Available online at www.isr-publications.com/jmcs J. Math. Computer Sci., 17 (2017), 216–219

Research Article

Journal of Mathematics and Computer Science

Online: ISSN 2008-949x

Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs

A sufficient condition for coinciding the Green graphs of semigroups

Mohammad Reza Sorouhesh^{a,*}, Hossein Doostie^a, Colin M. Campbell^b

^aDepartment of Mathematics, Tehran Science and Research Branch Islamic Azad University, Tehran, 14515/1775, Iran.

Abstract

A necessary condition for coinciding the Green graphs $\Gamma_{\mathcal{L}}(S)$, $\Gamma_{\mathcal{R}}(S)$, $\Gamma_{\mathcal{D}}(S)$ and $\Gamma_{\mathcal{H}}(S)$ of a finite semigroup S has been studied by Gharibkhajeh [A. Gharibkhajeh, H. Dosstie, Bull. Iranian Math. Soc., **40** (2014), 413–421]. Gharibkhajeh et al. proved that the coinciding of Green graphs of a finite semigroup S implies the regularity of S. However, the converse is not true because of certain well-known examples of finite regular semigroups. We look for a sufficient condition on non-group semigroups that implies the coinciding of the Green graphs. Indeed, in this paper we prove that for every non-group quasi-commutative finite semigroup, all of the Green graphs are isomorphic. ©2017 all rights reserved.

Keywords: Quasi-commutativity, finitely presented semigroups, Green relations, Green graphs.

2010 MSC: 20M05, 05C99.

1. Introduction

Let S be a finite semigroup. Following the notation of [4], the left Green Graph $\Gamma_{\mathcal{L}}(S)$ is an undirected graph with vertices \mathcal{L}_i , $(1 \le i \le t)$ where the \mathcal{L}_i s are the left Green classes of the semigroup S and two vertices \mathcal{L}_i , \mathcal{L}_j are adjacent in $\Gamma_{\mathcal{L}}(S)$ if and only if $\gcd(|\mathcal{L}_i|,|\mathcal{L}_j|) > 1$. These graphs are indeed the generalization of the conjugacy graphs of finite groups studied by Adan-Bante [1]. The right Green graph $\Gamma_{\mathcal{R}}(S)$, the intersection Green graph $\Gamma_{\mathcal{H}}(S)$, the join Green graph $\Gamma_{\mathcal{D}}(S)$, and finally the \mathcal{J} -classes Green graph $\Gamma_{\mathcal{J}}(S)$ are defined in a similar way. Investigating these graphs is of interest because of their ability in identifying certain types of finite semigroups, the non-group non-regular quasi-commutative semigroups. As usual, an associative algebraic structure (S,\cdot) is called quasi-commutative if, for every elements $a,b \in S$, there exists a positive integer r such that $ab = b^r a$. For useful information on quasi-commutative semigroups and examples, one may see [2, 3, 5–7]. Our main results on this type of semigroup are the following:

Proposition A. For every non-commutative quasi-commutative semigroup S, all Green graphs are isomorphic.

Proposition B. If b is a non idempotent element of a nowhere commutative quasi-commutative finite semigroup S, then b is regular if and only if $|[b]_{\mathcal{J}}| > 1$.

Email addresses: sorouhesh@azad.ac.ir (Mohammad Reza Sorouhesh), doostih@gmail.com (Hossein Doostie), cmc@st-andrews.ac.uk (Colin M. Campbell)

doi:10.22436/jmcs.017.02.03

^bSchool of Mathematics and Statistics, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS Scotland, UK.

^{*}Corresponding author

Proposition C. Let S be a finite non-regular nowhere commutative quasi-commutative semigroup. Then all of the Green graphs of S are isomorphic to $nK_1 \cup K_m$ where m is the number of \mathcal{L} -classes and n is the number of non-regular non idempotent elements of S. Moreover, these graphs are not complete.

2. The proofs

We start the proofs with a key lemma.

Lemma 2.1. Every non idempotent regular element b of a finite semigroup S satisfies $|[b]_{\beta}| > 1$.

Proof. For a regular element $b \in S$, we may use a method of proof similar to the proof of Lemma 1.14. of [3]. Indeed, there exists an element $x \in S$ such that b = bxb, and then y = xbx is an inverse for b. This yields yby = (xbx)b(xbx) = x(bxb)(xbx) = x(bxb)x = xbx = y and byb = b(xbx)b = (bxb)xb = bxb = b. Let $y \neq b$. So, yby = y and byb = b implies that $y \in [b]_{\mathcal{J}}$ and therefore $|[b]_{\mathcal{J}}| > 1$. If y = b so $b^3 = b$ and we have the following relations:

$$b = b \cdot b^2 \cdot b^2$$
, $b^2 = b \cdot b \cdot b^2$,

which shows that $b^2 \in [b]_{\mathcal{J}}$ and so $|[b]_{\mathcal{J}}| > 1$.

