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ABSTRACT

In this paper, a homotopy-perturbation method (HPM) [1-6, 26-28] is used to solve both linear and
nonlinear Nth boundary value problems with two point boundary conditions for ninth-order, tenth-order
and twelfth-order. By applying (HPM) on three examples the numerical results are compared with the
exact solution, to show effectiveness and accuracy of the method.

Keywords: HPM - linear and non-linear problems — boundary value problem — Approximate solution

1. Introduction

A new perturbation method called homotopy perturbation method (HPM) was proposed by He in 1997 and
systematical description in 2000 which is, in fact, a coupling of the traditional perturbation method and homotopy in
topology [1-2]. This new method was further developed and improved by He and applied to nonlinear oscillators with
discontinuities [3], nonlinear wave equations [4], asymptotology [5], boundary value problem [6], limit cycle and
bifurcation of nonlinear problems [7] and many other subjects. Thus He's method is a universal one which can solve
various kinds of nonlinear equations. For example, it was applied to the quadratic Ricatti differential equation by
Abbasbandy [8]; to the axisymmetric flow over a stretching sheet by Ariel et al. [9]; to the nonlinear systems of
reaction-diffusion equations by Ganji and Sadighi [10]; to the Helmholtz equation and fifth-order KdV equation by Rafei
and Ganji [11]; for the thin film flow of a fourth grade fluid down a vertical cylinder by Siddiqui et al. [12]; to the
nonlinear Voltra-Fredholm integral equations by Ghasemi et al. [13].

In recent years, the application of the homotopy perturbation method (HPM) [5, 7, 30] in nonlinear problems has
been developed by scientists and engineers, because this method deforms the difficult problem under study into a
simple problem which is easy to solve. Most perturbation methods assume a small parameter exists, but most nonlinear
problem have no small at all. Many new methods, such as the variational method [36-37], variational iterations method
[14, 17] and (DTM) [38-39].

The homotopy perturbation method proposed by He [2, 26] is constantly being developed and applied to solve
various nonlinear problems [3, 4, 7, 11, 27-32, 34]. Unlinke analytical perturbation methods, the homotopy-perturbation
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method does not depend on a small parameter which is difficult to find. We focus on dealing with the N boundary
value problems by means of the homotopy perturbation method. Three numerical examples will be presented to verify
the homotopy perturbation method.

Recently various powerful mathematical methods such as variational iteration method [14-23], exp-function method
[24-25], f-expansion method [24], this paper, applies the homotopy perturbation method (HPM) [1-5].
2. Homotopy perturbation method

We consider the general N™ order boundary value problems of the type:

YV (X) = £ Y,y (%), YV (x), 0<x <1 @

with the boundary conditions
y®(0)=ay, k=0,1,23-,(n-1) @)
Yy M) =By, k=0123-,(n-1) ®

where f(x,y,y'(X),..., y(zn_l)(x)) and y(x) are assumed real and as many as times differentiable as required for
x €[0,1], a,, and B,,, k=0,1,2,---,(n—1) are real finite constants Djidjedi, Twizell and Boutayeb [40], more over

the constants o, , k =0,1,2,---,(n —1) describe the even order derivatives at the boundary x =0 .
Using the transformation
dy dzy g2t

Y=Y, =Yy, — 5 =Y¥3," 7}’:}/ 4)
1 dx 2> dxz [ din_l 2n

We can rewrite the N'™ -order boundary value problems (1), (2) and (3) as the system of ordinary differential equations:

— =Y
dx 2

d2y
5 = Y35
dx2

d2n—1y B
dx 20! = Yon>

d
?Z = f(Xsysyl (X)5y2 (X)5“.’y2n—1 (X)) (5)

with the boundary conditions

yi@) =ag,y,(@)=0,,y,,(@) =0y, (6)
or

Y1 (b) = BosyZ (b) = Bl,"',}’zﬂ (b) = BZn—l ©)
which can be written as a system of integral equations:

X
Y =0y + fyz(t)dt,
0
X
0

X
Y3 =0y + Iy4(t)dt,
0

Yon =0gp + .[ f(t, yl (1), y2 (1), .’y2n—l (t))dt. ®)
0
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To explain (HPM), we consider (8) as [2, 27]:

