

A Best Proximity Point Theorem in Metric Spaces with Generalized Distance

Mehdi Omidvari¹, S. Mansour Vaezpour²

¹ Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran, ² Department of Mathematics and Computer Science, Amirkabir University of Technology, Hafez Ave., P. O. Box 15914, Tehran, Iran, ¹ mehdi.omidvari@gmail.com, ² vaez@aut.ac.ir

Abstract

In this paper at first, we define the weak P-property with respect to a τ -distance such as p. Then we state a best proximity point theorem in a complete metric space with generalized distance such that it is an extension of previous research.

Keywords: weak P-property, best proximity point, τ -distance, weakly contractive mapping, altering distance functions.

1. Introduction

The best proximity point is a interesting topic in best proximity theory. Let A, B be two non-empty subsets of a metric space (X, d) and $T: A \rightarrow B$. A solution x, for the equation d(x, T x) = d(A, B) is called a best proximity point of T. If d(x, T x) = 0 then x is called a fixed point of T [15]. The existence and convergence of best proximity points has generalized by several authors such as Jleli and Samet [3], Prolla [4], Reich [5], Sadiq Basha [7,8], Sehgal and Singh [10,11], Vertivel, Veermani and Bhattacharyya[13] in many directions. On the other hand Suzuki [12] introduced the concept of τ distance on a metric space. Many fixed point theorems extended for various contractive mappings with respect to a τ -distance. In this paper, by using the concept of τ -distance, we prove a best proximity point theorem. Our results are extension of a best proximity point theorem in metric spaces.

2. Preliminary

Let A, B be two non-empty subsets of a metric space (X, d). The following notations will be used throughout this paper:

 $\begin{aligned} d(y,A) &\coloneqq \inf\{d(x,y): x \in A\},\\ d(A,B) &\coloneqq \inf\{d(x,y): x \in A, y \in B\},\\ A_0 &\coloneqq \{x \in A: d(x,y) = d(A,B) \text{ for some } y \in B\}, \end{aligned}$

² Corresponding author

 $B_0 := \{x \in B : d(x, y) = d(A, B) \text{ for some } x \in A\}.$

We recall that $x \in A$ is a best proximity point of the mapping $T: A \to B$ if d(x, Tx) = d(A, B). It can be observed that a best proximity reduces to a fixed point if the underlying mapping is a self-mapping.

Definition 2.1.[9] Let (A, B) be a pair of non-empty subsets of a metric space X with $A \neq \emptyset$. Then the pair (A, B) is said to have the P-property if and only if

$$\frac{d(x_1, y_1) = d(A, B)}{d(x_2, y_2) = d(A, B)} \Rightarrow d(x_1, x_2) = d(y_1, y_2)$$

where $x_1, x_2 \in A_0$ and $y_1, y_2 \in B_0$.

It is clear that, for any nonempty subset A of X, the pair (A, A) has the P-property.

Rhoades [6] introduced a class of contractive mappings called weakly contractive mapping. Harjani and Sadarangani [1] generalized the concept of the weakly contractive mappings in partially ordered metric spaces.

Definition 2.2.[2] A function $\psi: [0, \infty) \to [0, \infty)$ is said to be an altering distance function if it satisfies the following conditions:

- (i) ψ is continuous and non-decreasing.
- (ii) $\psi(t) = 0$ if and only if t = 0.

Definition 2.3.[6] Let (X, d) be a metric space. $T: X \to X$ is weakly contractive if $d(Tx, Ty) \le d(x, y) - \phi(d(x, y)), \quad \forall x, y \in X$

Where ϕ is a altering distance function.

Suzuki [12] introduced the concept of τ -distance on a metric space.

