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Abstract

In this paper, we use the way of local coordinates instead of the Floquet method to study the problems of homoclinic
and periodic orbits bifurcated from heteroclinic loop for high-dimensional system. Under some transversal conditions and the
non-twisted or twisted conditions, we discuss the existence, uniqueness, coexistence, and non-coexistence of 1-periodic orbit,
1-homoclinic orbit, and 1-heteroclinic orbit near the heteroclinic loop. We get some general conclusions only under the basic
hypotheses, and the other conclusions under the two hyperbolic ratios of the heteroclinic loop are greater than 1. Meanwhile,
the bifurcation surfaces and existence regions are given. c©2017 all rights reserved.
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1. Introduction and hypotheses

In recent years, the bifurcation problems of heteroclinic orbits in high dimensional space were studied
and many results were obtained (see [1–3, 6–9]). In [10], Zhu and Xia studied the bifurcation problems of
heteroclinic loops with two hyperbolic saddle points by generalizing the Floquet method and exponential
dichotomy. In [5], Jin et al. studied the bifurcations of non-twisted heteroclinic loop with resonant
eigenvalues. In [4], Jin and Zhu studied the bifurcations of rough heteroclinic loop with two saddle
points for the hyperbolic ratios βi, i = 1, 2, satisfying β1 > 1, β2 < 1 and β1β2 < 1.

In this paper, we use the way of local coordinates instead of the Floquet method to study the problems
of homoclinic and periodic orbits bifurcated from heteroclinic loop for high dimensional system. Under
some transversal conditions and the non-twisted or twisted conditions, we discuss the existence, unique-
ness, coexistence and non-coexistence of the 1-periodic orbit, 1-homoclinic orbit, and 1-heteroclinic orbit
near the heteroclinic loop. We obtain some general conclusions only under the basic assumptions, and the
other conclusions under hyperbolic ratio βi satisfying βi > 1, i = 1, 2. Moreover, we give the bifurcation
surfaces and their relative positions and the existence regions of 1-periodic orbit.
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Consider the following Cr system
ż = f(z) + g(z,µ) (1.1)

and its unperturbed system
ż = f(z), (1.2)

where r > 5, z ∈ Rm+n, µ ∈ Rl, l > 3, 0 6 |µ|� 1, and g(z, 0) = 0.

(H1) z = pi, i = 1, 2 are hyperbolic critical points of system (1.2), f(pi) = 0, g(pi,µ) = 0, the stable
manifoldWs

i and the unstable manifoldWu
i of z = pi arem-dimensional and n-dimensional, respectively.

Moreover, −ρ1
i and λ1

i are the simple real eigenvalues of Dzf(pi) such that any other eigenvalue σ of
Dzf(pi) satisfies either Reσ < −ρ0

i < −ρ1
i < 0 or 0 < λ1

i < λ
0
i < Reσ, where ρ0

i and λ0
i are some positive

constants.

(H2) System (1.2) has a heteroclinic loop Γ = Γ1 ∪ Γ2, where Γi = {z = γi(t) : t ∈ R}, γi(+∞) =
γi+1(−∞) = pi+1, γ3(t) = γ1(t), p3 = p1. For any point Pi ∈ Γi, dim(TPiW

u
i ∩ TPiWs

i+1) = 1, where
Ws

3 =Ws
1 , TPiW

u
i is the tangent space of Wu

i at Pi, and TPiW
s
i+1 is the tangent space of Ws

i+1 at Pi.

