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Abstract

The problem of MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet is investigated analytically.
Governing equations are reduced to a set of nonlinear ordinary differential equations using the similarity transformations, and
solved via an efficient and suitable mathematical technique, named the differential transform method (DTM), in the form of
convergent series, by applying Padé approximation. The results are compared with the results obtained by the shooting method
of MATHEMATICA and with the fourth-order Runge-Kutta-Fehlberg results. The results of DTM-Padé are closer to numerical
solutions than the results of DTM are. A comparison of our results with existing published results shows good agreement
between them. Suitability end effectiveness of our method are illustrated graphically for various parameters. Moreover, it is
also observed that the Casson fluid parameter, stretching parameter, Hartmann number and porosity parameter increase with
increment in the velocity profiles. c©2017 All rights reserved.
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1. Introduction

In recent years non-Newtonian fluids have received more attention and signification than Newtonian
fluids because of its various industrial, technological and natural applications. The flow of viscoelastic
fluids was first presented by Casson in 1995. This model is cast off by fuel engineers in the description of
adhesive slurry and is improved for forecasting high shear-rate viscosities when only low and transitional
shear-rate data are accessible. The consideration of non-Newtonian fluid, in addition to classical Cauchy
stress, has led to recent development of several theories [17, 20, 30]. This model is cast off by fuel engineers
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in the description of adhesive slurry and is improved for forecasting high shear-rate viscosities when
only low and transitional shear-rate data are accessible [28]. Boundary layer flow over stretching plate
was first presented by Crane [14]. Ece has studied the initial boundary layer flow past an impulsively
started translating and spinning body of revolution [15]. Nazar et al. studied numerically, by Keller-
box method, the steady two-dimensional stagnation point flow of an incompressible micropolar fluid
over a stretching sheet, when the sheet is stretched in its own plane [29]. Rashidi et al. investigated
entropy generation in steady MHD flow, due to a rotating porous disk in a nanofluid [33]. Bhatti and
Rashidi studied numerically MHD nanofluid towards a stagnation point flow, over a stretching surface
[11]. Recently many authors discussed entropy generation of nanofluid (see [1, 4, 9, 10]). Keimanesh
et al. used the multi-step differential transform method to analyze the third grade non-Newtonian fluid
flow between two parallel plates [25]. The effect of heat and mass transfer on peristaltic flow of particle
fluid suspension with slip effects are examined in [12]. Also, nanofluid was investigated numerically for
thermal radiation on MHD Carreau nanofluid towards a shrinking sheet and MHD stagnation-point flow
over a permeable stretching/shrinking sheet in porous media with heat transfer [7, 8]. Makanda studied
an effect of radiation on MHD free convection of a Casson fluid from a horizontal circular cylinder with
partial slip in non-Darcy porous medium with viscous dissipation using BQLM numerical method [27].
Few recent studies related to non-Newtonian fluid are cited in [18, 19, 24, 26, 37].

Most non-Newtonian fluids, Casson fluid and nanofluid are modeled by nonlinear differential equa-
tions. One of the famous and effective methods for solving nonlinear problems is the DTM, first proposed
by Zhou [38], who solved some linear and nonlinear electrical-circuit problems. Chen and Ho developed
this method for partial differential equations [13]. Ayaz applied it to a system of differential equations [3].
DTM has been applied to many problems such as linear partial differential equations of fractional order
[31], nonlinear oscillatory systems [16], multi-order fractional differential equations [23], hyper-chaotic
Rossler system [2], the fourth-order boundary value problems [22], and magnetohydrodynamics laminar
viscous flow [32]. DTM constructs, for differential equations, an analytical solution in the form of power
series. Furthermore, power series are not useful for large values of η, say η → ∞. This can be attributed
to the possibility that the radius of convergence may not be sufficiently large to contain the boundaries of
the domain. Therefore, the combination of the series solution through the DTM or any other series solu-
tion method with the Padé approximation [5, 6] provides an effective tool for handling boundary-value
problems on infinite or semi-infinite domains. DTM-Padé is a combination of DTM and Padé approxi-
mation. In recent years, the DTM-Padé has been successfully employed to solve many types of nonlinear
problems such as MHD flow in a laminar liquid film [36], nano boundary-layers over stretching surfaces
[34], heat transfer in a second-grade fluid through a porous medium [35] and off-centered stagnation flow
toward a rotating disc [21].
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Figure 1: Nanofluid stretching sheet flow physical regime.
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Nomenclature

x,y, and z direction of axes
u, v, and w velocities along x-,y-, and z- axes
Uw and Vw stretching velocities
v kinematic viscosity
β Casson fluid parameter
B0 nanoparticle volume fraction
K porous medium permeability

Rex local Reynolds number
τwx and τwy wall shear stresses
f ′(η) and g ′(η) velocity profiles
λ porosity parameter
M Hartmann number
c stretching parameter
a,b constants

The main purpose of the current study is to deliberate the three-dimensional examination for the
Casson fluid model over the stretching sheet. We reduce the system of nonlinear partial differential equa-
tions to coupled nonlinear ordinary differential equations by diminishing. The Casson fluid parameter
b, porosity parameter k, and Hartmann number M are non-dimensionalized corporeal constraints. After
transformation, nonlinear coupled equations are treated analytically to get series solutions using DTM
and DTM-Padé, and a comparison with the available numerical methods in literature is presented. Also,
each of the parameters is studied graphically.