Definition 2.4.[12] Let X be a metric space with metric d. A function $p : X \times X \to [0, \infty)$ is called τ -distance on X if there exist a function $\eta: X \times [0, \infty) \to [0, \infty)$ such that the following are satisfied:

 $(\tau 1) \ p(x,z) \leq p(x,y) + p(y,z) \quad \forall x,y,z \in X;$

- (τ 2) $\eta(x, 0) = 0$ and $\eta(x, t) \ge t$ for all $x \in X$ and $t \in [0, \infty)$, and η is concave and continuous in it's second variable.
- (τ 3) $\lim_n x_n = x$ and $\lim_n \sup\{\eta(z_n, p(z_n, x_m)): m \ge n\} = 0$ imply $p(w, x) \le \liminf_n p(w, x_n)$ for all $w \in X$;
- (τ 4) $\lim_{n} \sup\{p(x_n, y_m): m \ge n\} = 0$ and $\lim_{n} \eta(x_n, t_n) = 0$ imply $\lim_{n} \eta(y_n, t_n) = 0$;
- (τ 5) $\lim_{n} \eta(z_n, p(z_n, x_n)) = 0$ and $\lim_{n} \eta(z_n, p(z_n, y_n)) = 0$ imply $\lim_{n} d(x_n, y_n) = 0$.

Remark 2.5.[12] It can be replaced $(\tau 2)$ by the following $(\tau 2)'$. $(\tau 2)'$ inf{ $\eta(x, t): t > 0$ } = 0 for all $x \in X$ and η is non-decreasing in it's second variable.

Remark 2.6. If (X, d) is a metric space, then the metric d is a τ -distance on X.

In the following examples, we define $\eta: X \times [0, \infty) \to [0, \infty)$ by $\eta(x, t) = t$, for all $x \in X$ and $t \in [0, \infty)$. It is easy to see that p is a τ -distance on metric space X.

Example 2.7. Let (X, d) be a metric space and *c* be a positive real number. Then $p: X \times X \to [0, \infty)$ by p(x, y) = c for $x, y \in X$ is a τ -distance on *X*.

Example 2.8. Let $(X, \|.\|)$ be a normed space. $p: X \times X \to [0, \infty)$ by $p(x, y) = \|x\| + \|y\|$ for $x, y \in X$ is a τ -distance on X.

Example 2.9. Let $(X, \|.\|)$ be a normed space. $p: X \times X \to [0, \infty)$ by $p(x, y) = \|y\|$ for $x, y \in X$ is a τ -distance on X.

Definition 2.10.[12] Let (X, d) be a metric space and p be a τ -distance on X. A sequence $\{x_n\}$ in X is a p-Cauchy if there exists a function $\eta: X \times [0, \infty) \to [0, \infty)$ satisfying $(\tau 2)$ - $(\tau 5)$ and a sequence $\{z_n\}$ in X such that $\lim_n \sup\{\eta(z_n, p(z_n, x_m)): m \ge n\} = 0$.

The following lemmas are essential for the next sections.

Lemma 2.11.[12] Let (X, d) be a metric space and p be a τ -distance on X. If $\{x_n\}$ is a p-Cauchy sequence, then it is a Cauchy sequence. Moreover if $\{y_n\}$ is a sequence satisfying $\lim_n \sup\{p(x_n, y_m): m \ge n\} = 0$, then $\{y_n\}$ is also p-Cauchy sequence and $\lim_n d(x_n, y_n) = 0$.

Lemma 2.12.[12] Let (X, d) be a metric space and p be a τ -distance on X. If $\{x_n\}$ in X satisfies $\lim_n p(z, x_n) = 0$ for some $z \in X$, then $\{x_n\}$ is a p-Cauchy sequence. Moreover if $\{y_n\}$ in X also satisfies $\lim_n p(z, y_n) = 0$, then $\lim_n d(x_n, y_n) = 0$. In particular, for $x, y, z \in X$, p(z, x) = 0 and p(z, y) = 0 imply x = y.