Proof of Proposition A. We consider the different cases as follows:

Case 1. $xLy \implies xRy$. If xLy so, y = xu and x = yv, for some $u, v \in S$. Since S is quasi-commutative then there exist integers r_u , r_v such that $xu = u^{r_u}x$ and $yv = v^{r_v}y$, respectively. Therefore, the identities $y = u_1x$ and $x = v_1y$ show that xRy, where $u_1 = u^{r_u}$ and $v_1 = v^{r_v}$.

Case 2. $x\Re y \Longrightarrow x\pounds y$. In a similar way to the first case and considering the definition of the right Green graphs.

Case 3. $xLy \iff xHy$. As in Case 1, xLy yields xRy. So, by the definition of H-relation, we get xHy. The converse is obvious.

Case 4. $xRy \iff xHy$. Similar to Cases 2 and 3.

Case 5. $x\mathcal{L}y \Longrightarrow x\mathcal{J}y$. If $x\mathcal{L}y$ then there exist $u,v \in S$ such that y = xu and x = yv. Due to the quasi-commutativity of S, there exist positive integers r_v, r_u, r_y, r_x such that

$$yv = v^{r_v}y$$
, $xu = u^{r_u}x$, $vy = y^{r_y}v$, $ux = x^{r_x}u$.

There are three cases to consider:

(1) $r_v > 1$, $r_y > 1$. We get:

$$x=y\nu=\nu^{r_\nu}y=\nu^{r_\nu-1}(\nu y)=\nu^{r_\nu-1}(y^{r_y}\nu)=\left(\nu^{r_\nu-1}\right)y\left(y^{r_y-1}\nu\right)\text{,}$$

which yields $x = u_1 y v_1$, $(u_1 = v^{r_v - 1}, v_1 = y^{r_y - 1}v)$.

(2) $r_v = 1, r_y \ge 1$. We get:

$$x = yv = vy = v(xu) = v(yv)u = u_2yv_2, (u_2 = v, v_2 = vu).$$

(3) $r_v > 1$, $r_y = 1$. In this situation, we have:

$$x = yv = v^{r_v}y = v^{r_v-1}(vy) = v^{r_v-1}(yv),$$

which yields $x = u_3yv_3$, $(u_3 = v^{r_v - 1}, v_3 = v)$. The proof of $y = u_ixv_j$ for some $u_i, v_j \in S$ is similar.

Case 6. $xRy \implies xJy$. Clearly, xRy yields xLy so, xJy.

Case 7. $x J y \Longrightarrow x \mathcal{L} y$. x J y implies that $x = u_1 y v_1$ and $y = u_2 x v_2$ for some u_1, u_2, v_1 and v_2 in S. Because of the quasi-commutativity of S, we have $x = (y^{r_y} u_1) v_1 = y u_2$, $(u_2 = y^{r_y-1} u_1 v_1)$ and $y = (x^{r_x} u_2) v_2 = x v_3$, $(v_3 = x^{r_x-1} u_2 v_2)$ where r_y and r_x are both positive integers. This shows that $x \mathcal{L} y$.

Case 8. $x\mathcal{D}y \Longrightarrow x\mathcal{J}y$. Since \mathcal{D} is the smallest equivalence relation containing \mathcal{L} and \mathcal{H} , then $\mathcal{D} \subseteq \mathcal{L}$. So, the proof is obvious.

Case 9. $xJy \implies xDy$. Let xJy. Then, there are elements u_1, u_2, v_1 and v_2 in S such that

$$x = u_1 y v_1, y = u_2 x v_2.$$

Setting $z = u_1y$, $k = v_1$ yields $x = u_1yv_1 = zk$. So, $z = u_1y = u_1(u_2xv_2)$. By the quasi-commutativity of S, there are integers r_1 , r_2 such that $u_2x = x^{r_1}u_2$, $u_1x = x^{r_2}u_1$. Therefore,

$$z = u_1(u_2xv_2) = u_1(x^{r_1}u_2)v_2 = (u_1x)(x^{r_1-1}u_2v_2) = xu_3$$

where, $u_3 = (x^{r_2-1}u_1)(x^{r_1-1}u_2v_2)$. This shows that $x\mathcal{L}z$. Moreover, $y = u_2xv_2 = u_2(zv_3)$ where, $v_3 = v_1v_2$ and so there is an integer $r_{v_3} \geqslant 1$ such that

$$y = u_2 x v_2 = v_4 z$$
, $(v_4 = u_2 v_3^{r_{v_3}})$.