2. Mathematical model

Consider a three-dimensional (3D) incompressible flow past a stretching sheet. It is assumed that the
sheet stretches along the xy-plane, while the fluid is placed along the z-axis. Moreover, it is assumed
that constant magnetic field applies normally to the fluid flow, and that the induced magnetic field is
negligible. Here, we assume that the sheet stretches with the linear velocities u = ax and v = by along the
x and y axes, respectively (see Fig. 1). The boundary layer equations of three-dimensional incompressible
Casson fluid are [28]
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where u, v, andw denote the velocities in the x-, y-, and z-directions, respectively, β is the Casson fluid pa-
rameter, ν is kinematic viscosity, B0 is the magnetic induction, and K is the porous medium permeability.
The associated boundary conditions of (2.1) and (2.2) are

u = Uw(x) = ax, v = Vw(x) = bx, at z = 0,
u→ 0, v→ 0, at z→∞.

(2.3)

In the above expressions, a and b are positive constants, and Uw and Vw are stretching velocities in x-
and y-directions, respectively. Introducing the following similarity transformations

u = axf ′(η), v = bxg ′(η),

w = −(av)1/2 (f(η) + cg(η)) ,

η = (a/v)1/2z,

(2.4)

where c = b/a is the ratio of the velocities in y- and x-directions, and prime denotes differentiation with
respect to η. Making use of (2.4), the equation of continuity is identically satisfied, and (2.1) and (2.2)
along with (2.3) take the following form(

1 +
1
β

)
f ′′′ − (f ′)2 + (f+ g)f ′′ − (M2 + λ)f ′ = 0, (2.5)
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1 +

1
β

)
g ′′′ − (g ′)2 + (f+ g)g ′′ − (M2 + λ)g ′ = 0, (2.6)

f(η) = 0, f ′(η) = 1, g(η) = 0 g ′(η) = c, at η = 0, (2.7)
f ′(η) = 0, g ′(η) = 0, at η→∞. (2.8)

In these expressions, M2 =
σB2

0
ρa is the magnetic parameter, and λ = α

aK is the porosity parameter.
Expressions for the skin friction coefficient Cf on the surface along the x- and y-directions, which are

denoted by Cfx and Cfy, respectively, are defined by

Cfx =
τwx

ρu2
w

, Cfy =
τwy

ρu2
w

, (2.9)

where τwx and τwy are the wall shear stresses along x and y-direction, respectively. Using the variables
(2.4), we obtain

Re
1/2
x Cfx =

(
1 +

1
β

)
f ′′′(0), Re

1/2
x Cfy =

(
1 +

1
β

)(
c
y

x

)
g ′′(0),

where Rex = ux(x)x/v is local Reynolds number based on the stretching velocity uw(x).

3. Analytical approximations by means of the DTM-Padé

Taking the one-dimensional differential transform, from Table 1 to each term of (2.5)-(2.6), the follow-
ing transforms are obtained

Table 1: The operations for the one-dimensional DTM.
Original function Transformed function
w(x) = u(x)± v(x) W(k) = U(k)± V(k)
w(x) = λu(x) W(k) = λU(k), λ is a constant
w(x) =

du(x)
dx W(k) = (k+ 1)U(k+ 1)

w(x) =
dru(x)
dxr W(k) = (k+ 1)(k+ 2) . . . (k+ r)U(k+ r)

w(x) = u(x)v(x) W(k) =
∑k
r=0U(r)v(k− r)

w(x) =
du(x)
dx

dv(x)
dx W(k) =

∑k
r=0(r+ 1)(k− r+ 1)U(r+ 1)V(k− r+ 1)

w(x) = u(x)
dv(x)
dx W(k) =

∑k
r=0(k− r+ 1)U(r)V(k− r+ 1)

w(x) = u(x)
d2u(x)
dx2 W(k) =

∑k
r=0(k− r+ 2)(k− r+ 1)U(r)V(k− r+ 2)

f ′′′ → (k+ 1)(k+ 2)(k+ 3)F(k+ 3), (3.1)

ff ′′ →
k∑
r=0

(k− r+ 1)(k− r+ 2)F(r)F(k− r+ 2),

f ′2 →
k∑
r=0

(r+ 1)F(r+ 1)(k− r+ 1)F(k− r+ 1),

g ′′′ → (k+ 1)(k+ 2)(k+ 3)G(k+ 3),

gg ′′ →
k∑
r=0

(k− r+ 1)(k− r+ 2)G(r)G(k− r+ 2),

g ′2 →
k∑
r=0

(r+ 1)G(r+ 1)(k− r+ 1)G(k− r+ 1),
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gf ′′ →
k∑
r=0