(H3) Define e±i = limt→∓∞ γ̇i(t)
|γ̇i(t)|

, then e+i ∈ TpiW
u
i and e−i ∈ Tpi+1W

s
i+1 are unit eigenvectors cor-

responding to λ1
i and −ρ1

i+1, respectively. Denote span(TpiW
uu
i , e+i ) = TpiW

u
i , span(TpiW

ss
i , e−i+1) =

TpiW
s
i , where Wuu

i and Wss
i are the strong unstable manifolds and the strong stable manifolds of pi,

respectively, TpiW
uu
i is the tangent space of Wuu

i at pi, and TpiW
ss
i is the tangent space of Wss

i at pi.
That is, TpiW

uu
i is the generalized eigenspace corresponding to all the eigenvalues with larger real part

than λ0
i, TpiW

ss
i is the generalized eigenspace corresponding to all the eigenvalues with smaller real part

than −ρ0
i. The following strong inclination hold:

lim
t→+∞(Tγi(t)Wu

i + Tγi(t)W
s
i+1) = Tpi+1W

uu
i+1 ⊕ Tpi+1W

s
i+1,

lim
t→−∞(Tγi(t)Wu

i + Tγi(t)W
s
i+1) = TpiW

u
i ⊕ TpiW

ss
i .
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Figure 1

2. Local Coordinates

In this section, we will establish a suitable system of local coordinates in the neighborhood of
heteroclinic loop Γ . This method is similar to that of in [4]. Based on the analysis of the Poincaré
maps defined on some local transversal sections of Γ , we need to normalize (1.1) in some small enough
neighborhood Ui of pi, and set up a system of local coordinates near the loop Γ .

Suppose that (H1)-(H3) hold, then, it is well-known that there always exists a Cr transformation such
that system (1.1) has the following form in Ui:
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
ẋ = [λ1

i(µ) + h.o.t.]x+O(u)[O(y) +O(v)],

ẏ = [−ρ1
i(µ) + h.o.t.]y+O(v)[O(x) +O(u)],

u̇ = [B1
i(µ) + h.o.t.]u+O(x)[O(x) +O(y) +O(v)],

v̇ = [−B2
i(µ) + h.o.t.]v+O(y)[O(x) +O(y) +O(u)],

(2.1)

for |µ| small enough, where λ1
i(0) = λ

1
i, ρ

1
i(0) = ρ

1
i, Reσ(B1

i(0)) > λ
0
i, Reσ(−B2

i(0)) < −ρ0
i, z = (x,y,u∗, v∗)∗,

x ∈ R1, y ∈ R1, u ∈ Rn−1, v ∈ Rm−1, i = 1, 2. The sign ∗ means transposition, the “h.o.t.” means higher
order term and the system (2.1) is Cr−1.

In other words, we have assumed that the local unstable, stable, strong unstable and strong stable
manifolds of pi in Ui are given by

Wu
i = {z : y = 0, v = 0}, Ws

i = {z : x = 0,u = 0},
Wuu
i = {z : x = 0,y = 0, v = 0}, Wss

i = {z : x = 0,y = 0,u = 0},
Γ ∩Wu

i = {z : y = 0,u = u(x), v = 0}, Γ ∩Ws
i = {z : x = 0,u = 0, v = v(y)},

where u̇(0) = u(0) = 0, v̇(0) = v(0) = 0.
Taking moments T 0

i and T 1
i such that γi(−T 0

i ) = (δ, 0, δ∗ui , 0∗)∗, γi(T 1
i ) = (0, δ, 0∗, δ∗vi)

∗, where T 0
i and

T 1
i are large enough and δ is small enough such that {(x,y,u∗, v∗)∗ : |x|, |y|, |u|, |v| < 2δ} ∈ Ui. Obviously,
|δui | = o(δ), |δvi | = o(δ).

Consider the linear variational system

ż = Df(ri(t))z (2.2)

and its adjoint system
ϕ̇ = −(Df(ri(t)))

∗ϕ. (2.3)

Under the hypothesis (H1)-(H3), both (2.2) and (2.3) have exponential dichotomies in R+ and R−. (See
[9, 10])

