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Abstract
Shear velocity time series are essential in characterizing ocean turbulent flows. The moored platform is mounted with two

orthogonal shear probes (PNS06) to measure shear data for calculating velocity spectra. However, the shear probes are inevitably
contaminated by instrument noise and the complex marine environments. In this paper, a method based on singular spectra
decomposition was proposed to attenuate vibration noise by neglecting the higher-order modes in time-series reconstruction.
First, this method constructed a Hankel matrix with shear velocity data, then decomposed and reconstructed the shear signals
based on the method of conducting inverse singular value decomposition transformation on the values and their corresponding
vectors to achieve the purpose of signal de-noising. The corrected spectra match well with the empirical Nasmyth spectrum and
dissipation rates calculated from the noise-reduced shear spectra have dropped nearly one order of magnitude. The experimental
results show that the proposed method provides an effective and straightforward approach for eliminating the noise signals in
shear velocity spectra in ocean dynamics. c©2017 all rights reserved.
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1. Introduction

Ocean turbulence is one of the most challenging fields in physical oceanography. The analysis of
ocean turbulence will make contributions to improve our understanding of marine environments and
strengthen the forecasting system of marine climate and disaster. Thus, it is important for us to study
ocean turbulence mixing processes [4]. The shear velocity spectra measured by shear probes and the
rate of turbulent kinetic energy (TKE) dissipation ε(Wkg−1) are two important parameters to describe the
ocean turbulent mixing theory. Generally, the micro-structure turbulence is measured by two orthogonal
airfoil shear probes and a fast-response thermistor. However, shear probes usually work in tough marine
environments, such as ship-induced movements, the vibrations of profiler and other complex interference
factors, the measured turbulence signals contain a large amount of noisy energy which will affect the
quality of the measured shear data. Therefore, it is particularly important to effectively eliminate the noise
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signals and obtain uncontaminated turbulence data before correctly analyzing the statistical characteristics
of ocean micro-structure turbulence.

Generally, much attention has been paid to separate useful signals from mixed and noised time se-
ries during the past decades. Traditional de-noising algorithms, such as the Fourier transform spectral
analysis[19], the low-pass Gaussian filter [5], the Wiener filter [11], and the wavelet transform analysis
[1, 17] are proposed to minimize the noise signals. These mentioned traditional de-noising methods
usually convert the signal from time domain to frequency domain based on fast Fourier transform. For
example, a conventional Gaussian low-pass filter can only remove the noise above the cut-off frequency
of the filter, and hence the spectra below the cut-off frequency still have lots of noisy signals. However,
the noisy energy is distributed in a wide frequency band, not only in a high frequency, the residual noise
data still has considerable energy when the shear velocity signals are transformed into the wavenumber
domain, thus it cannot be effectively removed by traditional methods. Piera et al. [13] proposed a new
time-frequency analysis method based on wavelet transform to identify turbulent patches and reduce the
noise. This approach is highly advantageous over either Fourier transform or the classic low-pass filter-
ing, especially when the time series are intermittent in nature. However, the wavelet-based methods are
not adapted to be used when the time series are nonlinear or unevenly spaced. These time-variant meth-
ods have their limitations to nonlinear and non-stationary time series. An advanced singular spectrum
analysis (SSA) method is essentially a principal components analysis in the time domain that extracts
information from noisy signals without heavily relying on prior knowledge. Multiscale analysis methods,
the proper orthogonal decomposition (POD) [2], singular value decomposition (SVD) [6], and principle
component analysis (PCA, or empirical orthogonal functions) [8], are names of the SSA implementations
in other disciplines. In this research, we apply an advanced SSA method to decompose the turbulent
flow field data for reducing the noise and improving the accuracy of observed turbulence data. Low
frequency components can identify the dominant features and represent global characteristics, and the
high frequency components retain the local features. Thereby, the noise data is reduced by removing the
energy spectrum in higher-order singular values.

The outline of this paper is as follows. In Section 2, we describe the basic configuration of the measur-
ing platform for turbulence measurements. Section 3 introduces the advanced noise correction method
based on singular values decomposition. Subsequently, the trial sea data is used to validate the feasibility
and efficiency of the algorithm by analyzing the shear velocity spectra and calculating the dissipation
rates. The conclusions remarks are finally presented in Section 5.