The latter identity and $z = u_1 y$ confirm that $z\Re y$. This completes the proof of $x\Im y$.

Proof of Proposition B. Let $x \mathcal{J}b$ where $x \in S$ and $x \neq b$. So, there exist elements $\mathfrak{u}_{\mathfrak{i}}, \nu_{\mathfrak{i}} \in S, (\mathfrak{i} = 1, 2)$ such that

$$b = u_1 x v_1, \ x = u_2 b v_2.$$

So we have $b = u_1(u_2bv_2)v_1 = u_3bv_3$ where $u_3 = u_1u_2, v_3 = v_2v_1$. Because of the quasi-commutativity of S, we can find positive integers r_b such that $u_3b = b^{r_b}u_3$ and therefore $b = b^{r_b}y$ where $y = u_3v_3$. Considering two different cases for r_b , we have:

- (1) If $r_b > 1$ so $b = b^{r_b}y = b^{r_b-1}(by)$ and by quasi-commutativity of S we have $b = b^{r_b-1}y^{r_y}b$ where r_u is some positive integer.
- (2) If $r_b = 1$ then $u_3b = bu_3$ and so the nowhere commutativity of the semigroup gives $u_3 = b$.

Therefore by the quasi-commutativity of S we have:

$$b = u_3 b v_3 = b \cdot (v_3^{r_{v_3}} b) = b \cdot v_4 \cdot b, (v_4 = v_3^{r_{v_3}}),$$

where r_{ν_3} is a positive integer. This means that b is a regular element of S. For the converse, we consider Lemma 2.1.

Proof of Proposition C. By using Proposition A, we get that

$$\Gamma_{\mathcal{L}}(S) \cong \Gamma_{\mathcal{R}}(S) \cong \Gamma_{\mathcal{A}}(S) \cong \Gamma_{\mathcal{D}}(S) \cong \Gamma_{\mathcal{H}}(S).$$

So, identifying the Green graph of S one needs only to consider the \mathcal{L} -classes of S. If there are n non-regular elements $b_1, b_2, \cdots, b_n \in S$ then by a consequence of Proposition B, we get:

$$nK_1 = \bigcup_{1}^{n} \Gamma_{\mathcal{L}}([b_i]).$$

By considering the set of all \mathcal{L} -classes of S as $\{\mathcal{L}_1, \mathcal{L}_2, \cdots, \mathcal{L}_m\}$, where each class contains at least two elements, we construct the sub-graph K_m of $\Gamma_{\mathcal{L}}(S)$. Consequently,

$$\Gamma_{\mathcal{L}}(S) \cong \mathfrak{n} K_1 \cup K_{\mathfrak{m}}.$$

Since S is non-regular, $\Gamma_{\mathcal{L}}(S)$ is not a complete graph.

Conclusion 2.2. Using a similar proof, we may extend Proposition A for quasi-hamiltonian semigroups. By definition, the semigroup S is quasi-hamiltonian if and only if for every elements $a, b \in S$ there are positive integers r_a, r_b such that $ab = b^{r_b}a^{r_a}$.

References

- [1] E. Adan-Bante, Conjugacy classes and finite p-groups, Arch. Math. (Basel), 85 (2005), 297–303.1
- [2] A. Cherubini, A. Varisco, *Quasi-commutative semigroups and σ-reflexive semigroups*, Semigroup Forum, **19** (1980), 313–321.1
- [3] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups I, Amer. Math. Soc., Providence, (1961). 1, 2
- [4] A. Gharibkhajeh, H. Dosstie, *A graphical difference between the inverse and regular semigroups*, Bull. Iranian Math. Soc., **40** (2014), 413–421.1
- [5] A. Nagy, Special classes of Semigroups, Kluwer Academic Publishers, Dordrecht, (2001).1
- [6] N. P. Mukherjee, Quasi-commutative semigroups I, Czechoslovak Math. J., 22 (1972), 449-453.
- [7] M. R. Sorouhesh, H. Dosstie, *Quasi-commutative semigroups of finite order related to Hamiltonian groups*, Bull. Korean Math. Soc., **52** (2015), 239–246.1