L (Y17Y2="'»Y2n
L(y]sy27”'sy2n): : :05 (9)
Ly (¥1:¥25 ¥ n

with solution (f,f,,---,f,,) where

X
X
L(ylﬂyz""’y2n) = yl —QO - '[ y2 (t)dt, L2n (y]ay2 s"'7y2n) = y2n _a2n—] - J' f(t7yl (t)syz(t)7sy

2n_l(t))dt.
0 0
(10)

We can define homotopy H(y;,y,,*,¥2,.P) bY
H(Ylsy2a“'sy2na0) = F(Y]ast'“ay2nsH(y]ay29'“ayznal)

:L(y]ay2s"'5y2n)a
where

T

F(Y]’y27”"y2n) :[F(y]’yzf'"yZn)”"aFZH(Y17y2""7y2n)]

_ T

=[y1=0s "5 Yon1 —Oans Yon —Olon ] (11)

T

H(Yl=Y23"'7YZn7p):[Hl(yla}I2="'ay2nsp)a"'aHn(YIsYZa"'a}IZnap)] . (12)
Typically we may choose a convex homotopy by:
H(Yle2a"‘aY2n:p) = (1 - P)F(ylaYQa"',an) + PL(Y1,Y2,“',Y2H) =0. (13)

The convex homotopy (13) contiuously trace an implicitly defined carve from a starting point
H(y; —og,yy =0y +*, Yo, —0opn_1,0) to asolution function H(f},f,,---,f, ,1). The embedding parameter p

monotonically increasing from zero to unite as trivial problem F(y;,y,, *,y,,) =0 is continuously deformed to original

problem L(y,,y5,**,¥,,) =0.
The (HPM) uses the homotopy parameter p as an expanding parameter:

2
Y1 =Y10tPYI1+P Y2+

2
Y2n =¥2n0 *PY2n1 +P Y2n2 *-o- (14)
The approximate solution of Eq. (1), therefor, can be readily obtained:

fi=limy =y +y; +yp+
p—1

frp =limy,, =¥500+Yoni + Yon2 +-- (15)
p—1

The convergence of the series (14) for the application of (HPM) to (8), we can write Eq. (13) as follows:
Hi(y1,y2..¥2n.P) =(1=-P)F (y1,¥2,--,¥2n) +PL1(¥1, Y2, ¥2n) =0,

Hon (v1,¥2>5¥2n-0) = 1 =P)Fo (v1,¥2,>¥2n) + PLon (¥1,¥25+5¥20) = 0. (16)
substitution of (10), (11) and (13) into (16) yields

X
(A-p)(y1 —ag)+p(y; —ag -] y,(Hdt=0,
0

X

(1 - P)(YQn - azn—l) + p(Y2n - azn—l - .[ f(t, yl (t)’ YZ (t)a o ayZn -1 (t))dt =0. (17)
0

By equating the terms with identical powers of p, we have
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Y10 = %0>
0 =

Y2n0 = %2n-1-

X
11 = [y, (Ddt,
0

1. X
’ YZn—ljl = .[yzno(t)dts
0
Xd
YZH,I = J. ; (f(ta yl (t)a o 3Y2n ) (t)’ y2n —1 (t)))dta
0

(19)

X
yi2 =1y, (Ddt,
0

X
P yongn = ¥y (DL, (20)

0
X d2
YZn,2 = J’ diz (f(t’ Yl (t)y o ,an ) (t)a Y2n -1 (t)))dta
0dp

X
Y1,2k = fyz ok -1 (Ddt,
0
2k X
: 21
P yan-10k = [, o (DA 1)
0
X d2k
Y2n,2k = .[ 7 (f(ta yl (t),' o ayzn ) (t)’ y2n _ l(t)))dt
0 dp
Combining all the terms of Egs. (18)-(21) give the solution of the problem, by using the boundary conditions (6) and (7)
we can obtained all parameters.

3. Applications

In this section, in order to verify numerically whether the proposed methodology leads to higher accuracy, we evaluate
the numerical solution of the problem. To show the efficiency of the present method for our problem in comparison with
the exact solution we report absolute error which is defined by

EyN (X) = abs(YExaCt (X) - yNApprox (X)) (22)

where

N N
Y Approx (X) = kZO yik  for N=0,1,2,--- . 23

4. Examples
Example 1. Consider the following linear ninth-order problem

y(9) x)=y(x)— 9ex, a<x<b. (24)
with the following boundary conditions
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y(k) 0)=(01-k), k=0,1,2,3,4.

