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Abstract
A necessary condition for coinciding the Green graphs ΓL(S), ΓR(S), ΓJ(S), ΓD(S) and ΓH(S) of a finite semigroup S has been

studied by Gharibkhajeh [A. Gharibkhajeh, H. Dosstie, Bull. Iranian Math. Soc., 40 (2014), 413–421]. Gharibkhajeh et al. proved
that the coinciding of Green graphs of a finite semigroup S implies the regularity of S. However, the converse is not true because
of certain well-known examples of finite regular semigroups. We look for a sufficient condition on non-group semigroups that
implies the coinciding of the Green graphs. Indeed, in this paper we prove that for every non-group quasi-commutative finite
semigroup, all of the Green graphs are isomorphic. c©2017 all rights reserved.
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1. Introduction

Let S be a finite semigroup. Following the notation of [4], the left Green Graph ΓL(S) is an undirected
graph with vertices Li, (1 6 i 6 t) where the Lis are the left Green classes of the semigroup S and
two vertices Li, Lj are adjacent in ΓL(S) if and only if gcd(|Li|, |Lj|) > 1. These graphs are indeed
the generalization of the conjugacy graphs of finite groups studied by Adan-Bante [1]. The right Green
graph ΓR(S), the intersection Green graph ΓH(S), the join Green graph ΓD(S), and finally the J-classes
Green graph ΓJ(S) are defined in a similar way. Investigating these graphs is of interest because of their
ability in identifying certain types of finite semigroups, the non-group non-regular quasi-commutative
semigroups. As usual, an associative algebraic structure (S, ·) is called quasi-commutative if, for every
elements a,b ∈ S, there exists a positive integer r such that ab = bra. For useful information on
quasi-commutative semigroups and examples, one may see [2, 3, 5–7]. Our main results on this type
of semigroup are the following:

Proposition A. For every non-commutative quasi-commutative semigroup S, all Green graphs are isomorphic.

Proposition B. If b is a non idempotent element of a nowhere commutative quasi-commutative finite semigroup S,
then b is regular if and only if |[b]J| > 1.
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Proposition C. Let S be a finite non-regular nowhere commutative quasi-commutative semigroup. Then all of
the Green graphs of S are isomorphic to nK1 ∪ Km where m is the number of L-classes and n is the number of
non-regular non idempotent elements of S. Moreover, these graphs are not complete.

2. The proofs

We start the proofs with a key lemma.

Lemma 2.1. Every non idempotent regular element b of a finite semigroup S satisfies |[b]J| > 1.

Proof. For a regular element b ∈ S, we may use a method of proof similar to the proof of Lemma 1.14. of
[3]. Indeed, there exists an element x ∈ S such that b = bxb, and then y = xbx is an inverse for b. This
yields yby = (xbx)b(xbx) = x(bxb)(xbx) = x(bxb)x = xbx = y and byb = b(xbx)b = (bxb)xb = bxb = b.
Let y 6= b. So, yby = y and byb = b implies that y ∈ [b]J and therefore |[b]J| > 1. If y = b so b3 = b and
we have the following relations:

b = b · b2 · b2, b2 = b · b · b2,

which shows that b2 ∈ [b]J and so |[b]J| > 1.

Proof of Proposition A. We consider the different cases as follows:

Case 1. xLy =⇒ xRy. If xLy so, y = xu and x = yv, for some u, v ∈ S. Since S is quasi-commutative
then there exist integers ru, rv such that xu = urux and yv = vrvy, respectively. Therefore, the identities
y = u1x and x = v1y show that xRy, where u1 = uru and v1 = vrv .

Case 2. xRy =⇒ xLy. In a similar way to the first case and considering the definition of the right Green
graphs.

Case 3. xLy⇐⇒ xHy. As in Case 1, xLy yields xRy. So, by the definition of H-relation, we get xHy. The
converse is obvious.

Case 4. xRy⇐⇒ xHy. Similar to Cases 2 and 3.

Case 5. xLy =⇒ xJy. If xLy then there exist u, v ∈ S such that y = xu and x = yv. Due to the quasi-
commutativity of S, there exist positive integers rv, ru, ry, rx such that

yv = vrvy, xu = urux, vy = yryv, ux = xrxu.

