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Abstract 
In basic design of offshore or onshore structures, prediction of surface waves due to 

uniform motion of the floating body is essential to achieve an optimum body shape. 

Whereas, in the practical hydrodynamics, using of towing tanks is common and so cost and 

time consuming to conduct it, so a reliable numerical tank is interesting. A wide channel 

with constant depth constitutescomputational domain. It assumes that fluid is 

incompressible and non-viscous and the flow is irrotational. Therefore, Laplace’s equation 

could describe flow field.3D Boundary Element method based on second Green’s 

Identityis implemented to solveLaplace’s equation. Impermeable boundary condition is 

satisfied by Image method and Cauchy integral theorem and Poisson summation formula is 

used to determine Principle value integral. In this study, numerical simulation is conducted 

for a hemisphere and added mass and generated wave profile is presented. 
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1. Introduction 
Boundary integral equation is defined in two schemes: direct and in-direct formulationsin order to analyze 

potential flow in several hydrodynamic problems. In-direct method is based on distributing sources on a body 

surface, whereas its strength is calculated by Fredholm’s integral equation on body.Potential flow around 

submerged non-lifting bodies has been widely investigated by direct method. Itis based on the second Green’s 

identity. Green function in this formulation is field’s response due to a constant strength singularity 

presentswithin the uniform flow in the computational domain. Fundamental solution of a submerged source in a 

uniform flow is derived by Fourier transform approach. 3D Green function in finite depth was applied by Sahin 

and Hymann (1993, 1994). They used Cauchy Residue theorem and a adaptive quadratures set to evaluate 

principle value integral and determined fluid flow around axisymetric submerged body. To approximate 

resistance due to generated wave pattern of a wigley hull, Insel (1995) used a modified Green function in 

boundary integral equation and compared results with experimental measurements. 

Accuracy of BEM depends on two items. First one is definition of body geometry and another one is order 

of distribution velocity potential over elements. Study on these items on the numerical solutions was conducted 

by Kouh and Ho (1996). In their research, Non-lifting body was discritized to flat and quadratic panels with 

constant and linear source strength distribution over theelements. 

In addition, overlapping of source point and field point is a major difficulty in boundary integral 

implementation. Several remedies have been found for different problems. Cao (1991) was developed a 

numerical approach for direct and in-direct boundary integral based on Desingularzation distance for potential 

problems. Hwang (1998) used a subtracting and adding technique to desingularize boundary integrals for wave 

body interaction problem. Their approach is appropriate for open boundaries. To solve Laplace Equation in a 

closed domain, Grilli et al. (2001) summarize a formulation to remove singularity of direct boundary integral for 

curvilinear elements. Gao(2008) used curvilinear elements in desingularized in-direct method.  

In this study, direct boundary integral equation is used to solve Laplace equation and isoparametric 

triangular element is chosen to prescribe boundary condition and geometry. Fully non-linear free-surface 

boundary condition is so complicated to be satisfied. By using Taylor expansion, free-surface boundary 

condition is satisfied in Green function and image method is used to apply impermeable bottom and walls 

tank.Total Velocity potential is divided in two parts. First part is uniform flow with constant velocity and second 

part is perturbation potential due to presentation of body in uniform flow. A new trick is presented to remove 

singularity of boundary integral implementation. Hydrodynamic performance of a hemisphere is considered to 

assess numerical procedure. 

 

2. Mathematical Formulation 
Consider a submerged or floating body in shallow water. The right hand coordinate system that is shown in 

Figure 1 is used. Its origin is located on undistributed free surface and z  axis is directed upward. It is assumed 

thatfluid flow is ideal, incompressible, steady and irrotational. The tank bottom is located at hz  , and 

uniform flow with speed U  streams in negative x  direction. Consequently, the total steady-state velocity 

potential can be expressed as follow: 
(1)    zyxUxzyx ,,,,  

 

 
Figure 1.Definition Sketch 
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Indeed, the total velocity potential includes uniform flow potential and perturbation potential. Whereas the 

uniform flow potential satisfies the Laplace’s equation, the problem can be solved in term of perturbation 

potential. Thus, the governing equation can be written as: 
(2) 

0
2

2

2

2

2

2
2 
















zyx


 

To solve Equation 2, boundary conditions must be given which are categorized in the following: 

 Bottom boundary condition 
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 Combined free surface boundary condition 
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 Hull Boundary condition 
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where, bS  is body hull and xn  is x direction component of normal vector directed into fluid. 