2. Experiments and database collection

A moored micro-structure turbulence measuring instrument (MTMI) has been continuously deployed
in the South China Sea (SCS) at 21◦09.90 ′N, 117◦42.03 ′E from October 19, 2013 to February 10, 2014. The
whole mooring system [10] can be divided into four parts (Figure 1). In part I, groups of glass floats
can be used as the upper buoyancy element, providing buoyancy to integrate the system at the desired
depth in a mooring line. The CTD system mainly records the conductivity, water depth and real-time
water temperature. The MTMI instrument is equipped with two orthogonal shear probes (PNS06) for
measuring micro-structure turbulent velocity spectra (∂w/∂x and ∂v/∂x), an attitude sensor to measure
motion behavior of platform (heading, pitch, and roll) and three-axis accelerations (Ax,Ay,Az). Part
II contains the Aanderaa Current Meter (RCM11) which mainly records the water flow state such as
averaged current speed, the absolute current speed, and the flow direction, etc. The part III and part IV
are acoustic release and anchor block, respectively, the former is utilized to recover the instrument and
the latter provides gravity for the whole system to make the instrument keeping a vertical state. The
platform is located at approximately 250-m depth and several groups of glass floats are used to provide
buoyancy and keep the submerged buoy straight together with the anchor at the bottom.

In this experiment, the MTMI instrument has continuously collected turbulence data for up to 115
days from October 19, 2013 to February 10, 2014. Exclude some incomplete and sporadic data in 18
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days, there are totally 97 days which has the complete data samples. Such long time-series turbulence
dataset are of interest and valuable for oceanographic researchers to explore the characteristics of ocean
turbulence.

Figure 1: The sketch of the moored platform.

3. Methodology

The singular value decomposition (SVD) method is a mathematical method which has been widely
used in many fields, such as meteorology, physics, economics, financial mathematics, and life sciences. It
especially provides a special insight into dynamics of the underlying system. Singular spectrum analysis
(SSA) is the most remarkable approach to obtain signals to noise separation by decomposing time series
into small independent components. The detailed steps of this decomposition algorithm are described as
follows [15].
(1) First,we assume that a given random signal sequence X = {xk,k = 1, 2, ...N} is represented as,

Xk = Sk +Wk, k = 1, 2, · · · ,N,

where Sk is the true signals, Wk is the noisy signals, and N is the length of time series.
(2) Second, calculate the autocorrelation function RXX and determine the window length M, then construct
the covariance matrix CX with RXX,

RXX(τ) =

N−M+1∑
i=1

(Xi+τ − X̄)(Xi − X̄)(τ = 0, 1, ...,M− 1),

where X̄ is the mean of time series and the symbol τ refers to the time lag. The Toeplitz matrix CX can be
calculated directly by using CX = Toeplitz(RXX) in Matlab, where

CX =
1

N− |i− j|

N−|i−j|∑
i=1

(XiXi+|i−j|).
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The window length is a key to extract noise from the mixed signal. If the parameter M is not properly
selected, the source signals could not be extracted from the mixed signal. Thus, we use the method
proposed by Wang et al. [18] to select the window length. In general, the window length M is determined
by the maximum value of time lag of autocorrelation and the dimension of Toeplitz matrix.
(3) Perform SVD on the Toeplitz matrix CX to get the eigenvalues and extract the eigenvalues from the
diagonal matrix Σ,

CXV
k = ΣVk,

where CX ∈ RM×M, V ∈ RN×N are orthogonal matrices, and Σ is a diagonal matrix with size of M×N,
which is called singular values of matrix CX. The extracted eigenvalues where σ = diag(σ1,σ2, · · · ,σr)
are non-negative and arranged in a descending order (σ1 > σ2 > · · · > σM > 0). The corresponding
eigenvectors of this matrix are called the empirical orthogonal functions (EOFs) matrix in the meteorolog-
ical literature. The contribution rate ∆λ is used to estimate the energy contribution of every eigenvalues
and find number of principal components. That is,

∆λ = σk/

M∑
i=1

σi(k = 1, 2, · · · ,M).