Lemma 2.13.[12] Let (X, d) be a metric space and p be a τ -distance on X. If $\{x_n\}$ in X satisfies $\lim_n \sup\{p(x_n, x_m): m \ge n\} = 0$, then $\{x_n\}$ is a p-Cauchy sequence. Moreover if $\{y_n\}$ in X satisfies $\lim_n p(x_n, y_n) = 0$, then $\{y_n\}$ is also p-Cauchy sequence and $\lim_n d(x_n, y_n) = 0$.

The next result is an immediate consequence of the Lemma 2.11 and Lemma 2.13.

Corollary 2.14. Let (X, d) be a metric space and p be a τ -distance on X. If a sequence $\{x_n\}$ in X satisfies $\lim_n \sup\{p(x_n, x_m): m \ge n\} = 0$, then $\{x_n\}$ is a Cauchy sequence.

3. Main results

Inspire of Sankar Raj[9] and Zhang and others[14], we define the weak *P*-property with respect to a τ -distance as follows:

Definition 3.1. Let (A, B) be a pair of non-empty subsets of a metric space (X, d) with $A_0 \neq \emptyset$. Also let p be a τ -distance on X. Then the pair (A, B) is said to have the weak P-property with respect to p if and only if

$$\begin{aligned} d(x_1, y_1) &= d(A, B) \\ d(x_2, y_2) &= d(A, B) \end{aligned} \} \Rightarrow p(x_1, x_2) \le p(y_1, y_2) \end{aligned}$$

where $x_1, x_2 \in A_0$ and $y_1, y_2 \in B_0$.

It is clear that, for any nonempty subset A of X, the pair (A, A) has the weak P-property with respect to p.

Remark 3.2. If p = d then (A, B) is said to have the weak *P*-property where $A \neq \emptyset$. (See [14]) It is easy to see that if (A, B) has the *P*-property then (A, B) has the weak *P*-property.

Example 3.3. Let $X = \mathbb{R}^2$ with the usual metric and p_1, p_2 be two τ -distances that defined in Example 2.8 and Example 2.9, respectively. Consider,

 $A = \{(a, b) \in \mathbb{R}^2 | a = 0, 2 \le b \le 3\},\$ $B = \{(a, b) \in \mathbb{R}^2 | a = 1, b \le 1\} \cup \{(a, b) \in \mathbb{R}^2 | a = 1, b \ge 4\}.$ Then (A, B) has the weak *P*-property with respect to p_1 and has not the weak *P*-property with respect to p_2 . By the definition of *A*, *B* we obtain,

 $d((0,2), (1,1)) = d((0,3), (1,4)) = d(A,B) = \sqrt{2}$ where (0,2), (0,3) $\in A_0$ and (1,1), (1,4) $\in B_0$. We have, $p_1((0,2), (0,3)) = 5$ and $p_1((1,1), (1,4)) = \sqrt{2} + \sqrt{17}$, $p_1((0,3), (0,2)) = 5$ and $p_1((1,4), (1,1)) = \sqrt{17} + \sqrt{2}$. Therefore (A, B) has the weak P-property with respect to p_1 . On the other hand, we have $p_2((0,3), (0,2)) = 2$ and $p_2((1,4), (1,1)) = \sqrt{2}$. This implies that (A, B) has not the weak *P*-property with respect to p_2 .

Sankar Raj[9] stated a best proximity point theorem for weakly contractive non-self mappings in metric spaces. The following Theorem is an extension of his results in a metric spaces with generalized distance.

Theorem 3.4. Let *A* and *B* be non-empty closed subsets of the metric space(*X*, *d*) such that $A_0 \neq \emptyset$. Let *p* be a τ -distance on *X* and $T: A \rightarrow B$ satisfies the following conditions:

(a) $T(A_0) \subseteq B_0$ and (A, B) has the has the weak *P*-property with respect to *p*.

(b) T is a continuous function on A such that

$$\psi(p(Tx,Ty)) \le \psi(p(x,y)) - \phi(p(x,y)), \ \forall x, y \in A$$

where ψ is an altering distance function and $\phi: [0, \infty) \to [0, \infty)$ is non-decreasing function also $\phi(t) = 0$ if and only if t = 0.