Y1) = (ke), k=0,1,23.
The exact solution is

y(x) = (1-x)e~.

(25)

(26)

(27

Using the transformation (4) we can rewrite the ninth-order boundary value problem (24) as the system of integral

equations:

X
yp =1+ [y, (0,
0
X
y2 = Jy5(0dt,
0

X
y3 =-l1+[y,(0dt,

0
X
y4 ==2+]ys(0dt,
0
X
ys =3+ [y (0,
0
X
ye =a+ [y (D,
0
X
y7 =b+[yg(dt,
0
X
yg =c+[yy(Ddt,
0
X
yg =d+[[-9¢ + yl(t)]dt.
0

Using (17) into (28) we have
+ + 2 +--=1+ )j(( + + 2 +---)dt
0
+ + 2 o= )j(( + + 2 +--)dt
0

X
2 t 2
Y90 +PY9] +P ygp +---=d+p[ (-9e +Y,0FPY) TP Yy +odt

0
Comparing the coefficients of like powers of p, we have:

18
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yi0 =1L
y20 =0,
y30 =1L
0 Y40:_2)
P 9Y50 =3, (30)
Y60 = @,
y70 = b,
y80 = ¢,
y90:d.
y11 =0,
YZI =X,
y31 = —2X,
|| Yar =3
p :4Ys5] = ax, (31)
Y61 = bx,
y71 = ¢X,
yg1 = dx,
y91=—9ex+x+9.
L 2
y =—-—=X,
12 5
2
yoo =X,
32
y =-——X,
32 5
1 2
Yy =—ax ,
42 )
2 )
p - YSZZEbX 5 (32)
1 2
y =—CX ’
62 5
| )
y79 =—dx”,
72 5
1
v82 =—9CX+EX2+9X+9,
y92:0.

19
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1
dx8,
40320

Y18 =
1 1 3 3

dx8 4——){7 +—X6 +—x5 +7x4

40320 480 40 20 8

3 9
+—x3+—x2+9x+9,

2
y38 =0,

y28 = —9CX +

13

Yy = X,
3 480320

: yeg = 1 x8 (33)

8 40320

y =-—44£47X8

68 ™ " 3440

1 8

X

Y78 = a
8 40320

1
bx8,

y =
88 40320
1

8
cX .

yo8 =

40320

9 1 g 1 7 1 ¢ 3 5
+——X +—X +—X +—X

X X
362880 3840 280 40 40

y19 = —9ex +
3 3 9
+fx4 +—x3 +—x2 +9x 49,
8 2 2
y29 =0,
1 9
X 2
362880
1 9
Yy = X,
9 49 362880
p yeg = 1 X9 (34)
>9 120960
1 9

ax
362880
1

Y39 =~

Y69 =

bx9

y =
7 362880
1

9
cX

y =
89 362880
1

9
X .

¥99 =

d
362880
Combining all the terms of Egs. (30)-(34) gives

1 1 1 1 1 1
2—7)(3—7x4+—x6+ 8 xg+—ax5

- xe-
8 80 26880 45360 120

1 1 1
+—bx6+ cx7+ dx8. (35)
720 5040 40320
Using the boundary conditions (26) then we have:

a=-3.998498472, b=-14.03378034,
c=-14.68710863, d=-9.727056391.

y(9)(x)=1—lx
2

15 13 1
Y )= 1= x2 =2 x3 == %% 0.03332082060x° —0.00699136158x°
20 30 g
7 8 1 9
—0.001128394569x " —0.0002040440574x5 - x°. (36)
45360
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The numerical results obtained in Table 1.1. In Table 1.1, we list the results obtained by homotopy perturbation
method (HPM) and compared with the exact solution. As we see from this Table, it is clear that the results obtained by
the present method are very superior to that obtained by the exact solution highly accurate.