(k− r+ 1)(k− r+ 2)G(r)F(k− r+ 2),

fg ′′ →
k∑
r=0

(k− r+ 1)(k− r+ 2)F(r)G(k− r+ 2), (3.2)

where F(k) and G(k) are the transformed functions of f(k) and g(k), respectively and are given by

f(η) =

∞∑
k=0

F(k)ηk, (3.3)

g(η) =

∞∑
k=0

G(k)ηk. (3.4)

Substituting (3.1) and (3.2) into (2.5) and (2.6) and using boundary conditions of (2.7) and (2.8) we get(
1
β
+ 1

)
(k+ 3)(k+ 2)(k+ 1)F(k+ 3)

=

k∑
r=0

(r+ 1)F(r+ 1)(k− r+ 1)F(k− r+ 1)

−

k∑
r=0

F(r)(k− r+ 2)(k− r+ 1)F(k− r+ 2)

−

k∑
r=0

G(r)(k− r+ 2)(k− r+ 1)F(k− r+ 2) +
(
λ+M2

)
(k+ 1)F(k+ 1),

(3.5)

(
1
β
+ 1

)
(k+ 3)(k+ 2)(k+ 1)G(k+ 3)

=

k∑
r=0

(r+ 1)G(r+ 1)(k− r+ 1)G(k− r+ 1)

−

k∑
r=0

F(r)(k− r+ 2)(k− r+ 1)G(k− r+ 2)

−

k∑
r=0

G(r)(k− r+ 2)(k− r+ 1)G(k− r+ 2) +
(
λ+M2

)
(k+ 1)G(k+ 1),

(3.6)

F(0) = 0, F(1) = 1, F(2) = a, (3.7)
G(0) = 0, G(1) = 0.5, G(2) = b. (3.8)

Moreover, substituting (3.7) and (3.8) into (3.5) and (3.6), by a recursive method we can calculate the
values of F(k) and G(k).

Hence, substituting all F(k) and G(k) into (3.3) and (3.4), we get the series solutions

f(η) ∼= +η+ aη2 +

(
1 + λ+M2)
6
(

1 + 1
β

) η3 +

(
2a(λ+M2) + a

)
24

(
1 + 1

β

) η4 + · · · , (3.9)

g(η) ∼= 0.5η+ bη2 +

(
0.5

(
0.25 + λ+M2))
6
(

1 + 1
β

) η3 +

(
2b

(
λ+M2)− b)

24
(

1 + 1
β

) η4 + · · · . (3.10)

The best way to enlarge the convergence radius of the truncated series solution is the Padé approximation
where the polynomial approximant converts into a ratio of two polynomials. Without using the Padé ap-
proximation, the analytical solution obtained by the DTM, cannot satisfy boundary conditions at infinity.
It is therefore essential to combine the series solution, obtained by the DTM with the Padé approximation



M. A. Yousif, B. A. Mahmood, M. M. Rashidi, J. Math. Computer Sci., 17 (2017), 169–178 174

to provide an effective tool to handle boundary value problems in infinite domains. Hence applying the
Padé approximation to (3.9) and (3.10) and using asymptotic boundary conditions (2.7) and (2.8) at η = ∞,
we can obtain a and b.

For example, the values of a = −0.491568 and b = −0.223689, are obtained after applying DTM-Padé
when M = λ = c = 0.5 and β = 1.

4. Results and discussion

In the present section, we discuss the velocity profiles f ′(η) and g ′(η) for various physical parameters
such as the Casson fluid parameter β, Hartmann number M, porosity parameter λ, and stretching ratio c.
In order to verify the accuracy of the present method, we compare some of our results with the numerical
results obtained by the shooting Runge-Kutta technique in MATHEMATICA. Table 2, Fig. 2, and Fig. 3
display a comparison for non-dimensional velocity profiles f ′(η) and g ′(η) between the DTM, DTM-Padé,
and numerical solution results based on the shooting technique obtained by MATHEMATICA, and it
can be seen that there is an excellent agreement between DTM-Padé and numerical solution, but when
η > 2.9 DTM solution will be far from numerical solution. Fig. 4 and Fig. 5 show the effects of non-
Newtonian parameter β on the velocity profiles f ′(η) and g ′(η). It can be seen that when we increase the
non-Newtonian parameter β indefinitely, the present phenomena obviously reduce to Newtonian fluid.
Also, it is clear that increasing of non-Newtonian parameter β produces resistance in the fluid flow. From
Table 3 it can be seen that an excellent correlation has been achieved in the recent work of Nadeem et al.
[28] for −(1 + 1