Then *T* has a best proximity point in *A*. Moreover, if $d(x, Tx) = d(x^*, Tx^*) = d(A, B)$ for some $x, x^* \in A$, then $p(x, x^*) = 0$.

Proof. Choose $x_0 \in A_0$. Since $Tx_0 \in T(A_0) \subseteq B_0$, there exists $x_1 \in A_0$ such that $d(x_1, Tx_0) = d(A, B)$. Again, $Tx_1 \in T(A_0) \subseteq B_0$, there exists $x_2 \in A_0$ such that $d(x_2, Tx_1) = d(A, B)$. Continuing this process, we can find a sequence $\{x_n\}$ in A_0 such that

$$d(x_{n+1}, Tx_n) = d(A, B), \quad \forall n \in \mathbb{N} \cup \{0\}.$$

$$\tag{1}$$

(A, B) satisfies the weak *P*-property with respect to *p*, therefore from (1) we obtain,

$$p(x_n, x_{n+1}) \le p(Tx_{n-1}, Tx_n), \quad \forall n \in \mathbb{N}.$$
(2)

We will prove that the sequence $\{x_n\}$ is convergent in A_0 . Since ψ is non-decreasing function we receive that

$$\psi(p(x_n, x_{n+1})) \le \psi(p(Tx_{n-1}, Tx_n)), \quad \forall n \in \mathbb{N}.$$
(3)

Also by the definition of T, we have

$$\psi(p(Tx_{n-1}, Tx_n) \le \psi(p(x_{n-1}, x_n)) - \phi(p(x_{n-1}, x_n)), \ \forall n \in \mathbb{N}.$$
(4)
From (3) and (4), we receive that

$$\psi(p(x_n, x_{n+1})) \le \psi(p(Tx_{n-1}, Tx_n)) - \phi(p(x_{n-1}, x_n)) \le \psi(p(x_{n-1}, x_n)) - \phi(p(x_{n-1}, x_n)) \le \psi(p(x_{n-1}, x_n)),$$

for all $n \in \mathbb{N}$. Since ψ is non-decreasing function, we have

 $p(x_n, x_{n+1}) \le p(x_{n-1}, x_n), \ \forall n \in \mathbb{N}.$

Therefore, the sequence $\{p(x_n, x_{n+1})\}$ is monotone non-increasing and bounded. Hence there exists $r \ge 0$ such that

$$\lim_{n \to \infty} p(x_n, x_{n+1}) = r \ge 0.$$

We claim that r = 0. Suppose to the contrary, that r > 0. From the inequality

$$\psi(p(x_n, x_{n+1})) \le \psi(p(x_{n-1}, x_n)) - \phi(p(x_{n-1}, x_n)) \le \psi(p(x_{n-1}, x_n)),$$

we obtain

$$\lim_{n\to\infty}\phi\bigl(p(x_{n-1},x_n)\bigr)=0.$$

Since
$$0 < r \le p(x_n, x_{n+1})$$
 and ϕ is non-decreasing function,

$$0 < \phi(r) \le \phi(p(x_n, x_{n+1})),$$

So,

$$0 < \phi(r) \le \lim_{n \to \infty} \phi(p(x_n, x_{n+1})),$$

which is a contradiction. Hence $\lim_{n\to\infty} p(x_n, x_{n+1}) = 0$. Similarly we receive that $\lim_{n\to\infty} p(x_{n+1}, x_n) = 0$.