There are three cases to consider:

(1) rv > 1, ry > 1. We get:

x = yv = vrvy = vrv−1(vy) = vrv−1(yryv) =
(
vrv−1)y (yry−1v

)
,

which yields x = u1yv1, (u1 = vrv−1, v1 = yry−1v).

(2) rv = 1, ry > 1. We get:

x = yv = vy = v(xu) = v(yv)u = u2yv2, (u2 = v, v2 = vu).

(3) rv > 1, ry = 1. In this situation, we have:

x = yv = vrvy = vrv−1(vy) = vrv−1(yv),

which yields x = u3yv3, (u3 = vrv−1, v3 = v). The proof of y = uixvj for some ui, vj ∈ S is similar.

Case 6. xRy =⇒ xJy. Clearly, xRy yields xLy so, xJy.



M. R. Sorouhesh, H. Doostie, C. M. Campbell, J. Math. Computer Sci., 17 (2017), 216–219 218

Case 7. xJy =⇒ xLy. xJy implies that x = u1yv1 and y = u2xv2 for some u1,u2, v1 and v2 in S. Because of
the quasi-commutativity of S, we have x = (yryu1)v1 = yu2, (u2 = yry−1u1v1) and y = (xrxu2)v2 = xv3,
(v3 = xrx−1u2v2) where ry and rx are both positive integers. This shows that xLy.

Case 8. xDy =⇒ xJy. Since D is the smallest equivalence relation containing L and H, then D ⊆ L. So,
the proof is obvious.

Case 9. xJy =⇒ xDy. Let xJy. Then, there are elements u1,u2, v1 and v2 in S such that

x = u1yv1, y = u2xv2.

Setting z = u1y,k = v1 yields x = u1yv1 = zk. So, z = u1y = u1(u2xv2). By the quasi-commutativity of S,
there are integers r1, r2 such that u2x = x

r1u2,u1x = x
r2u1. Therefore,

z = u1(u2xv2) = u1 (x
r1u2) v2 = (u1x)

(
xr1−1u2v2

)
= xu3,

where, u3 =
(
xr2−1u1

) (
xr1−1u2v2

)
. This shows that xLz. Moreover, y = u2xv2 = u2(zv3) where, v3 = v1v2

and so there is an integer rv3 > 1 such that

y = u2xv2 = v4z, (v4 = u2v
rv3
3 ).

The latter identity and z = u1y confirm that zRy. This completes the proof of xDy.

Proof of Proposition B. Let xJb where x ∈ S and x 6= b. So, there exist elements ui, vi ∈ S, (i = 1, 2) such
that

b = u1xv1, x = u2bv2.

So we have b = u1(u2bv2)v1 = u3bv3 where u3 = u1u2, v3 = v2v1. Because of the quasi-commutativity
of S, we can find positive integers rb such that u3b = brbu3 and therefore b = brby where y = u3v3.
Considering two different cases for rb, we have:

(1) If rb > 1 so b = brby = brb−1(by) and by quasi-commutativity of S we have b = brb−1yryb where
ry is some positive integer.

(2) If rb = 1 then u3b = bu3 and so the nowhere commutativity of the semigroup gives u3 = b.

Therefore by the quasi-commutativity of S we have:

b = u3bv3 = b · (vrv3
3 b) = b · v4 · b, (v4 = v

rv3
3 ),

where rv3 is a positive integer. This means that b is a regular element of S. For the converse, we consider
Lemma 2.1.

Proof of Proposition C. By using Proposition A, we get that

ΓL(S) ∼= ΓR(S) ∼= ΓJ(S) ∼= ΓD(S) ∼= ΓH(S).

So, identifying the Green graph of S one needs only to consider the L-classes of S. If there are n non-
regular elements b1,b2, · · · ,bn ∈ S then by a consequence of Proposition B, we get:

nK1 =

n⋃
1

ΓL([bi]).

By considering the set of all L-classes of S as {L1,L2, · · · ,Lm}, where each class contains at least two
elements, we construct the sub-graph Km of ΓL(S). Consequently,

ΓL(S) ∼= nK1 ∪Km.

Since S is non-regular, ΓL(S) is not a complete graph.

Conclusion 2.2. Using a similar proof, we may extend Proposition A for quasi-hamiltonian semigroups.
By definition, the semigroup S is quasi-hamiltonian if and only if for every elements a,b ∈ S there are
positive integers ra, rb such that ab = brbara .
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