β)f
′′(0) and −(1 + 1

β)g
′′(0), when M = 0, c = 0.5, and β = 1. From Fig. 6 and Fig. 7, it is

clear that the velocities in both directions decrease when increasing the values of the porosity parameter
λ, within the boundary layer. Also for higher values of λ, the thickness boundary layer decreases. From
Fig. 8 and Fig. 9 it is clear that both boundary layer thickness and the magnitude of the velocity reduce
when the values of M increase. Fig. 10 and Fig. 11 show that the velocity f ′(η) reduce at increasing the
values of the stretching parameter c, while g ′(η) varies with respect to various values of the stretching
parameter c.

Table 2: Comparison between the results of DTM-Padé [15,15] and the numerical shooting method obtained by MATHEMATICA,
when λ =M = c = 0.5, and β = 1.

f ′(η) g ′(η)
η DTM-Padé[15,15] Numerical DTM-Padé[15,15] Numerical
0.0 1.000000 1.000000 0.500000 0.500000
0.5 0.605502 0.605502 0.313537 0.313537
1.0 0.360965 0.360965 0.190919 0.190917
1.5 0.213035 0.213035 0.114108 0.114106
2.0 0.124921 0.124921 0.067412 0.067409
2.5 0.072927 0.072927 0.039527 0.039523
3.0 0.042410 0.042409 0.023047 0.023042
3.5 0.024544 0.024543 0.013360 0.013354
4.0 0.014088 0.014088 0.007679 0.007671

Table 3: Comparison between the results of DTM-Padé[15,15] and the numerical solution obtained by the fourth-order Runge-
Kutta-Fehlberg (see [28]) for the skin friction coefficients, when M = 0, c = 0.5, and β = 1.

Numerical present work Numerical present work
λ −(1 + 1

β )f
′′(0) −(1 + 1

β )f
′′(0) −(1 + 1

β )g
′′(0) −(1 + 1

β )g
′′(0)

0 1.5459 1.5472 0.6579 0.6589
0.5 1.8361 1.83633 0.8228 0.8230
1 2.0884 2.0885 0.9614 0.9614



M. A. Yousif, B. A. Mahmood, M. M. Rashidi, J. Math. Computer Sci., 17 (2017), 169–178 175

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

f’
(η

)

 

 

DTM

DTM−Padé[15,15]

Numerical

Figure 2: Velocity f ′(η) obtained by the DTM and the DTM-
Padé[15,15] and comparison with the numerical solution,
when λ =M = c = 0.5, and β = 1.
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Figure 3: Velocity g ′(η) obtained by the DTM and the DTM-
Padé[15,15] and comparison with the numerical solution,
when λ =M = c = 0.5, and β = 1.
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Figure 4: Effect of Casson fluid parameter (β) on velocity
f ′(η), when λ =M = c = 0.5.
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Figure 5: Effect of Casson fluid parameter (β) on velocity
g ′(η), when λ =M = c = 0.5.
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Figure 6: Effect of porosity parameter (λ) on velocity f ′(η),
when M = c = 0.5 and β = 1.
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Figure 7: Effect of porosity parameter (λ) on velocity g ′(η),
when M = c = 0.5 and β = 1.
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Figure 8: Effect of Hartmann number (M) on velocity f ′(η),
when λ = c = 0.5 and β = 1.
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Figure 9: Effect of Hartmann number (M) on velocity g ′(η),
when λ = c = 0.5 and β = 1.
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Figure 10: Effect of stretching parameter (c) on velocity f ′(η),
when λ =M = 0.5 and β = 1.
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Figure 11: Effect of stretching parameter (c) on velocity g ′(η),
when λ =M = 0.5 and β = 1.

5. Conclusion

We solved analytically MHD boundary layer three-dimensional flow for Casson fluid model over a
stretching sheet by a new and effective method called DTM-Padé. It was found that DTM-Padé is a
powerful method for solving problems consisting of systems of nonlinear differential equations. The
method was applied directly without requiring linearization, discretization, or perturbation. The main
results are:

• The DTM-Padé results have very good agreement with the shooting method results obtained by
MATHEMATICA and the fourth-order Runge-Kutta-Fehlberg results.

• Various values of parameters β, λ, M, and c affect the velocities f ′(η) and g ′(η).

• Without using the Padé approximation, the analytical solution obtained by the DTM can not satisfy
boundary conditions at infinity.

• The results of DTM-Padé are closer to numerical solutions then the results of DTM are.
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