Now we show that $\lim_{n\to\infty} p(x_n, x_m) = 0$ for m > n. In contrary case, there exists $\epsilon > 0$ and two subsequence $\{x_{m_k}\}, \{x_{n_k}\}$ such that m_k is smallest index for which $m_k > n_k > k$, $p(x_{n_k}, x_{m_k}) \ge \epsilon$. This means that

$$p(x_{n_k}, x_{m_k-1}) < \epsilon.$$
⁽⁵⁾

So, by the triangle inequality and (5), we have

$$\leq p(x_{n_k}, x_{m_k}) \leq p(x_{n_k}, x_{m_k-1}) + p(x_{m_k-1}, x_{m_k}) < \epsilon + p(x_{m_k-1}, x_{m_k}).$$

Letting $k \to \infty$, we receive that

$$\lim_{k \to \infty} p(x_{n_k}, x_{m_k}) = \epsilon.$$
(6)

By triangle inequality, we have

$$p(x_{n_k}, x_{m_k}) \le p(x_{n_k}, x_{n_{k-1}}) + p(x_{n_{k-1}}, x_{m_{k-1}}) + p(x_{m_{k-1}}, x_{m_k}),$$

$$p(x_{n_{k-1}}, x_{m_{k-1}}) \le p(x_{n_{k-1}}, x_{n_k}) + p(x_{n_k}, x_{m_k}) + p(x_{m_k}, x_{m_{k-1}}).$$

Letting $k \rightarrow \infty$ in above two inequality and using (6), we get

$$\lim_{k\to\infty} p(x_{n_k-1}, x_{m_k-1}) = \epsilon$$

So,

$$\begin{aligned} 0 < \psi(\epsilon) &\leq \psi\left(p(x_{n_k}, x_{m_k})\right) \\ &\leq \psi\left(p(Tx_{n_{k-1}}, Tx_{m_{k-1}})\right) \\ &\leq \psi\left(p(x_{n_{k-1}}, x_{m_{k-1}})\right) - \phi\left(p(x_{n_{k-1}}, x_{m_{k-1}})\right) \\ &\leq \psi\left(p(x_{n_{k-1}}, x_{m_{k-1}})\right). \end{aligned}$$

From continuity of ψ in the above inequality, we obtain that

$$\lim_{k \to \infty} \phi\left(p(\mathbf{x}_{n_k-1}, \mathbf{x}_{m_k-1})\right) = 0.$$
⁽⁷⁾

From $\lim_{k\to\infty} p(x_{n_k-1}, x_{m_k-1}) = \epsilon$, we can find $k_0 \in \mathbb{N}$ such that for any $k \ge k_0$,

$$\frac{c}{2} \le p(x_{n_k-1}, x_{m_k-1})$$

This implies that,

$$0 < \phi\left(\frac{\epsilon}{2}\right) \le \phi\left(p(x_{n_k-1}, x_{m_k-1})\right), \quad \forall k \ge k_0$$

and this contradicts to (7). Thus $\lim_{n\to\infty} p(x_n, x_m) = 0$ for m > n and this implies that,

$$\limsup\{p(x_n, x_m): m \ge n\} = 0.$$

Therefore by Corollary 2.14, $\{x_n\}$ is a Cauchy sequence in *A*. Since *X* is a complete metric space and *A* is a closed subset of *X*, there exists $x \in A$ such that $\lim_{n\to\infty} x_n = x$. *T* is continuous, therefore with letting $n \to \infty$ in (1), we obtain

d(x,Tx) = d(A,B).

Now let $x^* \in A$ such that

$$d(\mathbf{x}^*, \mathbf{T}\mathbf{x}^*) = \mathbf{d}(\mathbf{A}, \mathbf{B}).$$

We claim that $p(x, x^*) = 0$. Suppose to the contrary, that $p(x, x^*) > 0$. Hence $\phi(p(x, x^*)) > 0$ and therefore by the definition of T, ψ , we obtain that,

 $\psi(p(x, x^*)) \le \psi(p(Tx, Tx^*)) \le \psi(p(x, x^*)) - \phi(p(x, x^*)) \le \psi(p(x, x^*)),$ which is a contradiction. Hence $p(x, x^*) = 0$ and this completes the proof of the theorem.