Second identity Green theorem is expressed as below:[3] 
(7) 

   PPdS
n

G
n

G

qS q
Pq

q

Pq

q 


 





















 

where, P  is field point and q  is source point and qS indicates surface integral.  P depends on position of 

field point that can be located on smoothed body’s surface (    2P ) or in control volume (    4P ) or 

out of domain (   0P ). The modified Green function for a source point at  000 ,, zyx can be written as: 

(8) 
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where,   is strength of source point is taken unit and [5] 
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where,W is width of numerical tank. In the image method, the tank walls as mirror image singularity point in y

direction to infinity at both sides. Imaged sources’ position can be described by 0y   and 0y   in Equation 10.In 

Equation 8, sin term specified to odd m and cos  term specified to even m which arises from Green function 

modification based on Cauchy integral theorem and Poisson summation formula. m and mK  in equation 10 are 

derived by solving two below equations at the same time. 
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3. Desingularization Techniques 
Until now, various methods have been propounded to eliminate singular terms. In this paper, tricky 

approaches are proposed to obtain diagonal arrays of influence coefficient. In order to remove singularity, 

body’s geometry surface is described by flat triangular panels ( NjS j ,...1 ,  ). Source points are located at 

center of each panel whereas; potential distribution over each element is constant. Figure 2 illustrates the 

location of field point and source points on the elements. 

 

 
Figure 2.View of collocated source and field points 

 

Field point (a) is positioned within the intersection edge of elements 1, 2. Field point potential can be 

defined by linear combination of velocity potentials of corresponding elements to each field points as below: 
(12) 
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and 1 , 2  is constant potential specified to the elements. It seems that potential value over the body surface is 

unknown boundary value and given boundary value is potential normal flux found as Neumann boundary 

condition. Therefore, descritized equation 7 can be written as: 
(14) 
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where, n  and m are corresponding panels to field points.  isKronecker Delta Function. Gauss elimination 

method is used to solve linear algebraic system. 

 

 

4. Numerical Results 
A hemisphere is described by triangular flat elements is shown in Figure 3. In order to verify the present 

approach, surge added masses are achieved and compared with the analytical solutions for different number of 

mesh in table 1. Radius of hemisphere is r  and uniform flow velocity is taken 1 m/s. Added mass is defined 

as:[6] 
(15) 
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Figure 3.512 triangular elements over hemisphere 

 
Table 1. Surge added mass of a sphere 

Case Number of Mesh 
3

11 rm  

Case 1 256 0.356042 

Case 2 528 0.346737 

Case 3 756 0.335614 

Case 4 1556 0.333453 

Analytic - 0.333333 

 

Table 1 shows good agreements between numerical results and analytical results. In addition, for a tank  

 

With 20 m depth and 30 m width, propagation wave due to uniform motion of hemisphere with different 

velocity is illustrated. 
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b. 10 m/s a. 5 m/s 

 
Figure 4.Wave Pattern due to uniform motion of a hemisphere 

 

It seems that when velocity of body is increased, wave height is growing up and wave pattern is changed. 

This phenomenon is happened in the real world for floating marine structure. The higher wave height means 

higher resistance exerted by fluid to the body [2].In the far from the body, reflected wave from the walls tank is  

 

 
Figure 5.Reflected wave pattern from the walls tank with 20 m height and 30 m width 

 

seen. Figure 5 shows reflected wave pattern due to the hemisphere with 5 m/s. it can be studied for different 

velocity. 

 

5. Conclusion 
In ocean engineering, determining resistance of floating marine structure is principal to gain the optimum 

hull design. Physical towing tank have been used to approximate wave making resistance for optimization 

process but it is so expensive and time consuming. In this paper, potential numerical towing tank based on 

potential theory and boundary elements methods is proposed instead of physical one. Direct boundary elements 

method is employed to solve boundary value problem. For BEM implementation, evaluating singular integral 

due to Green function is the mine difficulty. The new technique for flat triangle elements is presented for kernel 

surface integral. To verify the numerical results, surge added mass of a unit hemisphere is compared with 

analytical solution and in the following wave pattern for different velocity is illustrated to examine solver 

reliability. In general, presented procedure can be developed to use in applied marine hydrodynamics. 
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