Table 1.1:

Linear ninth-order BVP

X HPM(N=9) Yexar = (1= X)€"
0.0 0.100000000E+01 0.100000000E+01
0.2 0.9771222083E+00 0.9771222064E+00
0.4 0.8950948366E+00 0.8950948188E+00
0.6 0.7288475468E+00 0.7288475200E+00
0.8 0.4451081901E+00 0.4451081856E+00
1.0 0.0000000000E+00 0.0000000000E+00

Example 2. Consider the following linear tenth-order problem

y(lo) x) = e_Xy2 (x), a<x<bh. 37)
with the following boundary conditions
Y0 =), Kk=01234, 9)
Y20 =), k=01234, (39)
The exact solution is
y(x)=e". (40)

Using the transformation (4) we can rewrite the tenth-order boundary value problem (37) as the system of integral
equations:

X
yp =1+ [y, (0,
0

X
y2 =a+[y,(0dt,

0
X

y3 =1+[y,(Ddt,

0
X

y4 =b+ ]y (0,

0
X

ys =1+ [y (Ddt,
0

X
v =c+ ]y, (0dt,

0
X
y7 =1+ [yg(D)dt,
0
X
yg =d+[yy(tdt,
0
X
v =1+ [y, (Ddt,
0
X
-t (2
yio= £+ [Ty (41)
0
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Using (17) into (41) we have
+ + 2 +oe=14+ )j(( + + 2 +---)dt

0
+ + 2 +--=a+ )I(( + + 2 +---)dt
0
2 Xt 2 2
Y100 *PY101 +P y102 +-=f+pJe (v, +py; +P Yy, + ) dt (42)
0
Comparing the coefficients of like powers of p, we have:
yio0 =1L
y9 :as
y30 =L
Y40 =b,
0 =1,
p 47507 (43)
Y60 =©
y70 =1,
ygo =d,
yoo =L
100 = f-
Y11 =ax,
yzl :X9
y31 = bx,
y41 :X9
1 J¥Y51 =¢X,
: 44
Py =x. @9
y71 =dx,
Y81 :X’
yo1 =1X,
—X
yio1 =-¢ = +L
L)
YI2 =X,
12 )
1.2
y22 = —bx",
22 )
1 2
Y32 =X,
32 )
1 2
y =—CX ,
42 )
2 1 2
p YSZZEX ) (45)
1 2
y zidx )
62 )
1 2
y =X,
72 )
1.2
y :7fX [}
82 )
—X
y9p =€ ~ +x-—1,
Y102 =—2axe ~ -2ae * +2.

22
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1.3
y :7bX )
13 6
yo3 =%’
3 6
13
y =—CX ,
33 6
v43 =
3 6
1.3
p>:1¥s3 =gdx ; (46)
Y63 :lx3
6 2
1.3
Yy =—fx s
73 6
_ 1
yg3 =—¢€ X +1—X+EX2,
¥93 = 2axe " +4ae \2ax —4a,
Y103 = (1+212)(—Xze_X —2xe X -2¢ X +2).

Combining all the terms of (43)-(46) we get
4y ! X6+ ! x8+ ! x10
720 40320 3628800

10 x =1+lx2+ix
y e 2 24

13 1 5 1 7 1 9
+ax+—bx +—cx +——dx +—fx".
6 120 5040 362880

Using the boundary conditions (39) then we have:

a=1.000029332, b=0.9997112299, c¢=1.002812535,
d=0.9735681663, f =1.218281800.
aw, . L2 1 4 1 ¢ 18 1 10
yu (X)) =1+—x"+—x +—x + X + X
2 24 720 40320 3628800

+1.000029332x + 0.1666185383){3 +0.0083567711x

+ 0.0001931682870)&7 +0.3357258046E(-5) x9. (48)

The numerical results obtained in Table 1.2. In Table 1.2, we list the results obtained by homotopy perturbation
method (HPM) and compared with the exact solution. As we see from this Table, it is clear that the results obtained by
the present method are very superior to that obtained by the exact solution highly accurate. As can be seen from Table
1.2, the error decreased when the integer N is decreased.