To determine the numbers of components of SVD, we set a threshold to select the principal components
to reconstruct the original signal. When the cumulative contribution rate Sλ =

∑p
i=1∆λi(p < M) value

exceeds to the threshold, the value of p is the numbers of components we want to find. In this paper, the
threshold is equal to 0.9, which is enough to select the different contributions for all eigenvalues.
(4) Transform the time series into a Hankel (trajectory) matrix HM×N, and divide the matrix into two
subsets, principal components subset (S) and noise subset (W),

HM×N =


x1 x2 · · · xN
x2 x3 · · · xN+1
...

...
...

xM xM+1 · · · xM+N−1

 = S+W,

where S and W are the trajectory matrices in reconstruction phase space corresponding to the true and
noisy signal respectively.
(5) Project H onto the rearranged matrices of eigenvalues V , where W = HV and yield the corresponding
principal components (PCs) Pk:

Pk(t) =

p∑
j=1

x(t+ j− 1)V(j)k.

(6) Finally, apply the inverse Hankelization process by anti-diagonal averaging and reconstruct the origi-
nal series X with the selected principal components.

In short, a trajectory matrix is constructed according to the given time series embedded into the
delay coordinate phase space, and principal signals are extracted from the original mixed time series by
decomposing and reconstructing this matrix, then extract global features and analyze characteristics of
the signals, such as the long-term trend signal, the periodic signal, and noisy signal. This algorithm is
suitable for analyzing and separating partial information from mixed signals.

4. Results

4.1. Shear velocity series
Shear velocity spectra measured by shear probes is one of the most important parameters to study

characteristic of ocean turbulence. The sampling frequency of the shear probes is set to 1024Hz. As the
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probes move horizontally through the water at flow speed U, the vertical component of the cross-stream
velocity generates a lift force on the probe that causes the piezo-ceramic beam to bend microscopically,
the shear force Fp is sensed by the shear probe and the piezoelectric ceramics makes the force into charge
signal Ep [9]. Then, Ep is converted into digital signals by an analog-digital converter (A/D) after 11
times amplification by preamplifier and then filtered by a low-pass filter (130Hz). The digital signal (Ep)
is transported to the pre-amplifier by lead wires and is converted into space sequence to obtain vertical
shear velocity (∂w/∂x ) by applying Taylor’s frozen field hypothesis theorem (∂/∂x = U−1∂/∂t) [14].

Ep = 2
√

2SUw,

Es =
∂Ep

∂t
= 2
√

2SU2∂w

∂x
,

where S is the sensitivity of shear probes, U is the horizontal axial velocity of probe, w is the cross-stream
velocity, Ep is the output voltage of shear probes, Es is the output of an analog differentiator, and the
numeric factor 2

√
2 is an artifact calibration method based on the laboratory results.

Time series of turbulence recorded by two orthogonal probes are presented in Figure 2. The data are
sampled in 180s and the velocity U is 0.25 ms−1. The voltages are changed into shear signals using the
Taylor frozen theorem. The two calculated shear velocity spectra (∂w/∂x and ∂v/∂x) present intermittent
nature and intermittent nature in component of ∂v/∂x is relatively less energetic (Figure 2). Shear probe
signal from probe #2 (∂v/∂x)) is very identical with the shear data recorded by probe #1 (∂w/∂x), indi-
cating strong consistency for measuring isotropic turbulence. The unprocessed shear signals contain the
contamination from platform motions which obscures the environmental signal in temporal space, thus
shear data are sharply low-pass filtered at 130 Hz to remove high frequency signals.

Figure 2: Shear variance signals measured by two orthogonal shear probes. The ∂w/∂x is sensed by probe #1 and ∂v/∂x is
measured by probe #2. Shear signals are low-pass filtered at 130Hz to remove the contamination signals at high frequency.

4.2. Singular spectrum
The advanced singular spectrum analysis method (SSA) is applied to attenuate and identify the vibra-

tion noise and improve the quality of the measured turbulence shear data. The turbulence shear signals
are embedded into a time series, and then this method constructs a Hankel matrix of shear data and
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decomposes this matrix into M dimension, where M is the window length. Finally a low-order recon-
struction is implemented. The relevant results of detailed implementation are present here for w shear
velocity component.