The next result is an immediate consequence of the Theorem 3.4 by taking $\psi(t) = 0$ for all $t \ge 0$. **Corollary 3.5.** Let *A* and *B* be non-empty closed subsets of the metric space(*X*, *d*) such that $A_0 \ne \emptyset$. Let *p* be a τ -distance on *X* and $T: A \rightarrow B$ satisfies the following conditions:

(a) $T(A_0) \subseteq B_0$ and (A, B) has the has the weak *P*-property with respect to *p*.

(b) T is a continuous function on A such that

$$p(Tx,Ty) \le p(x,y) - \phi(p(x,y)), \ \forall x,y \in A$$

where $\phi: [0, \infty) \to [0, \infty)$ is non-decreasing function also $\phi(t) = 0$ if and only if t = 0. Then *T* has a best proximity point in *A*. Moreover, if $d(x, Tx) = d(x^*, Tx^*) = d(A, B)$ for some $x, x^* \in A$, then $p(x, x^*) = 0$.

The following result is the special case of the Corollary 3.5, obtained by setting p = d. **Corollary 3.6.**[9] Let (A, B) be a pair of two nonempty, closed subsets of a complete metric space X such that A_0 is non-empty. Let $T: A \to B$ be a weakly contractive mapping such that $T(A_0) \subseteq B_0$. Assume that the pair (A, B) has the P-property. Then there exists a unique x^* in A such that $d(x^*, Tx^*) = d(A, B)$.

References

- [1] J. Harjani, K. Sadarangani, *Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations*, Nonlinear Anal. 72,(2010) 1188-1197.
- [2] M.S. Khan, M. Swaleh, S.Sessa, *Fixed point theorems by altering distances between the points*, Bull. Austral. Math. Soc. 30 (1),(1984) 1-9.
- [3] M. Jleli and B. Samet, *Best proximity points for* $\alpha \psi$ *-proximal contractive type mappings and applications*, Bulletin des Sciences Mathematiques, 2013.
- [4] J.B. Prolla, *Fixed point theorems for set valued mappings and existence of best approximations*, Numer. Funct. Anal. Optim. 5 (1982-1983) 449-455.
- [5] S. Reich, Approximate selections, best approximations, fixed points and invariant sets, J. Math. Anal. Appl. 62 (1978) 104-113.
- [6] B.E. Rhoades, *Some theorems on weakly contractive maps*, Nonlinear Anal. TMA 47 (4) (2001) 2683-2693.
- [7] S. Sadiq Basha, *Best proximity point theorems generalizing the contraction principle*, Nonlinear Anal. 74 (2011) 5844-5850.
- [8] S. Sadiq Basha, *Best proximity point theorems*, Approximation Theory 163 (2011) 1772-1781.
- [9] V. Sankar Raj, A best proximity point theorem for weakly contractive non-self-mappings, Nonlinear Anal. 74 (2011) 4804-4808.
- [10] V.M. Sehgal, S.P. Singh, A generalization to multifunctions of Fan's best approximation theorem, Proc. Amer. Math. Soc. 102 (1988) 534-537.
- [11] V.M. Sehgal, S.P. Singh, A theorem on best approximations, Numer. Funct. Anal. Optim. 10 (1989) 181-184.
- [12] T. Suzuki, *Generalized distance and existence theorems in complete metric spaces*, J. Math. Anal. Appl. 253 (2001) 440-458.
- [13] V. Vetrivel, P. Veeramani, P. Bhattacharyya, *Some extensions of Fans best approximation theorem*, Numer. Funct. Anal. Optim. 13 (1992) 397-402.
- [14] J. Zhang, Y. Su, Q. Cheng, Q: A note on "A best proximity point theorem for Geraghtycontractions", Fixed Point Theory Appl. 2013, Article ID 99 (2013).

[15] M. Akram, W. Shamaila, *Fixed point results in partial metric spaces using generalized weak contractive conditions*, The Journal of Mathematics and Computer Science, 12 (2014) 85-98.