

becomes an idempotent matrix. Sanchez defined its stationary distribution by its Eigen fuzzy set, see 

in [8]. 

 

3. Converting a fuzzy Markov chain to a classic Markov chain 

       The scalar cardinality and the cumulative membership function of a fuzzy set is used to define a 

conversion of fuzzy Markov chain into a classic Markov chain [7].  

 

       Definition 3.1 (Scalar cardinality of a fuzzy set). The well known scalar cardinality of a fuzzy set 

namely | |S  is a measure of amount and represents the total size of the membership function of 

( )SS  as follows: 

               
1

| , | ,
ij

m

i i S

j

S i m


      (6) 

Where  a diagonal squared matrix is whose components are the scaler cardinality of each set | |iS   

by row, denoted by ,i i m  . 

 

       Definition 3.2 (Cumulative membership function). The cumulative membership function is 

defined as: 

              
1

, .
i ij

x

S S

j

i m 


                                                                                  (7)  

Note that in the probabilistic case ( ) 1F    while in the possibilistic case 1 ( ) .    also 

 ( ) 1S    is an important issue to be solved. This is an interpretation problem since the definition of 

a normalized fuzzy set determines that max ( ) 1x S S x   and the above definition does not have this 

property. To solve it, an easy way to normalize ( )S x  is dividing it by , obtaining the following 

definition: 

            
1

1
, .

i ij

x

S S

ji

i m 


 

                                                                            (8) 

Remark 1 (Relation between ( ) | |S x and S ).  Recall that  ( ) .S      

 

Theorem 3.1. Let P a fuzzy Markov chain with elements  ,
ijij Sp   then P can be converted to a 

classic Markov chain namely P , using the following linear transformation: 

                                
1 .P P                       (9) 

       Proof. First, the scaler cardinality of iS defined as (6), so, 
1,    and  P  are defined as: 

         

11 12 1

21 22 2

1 2

1
1 1

1
2 1 2

1

; ; .

m

m

m m mm

S S S

S S S

m m S S S

P
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       Finally we have 

                                        

11 12 1

21 22 2

1 2

1

1

1

2

1

* ,

m

m

m m mm

S S S

S S S

m S S S

P

  

  

  







  
  

      
         

    
   

which is 
1P P  . Now, all their components result in the following matrix: 

                                                        

11 12 1

21 22 2

1 2

1 1 1

2 2 2
.

m

m

m m mm

S S S

S S S

S S S

m m m

P

  

  

  

 
 

   
 
 

    
 
 
 

 
   

   

  

       This transformation obtains a matrix P  whose elements satisfy all basic properties of a stochastic 

classic distribution function, i.e. 

)0 ( ) 1iji p x    

) ( ) 1,ij

j S

ii p x i S




    

) ( ) ( ) ( ),ij ij

i S

iii P X x p x F x i S


      

       In this way, it is possible to show that all elements of P  obtained from P  by using 
1P P    

conforms a classic distribution function; agree to the Markovian property of a stochastic transition 

matrix. To that effect, their properties are shown next. 

The property presented in i  refers to the domain of
ijp , and as , , ,

ijS i i j m    then it asserts 

that  1, , .
ijS

i

i j m


 


  

 

4. Halton Sequence for generating 
ijS   

       In 1960, a Halton quasi-random sequence is introduced by reversing the digits in the 

representation of 

some sequence of integers in a given base. Although this can be done somewhat arbitrarily, 

astraightforward way of forming a d-dimensional Halton sequence 1 2, ,   , where

1 2
( , , , )

i i idi S S S     , is first to choosed  bases 1 2, , , ,db b b  perhaps the first d   primes. The 

thj  base will be used to form the 
thj  component of eachvector in the sequence [6]. Then, begin with 

some integer    and 

1. choosing 
jt   suitably large, represent   in each base: 

                  
0

( ) , 1,2, . ,
jt

k

jk j

k

a b j d


  


    

2. Form 

                 
1

0

( ) , 1,2, , .
j

j

ij

t
k t

S jk j

k

a b j d
 



  


   

3. Set 1    and repeat. 
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5. Simulation 
       We present a simulation on fuzzy Markov chains to identify some characteristics about their 

behavior based on matrix analysis. 

Algorithm: Now, using the linear operation given in section 3, we simulate the fuzzy Markov chains. 

Size of the fuzzy Markov chains: The size of P  denoted by m , {5,10,50,100}m  . 

Random number generator :} All the entries  { } { }ij ijp   of the matrix P  are obtained by using 

the RAND function of MATLAB (Table 1) and Halton quasi-random sequence (Table 2). 

Number of runs: 100 runs are simulated for per each size of P . 

 

   Table 1. Total number of strong ergodicity, weak ergodicity and periodic chains using the 

                 RAND function of MATLAB.  

Size Strong ergodicity   Weak ergodicity    Periodic Total 

m=5             12 32          56   100 

m=10                3 11          86   100 

m=50              1 3          96   100 

m=100              - 1          99   100 

 

Table 2. Total number of strong ergodicity, weak ergodicity and periodic chains using  

              Halton quasi-random sequence 

Size Strong ergodicity   Weak ergodicity    Periodic Total 

m=5             26 39          35   100 

m=10               14 21          65   100 

m=50              9 14          77   100 

m=100              3 6          91   100 

 

 
Figure 1. Strong ergodicity, weak ergodicity and periodic chains using the RAND function of 

MATLAB. 

 
Figure 2.  Strong ergodicity, weak ergodicity and periodic chains using Halton quasi-random 

sequence. 
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       The Table 1 and Table 2 as well as Figure 1 and Figure 2 show the total number of fuzzy Markov 

chains which has either a strong ergodic, weak ergodic or periodic behavior per each size of P . 

 

6. Conclusion 
        Based on our presented results and former related results we conclude that the fuzzy Markov 

chains are usually periodic, and the fuzzy Makov chains generated by Halton method are more 

efficient in terms of periodicity than those generated by RAND function. 

 

       We shall deal with stationary and ergodic fuzzy Markov chains. We propose some algorithms to 

make such periodic fuzzy Markov chains ergodic. 
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