(47)

5

Table 1.2:

Non-linear tenth-order BVP

X HPM (N=10) Yexact =€
0.0 0.100000000E+01 0.100000000E+01
0.2 0.1221408246E+01 0.1221402758E+01
0.4 0.1491833581E+01 0.1491824698E+01
0.6 0.1822127686E+01 0.1822118800E+01
0.8 0.2225546413E+01 0.2225540928E+01
1.0 0.2718281799E+01 0.2718281799E+01

Example 3. Consider the following linear twelve-order problem
y(lz) (x)= Ze:xy2 (x)+ y(3) (x), a<x<b. (49)
with the following boundary conditions

23
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vy 0)=1, k=0,1,2,3,4,5. (50)
2Ky 1y (1 _
y (1)_(4)5 k_051a253a455' (51)
The exact solution is
y(x)=e . (52)

Using the transformation (4) we can rewrite the twelve-order boundary value problem (49) as the system of integral
equations:

X

yp =1+ [ ya(t)dt,
OX

y2 = A+ [y3(tdt,
XO

y3 =1+ [ yq(t)dt,
OX

y4 =B+ [ys(t)dt,
XO

ys5 =1+ [ yg(t)dt,
OX

Y6 =C+ [ y7(t)dt,
X0

y7 =1+ [yg(t)dt,
OX

yg = D+ (j; yg(t)dt,

X

yo =1+ ] yjp(t)dt,
OX

Y10 :E+(_|;y11('[)dt,

X
yi1 =1+ [y (tdt,
0 (53)

X
t 2 3
yip =F+ (j)[Ze yo () + yg )(t)dt.
Comparing the coefficients of like powers of p, we have:

yi0 =1L
¥20 = A,
y30 =1
Y40 =B,
yso =1,
pl:1Y60 =€, (54)
y70 =1,
ygo =D,
y9o =L
y100 = E,
y110 =1
y120 = F,

24
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y11 = AX,
Y21 =X,
y31 = Bx,
Y41 =X,
ys51=Cx,
1. JY61 =X,
"|y71 =Dx,
y81 = X,
v91 = Ex,
Y101 =%
yi11 = Fx,
vi21=2¢" -2,

(55)

1 2
Y2 =X,
12 5
)
y :7BX s
22 )
1 2
Y32 =X,
32 )
12
y :7CX s
42 )
1 2
Y52 =X,
52 )
12
p?:{ye2 =~ Dx",
2
1 2
Yy =—X,
72 )
1.2
yg2 = —Ex7,
82 )
L)
Yoo =X,
92 )
)
y =—Fx s
102 )
Y112 =26X—2X—2,
102 = 4Axe™ —4Ac™ +4A,
Combining all the terms of (54)-(56) we obtain:
1 1 1 1 1
2 4+ 6+ 8 10+ 12

(12) g, !
y x)=1+—x"+—x +—Xx X+ X X
2 24 720 40320 3628800 239500800

(56)

1 1 1 1 1
+Ax+—Bx3+—Cx5+—DX7+ Ex9+ Fxll.
120 5040 362880 39916800
Using the boundary conditions (39) then we have:

A =-0.9999940293, B =-1.000058885, C=-0.9994190942,
D =-1.005725028, E =-0.9434337955, F =-1.632120555.

1 1
y(lz) (x) =1-0.9999940293x + — x% —0.1666764809%° +— x+ —0.008328492451x°
2 24

(67)

1 6 7 1
+——x —0.0001995486167x " +
4032

720
12

1 1
10 6.4088806105E(-7)x 4 12, (58)
3628800 239500800
The numerical results obtained in Table 1.3. In Table 1.3, we list the results obtained by homotopy perturbation
method (HPM) and compared with the exact solution. As we see from this Table, it is clear that the results obtained by

X8 ~0.2599850627E(=5)x
0

+
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the present method are very superior to that obtained by the exact solution highly accurate. As can be seen from Table
1.3, the error decreased when the integer N increased.

Table 1.3:

Non-Linear twelfth-order BVP

X HPM (N=12) Yoxact =€

0.0 10.00000000E-01 10.00000000E-01
0.2 8.187308703E-01 8.187307531E-01
0.4 6.703208540E-01 6.703200460E-01
0.6 5.488114451E-01 5.488116361E-01
0.8 4.493289646E-01 4.493289641E-01
1.0 3.678794453E-01 3.678794412E-01
4.

Homotopy perturbation method is applied to the numerical solution for solving both linear and nonlinear Nth
boundary value problems. Comparison of the results obtained by the present method with that obtained by exact
solution reveals that the present method is very effective and convenient. The numerical results in the Tables [1.1-1.3],
show that the present method provides highly accurate numerical results. This method cannot be applied easily if the
order of equation is higher than 12™ order.
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