The decomposed eigenvalues are given in decreasing order (Figure 3, left panel). There is a distinct
grouping of the first two eigenvalues where their cumulative contribution rates distribution are larger
than 0.8 (Figure 3, right panel), and the accumulation of the other three eigenvalues is less than 0.15. It
is apparent that the first five eigenvalues are a distinct grouping which followed by a steep slope and
the residual eigenvalues form a mildly sloping and flattening out ’tail’ of the singular value spectrum.
The cumulative contribution rates of the first five eigenvalues are up to 0.95 which indicates that the
five singular values will contain most of energy and represent the global characteristics. Therefore, we
will reconstruct shear velocity spectra by using lower order singular values. A similar behavior is also
observed for the v component of shear velocity (not shown here).

Figure 3: Singular values spectrum of the shear variance (∂w/∂x) time series where the embedding dimension M is 97 and the
shear component ∂w/∂x is similar with ∂v/∂x (not shown). The eigenvalues are plotted, as usual, in decreasing order. The
symbol ∆λ is the proportion distribution for all eigenvalues.

According to the eigenvalues calculated by applying the proposed algorithm to the Toeplitz matrix,
the first five empirical orthogonal functions (EOFs) corresponding to the first five singular eigenvalues
are shown in Figure 4. The first two leading pairs of EOFs (EOFs1 and EOF2) are in quadrature which
corresponds to the first two eigenvalues that are approximately equal and whose error bars are overlapped
(Figure 4 (a)). The other three EOFs are almost periodic and orthogonal thus it corresponds to the
oscillation behavior of the signals (Figure 4 (b)). The EOFs analysis of the data suggested that the flows
exhibited a high vertical mode structure, creating strong vertical shear that could easily trigger turbulence.
The small scale shear will improve our understanding of the ocean evolution processes of multi-scale
turbulence.

The SSA technique provides a multi-scale analysis for turbulence signals with several functions which
is reasonable, because there are not many possible structures at scales that approach the sampling
timescale. This method also provides the simultaneous analysis by many different wavelet analysis func-
tions at large scales turbulence which reflects the large complexity of the structures. SSA can thus provide
sharper regime transitions in the evolution of a nonlinear system than traditional method of wavelet anal-
ysis which uses a fixed set of basic functions.
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Figure 4: First five empirical orthogonal functions (EOFs) analysis on the turbulent velocity shear time series after SVD decom-
position. (a) The first leading two EOFs are grouped into one pair (EOF1 black line and EOF2 gray line). (b) The other three
EOFs (EOF3 black line and EOF4 gray line and EOF5 red line) are periodic and orthogonal.

4.3. Corrected shear spectra
In the constructed process, we perform a low-order reconstruction by using the first five components,

and the higher order components may be associated with noise, thus we filter and correct shear spectra
by neglecting the higher-order components which captured noise energy. The first five leading principal
components (PCs) corresponding to the EOFs are also in quadrature and periodic, and they strongly
suggest periodic variability at different periods. The partial reconstruction of long-term time series is
done by summing the variability of first five PCs associated with the leading pairs of singular values. The
reconstructed data contains 43% of the total variance which is not including the large vibrations energy.

As is shown in Figure 5, the decontaminated time series also preserve the intermittent and cascade
nature of the turbulence series in scale. We eliminate the vibrations noise by reconstructing the signals
based on the first five leading principal components, the original shear (Figure 5, black line) fluctuate
apparently larger than the reconstructed signals (Figure 5, red line). Importantly, the reconstructed time
series present the properties of the original time series over every scale. The agreement between the
original shear data and the reconstructed shear spectra is excellent, most of the vibration noise is removed
by neglecting the higher components and the accuracy of shear turbulence data is surely improved a lot
by reconstructing the original time series based on the PCs.

The normal distribution and the probability density function (PDF) are given to further validate the
effectiveness of the corrected shear spectra after using the proposed de-noising algorithm. Townsend’s
results [16] showed that the structure of the turbulent shear flow was in normal distribution (or Gaussian
distribution). The Gaussian distribution and probability density distribution of the valid data is shown
in Figure 6. It is obvious that both the cleaned data conform to the Gaussian distribution which is in
accordance with the Townsend’s results. In short, the corrected shear data is effective and can be used to
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analyze the characteristics of turbulence.

Figure 5: Raw turbulence shear time series (black) and the corrected shear signals (red) based on singular values construction
method.

Figure 6: Probability density distribution for normal distribution (Gaussian distribution) calculated from the corrected shear
data for two shear probes.

4.4. Dissipation rates
The dissipation rates (ε) of turbulent kinetic energy (TKE) is another primary parameter to describe

characteristics of turbulence. The MTMI uses two shear probes to obtain high-resolution of turbulent
quantities, especially the dissipation rates of TKE which provides critical information about the magnitude
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of the fluctuations associated with the turbulent flow. The dissipation rates are calculated from cleaned
shear spectra by using [3, 7],

ε = 7.5ν(
∂w

∂x
)2 = 7.5ν

∫kc
k0

Φ(k)dk,

where dissipation rate of TKE is marked as ε, and ν(ν = 1.64× 10−6m2s−1) is the kinematic viscosity co-
efficient. The k0 is a lower integration limit and kc is the Kolmogorov wavenumber where kc = (ε/ν3)1/4.
Generally, the Nasmyth (1970) [12] theoretical spectrum is considered as a criterion to evaluate the other
spectrum, and the model spectrum ΦNas is defined as,

ΦNas(k) =
8.05(k/kc)

1 + (20× k/kc)3.5 .

The original and cleaned spectra in comparison with their corresponding Nasmyth spectra are shown
in Figure 7. It is noted that the original shear spectrum (the black solid line) has two apparent peaks
induced by the vibration contamination of the platform and these two vibration noise are obviously
removed in the cleaned spectrum (the red solid line) using the proposed method. In comparison with the
standard Nasmyth model before the Kolmogorov wavenumber kc (Figure 7, two vertical dashed lines),
the corrected power spectrum matches well with the Nasmyth spectrum and the dissipation rates ε are
decreased from 3.83× 10−5Wkg−1 to 2.39× 10−6Wkg−1. The dissipation rates of TKE are computed from
the raw shear velocity spectra where the 130Hz low pass filter is applied to remove high-frequency noise
and the variation is approximately ranged from 10−6Wkg−1 to 10−7Wkg−1 (Figure 8, the red solid circles).
Note that the corrected dissipation rates calculated from the reconstructed shear data have significantly
decreased more than one order of magnitude (Figure 8, the gray solid circles), indicating that the proposed
method is effective to remove noisy energy and the shear spectra are fully resolved.

Figure 7: Original (black solid line) and corrected spectra (red solid line) in comparison with their corresponding empirical
Nasmyth spectrum (dashed lines). Two vertical dashed lines denote the cutoff wavenumber.
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Figure 8: Turbulent kinetic energy dissipation rates calculated from the raw shear spectra measured by probe #1 (red solid
circles) and the corrected shear spectra (gray solid circles). Identification holds on shear probe #2 (not shown)

5. Conclusions

The moored turbulence measuring instrument (MTMI) was deployed at 21◦09.90 ′N, 117◦42.03 ′E in the
South China Sea (SCS). The long time series of shear velocity data has collected for up to 115 days during
from October 19, 2013 to February 10, 2014. To improve the accuracy of the measured shear velocity
data, an advanced noise reduction method based on energy spectrum of singular values is proposed.
The experimental data show that the vibration noise can be effectively removed by decomposing and
reconstructing the shear data and improve the quality of shear velocity data. Turbulent dissipation rates
calculated from corrected shear spectra will make contributions to improve our understanding of ocean
turbulence evolution processes in the South China Sea. However, this noise correction method still needs
to be optimized owing to the tough marine experiments and instrument noise.

Acknowledgment

This work is financially supported by the National High Technology Research and Development Pro-
gram of China (“863 Program”)under Grant No.2012AA090901 and No. 2014AA093404, the National
Nature Science Foundation under Grant No.61203070. We would also like to thank the Ocean University
of China for the platform of the vessel “Dong Fang Hong 2”,and thank the whole teams of the research
and development for their help of this experiment.

References

[1] S. Avdakovic, A. Nuhanovic, M. Kusljugic, M. Music, Wavelet transform applications in power system dynamics, Electr.
Pow. Syst. Res., 83 (2012), 237–245. 1

[2] V. Durgesh, J. Thomson, M. C. Richmond, B. L. Polagye, Noise correction of turbulent spectra obtained from acoustic
doppler velocimeters, Flow. Meas. Instrum., 37 (2014), 29–41. 1

[3] I. Fer, M. B. Paskyabi, Autonomous ocean turbulence measurements using shear probes on a moored instrument, J. Atmos.
Oceanic Technol., 31 (2014), 474–490. 4.4

[4] A. Ganachaud, C. Wunsch, Improved estimates of global ocean circulation, heat transport and mixing from hydrographic
data, Nature, 408 (2000), 453–457. 1

[5] C. M. Garcı́a, M. I. Cantero, Y. Niño, M. H. Garcia, Turbulence measurements with acoustic Doppler velocimeters, J.
Hydraul. Eng., 131 (2005), 1062–1073. 1

[6] M. Ghil, M. R. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, M. E. Mann, A. W. Robertson, A. Saunders, Y. Tian,
F. Varadi, P. Yiou, Advanced spectral methods for climatic time series, Rev. Geophys., 40 (2002), 3–41. 1



X. Liu, X. Luan, D. Song, J. Math. Computer Sci., 17 (2017), 158–168 168

[7] L. Goodman, E. R. Levine, R. G. Lueck, On measuring the terms of the turbulent kinetic energy budget from an AUV, J.
Atmos. Oceanic Technol., 23 (2006), 977–990. 4.4

[8] H. Kantz, T. Schreiber, Nonlinear time series analysis, Second edition, Cambridge University Press, Cambridge,
(2004). 1

[9] E. R. Levine, R. G. Lueck, Turbulence measurement from an autonomous underwater vehicle, J. Atmos. Oceanic Technol.,
16 (1999), 1533–1544. 4.1

[10] X. Luan, X.-Y. Liu, S.-X. Wang, H. Yang, G.-J. Hou, D.-L. Song, The design of ocean turbulence measurement with a
Moored instrument, In proceedings of the MTS/IEEE OCEANS 2015, Genova, Italy, (2015), 5 pages. 2

[11] X. Luan, Y.-F. Wang, S.-X. Wang, G.-J. Hou, X.-F. Chang, An improved de-noising algorithm of turbulence signal based
on wiener filtering, J. Comput. Inform. Syst., 10 (2014), 5591–5598. 1

[12] P. W. Nasmyth, Oceanic Turbulence, Ph.D thesis, University of British Columbia Press, Canada, (1970). 4.4
[13] J. Piera, E. Roget, J. Catalan Turbulent patch identification in microstructure profiles: A method based on wavelet denoising

and Thorpe displacement analysis, J. Atmos. Oceanic Technol., 19 (2002), 1390–1402. 1
[14] H. R. Rahai, J. C. LaRue, Assessment of Taylor hypothesis and local isotropy due to strain applied to a nearly homogeneous

and isotropic flow, Exp. Fluids, 26 (1999), 136–144. 4.1
[15] D. H. Schoellhamer, Singular spectrum analysis for time series with missing data, Geophys. Res. Lett., 28 (2001),

3187–3190. 3
[16] A. A. Townsend, The structure of turbulent shear flow, Cambridge University Press, Cambridge, (1980). 4.3
[17] S.-X. Wang, X.-Z. Xiao, Y.-H. Wang, Z.-L. Wang, B.-K. Chen, Denoising method for shear probe signal based on wavelet

thresholding, Trans. Tianjin Univ., 18 (2012), 135–140. 1
[18] R. Wang, H.-G. Ma, G.-Q. Liu, D.-G. Zuo, Selection of window length for singular spectrum analysis, J. Franklin Inst.,

352 (2015), 1541–1560. 3
[19] P. Welch, The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short,

modified periodograms, IEEE Trans. Audio Electroacoust., 15 (1967), 70–73. 1


	Introduction
	Experiments and database collection
	Methodology
	Results
	Shear velocity series
	Singular spectrum 
	Corrected shear spectra
	Dissipation rates

	Conclusions