According to [4, 5], (2.2) has a fundamental solution matrix Zi(t) = (z1
i(t), z

2
i(t), z

3
i(t), z

4
i(t)), such that

z1
i(t) ∈ (Tγi(t)W

u
i )
c ∩ (Tγi(t)W

s
i+1)

c,

z2
i(t) = −

γ̇i(t)

|γ̇
y
i (T

1
i )|
∈ Tγi(t)W

u
i ∩ Tγi(t)W

s
i+1,

z3
i(t) = (z3,1

i (t), . . . , z3,n−1
i (t)) ∈ Tγi(t)W

u
i ∩ (Tγi(t)W

s
i+1)

c = Tγi(t)W
uu
i ,

z4
i(t) = (z4,1

i (t), . . . , z4,m−1
i (t)) ∈ (Tγi(t)W

u
i )
c ∩ Tγi(t)W

s
i+1 = Tγi(t)W

ss
i+1,

Zi(−T
0
i ) =


w11
i w21

i 0 w41
i

w12
i 0 0 w42

i

w13
i w23

i I w43
i

0 0 0 w44
i

 , Zi(T 1
i ) =


1 0 w31

i 0
0 1 w32

i 0
0 0 w33

i 0
w14
i w24

i w34
i I

 ,

where Wss
3 =Wss

1 , w21
i <0, w12

i 6= 0, ‖w44
i ‖ 6= 0, ‖w33

i ‖ 6= 0. Moreover, for δ small enough, ‖w1j
i (w

12
i )

−1‖ �
1, j 6= 2; ‖w2j

i (w
21
i )

−1‖ � 1, j = 3, 4; ‖w3j
i (w

33
i )

−1‖ � 1, j 6= 3; ‖w4j
i (w

44
i )

−1‖ � 1, j 6= 4.

Denoting 4i =
w12
i

|w12
i |

, we say that Γi is non-twisted (twisted) when 4i = 1 (4i = −1).

Thus, we may regard z1
i(t), z

2
i(t), z

3
i(t), z

4
i(t) as a local coordinate system along Γi.

It was clear that Φi(t) = (ϕ1
i(t),ϕ

2
i(t),ϕ

3
i(t),ϕ

4
i(t)) = (Z−1

i (t))∗ is a fundamental solution matrix of
(2.3), and ϕ1

i(t) is bounded and tends to zero exponentially as t→ ±∞ (see [4, 9, 10]).

3. Poincaré maps and bifurcation equations

Now we set up the Poincaré maps. First, we use (z1
i(t), z

2
i(t), z

3
i(t), z

4
i(t)) to define the Poincaré sections.

LetNi = (n1
i, 0, (n3

i)
∗, (n4

i)
∗)∗, n3

i = (n3,1
i , . . . ,n3,n−1

i )∗, n4
i = (n4,1

i , . . . ,n4,m−1
i )∗, and hi(t) = γi(t) +
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Zi(t)Ni in the neighborhood of Γ . Thus we define

S0
i = {z = hi(−T

0
i ) : |x|, |y|, |u|, |v| < 2δ}, S1

i = {z = hi(T
1
i ) : |x|, |y|, |u|, |v| < 2δ}

to be cross sections of Γi at t = −T 0
i and t = T 1

i , respectively, where δ is small enough such that S0
i ⊂ Ui,

S1
i ⊂ Ui+1, U3 = U1.
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Figure 2

We consider the map F1
i : q

0
i ∈ S0

i → q1
i ∈ S1

i. Let

q0
i = (x0

i,y
0
i, (u

0
i)
∗, (v0

i)
∗)∗ = γi(−T

0
i ) +Zi(−T

0
i )N

0
i, N

0
i = (n0,1

i , 0, (n0,3
i )∗, (n0,4

i )∗)∗,

q1
i = (x1

i,y
1
i, (u

1
i)
∗, (v1

i)
∗)∗ = γi(T

1
i ) +Zi(T

1
i )N

1
i, N

1
i = (n1,1

i , 0, (n1,3
i )∗, (n1,4

i )∗)∗.

According to the expressions of Zi(−T 0
i ), Zi(T

1
i ), i = 1, 2, we have x0

i ≈ δ, y1
i ≈ δ, and

n1,1
i = x1

i −w
31
i (w

33
i )

−1u1
i,

n1,3
i = (w33

i )
−1u1

i,

n1,4
i = −w14

i x
1
i + (w14

i w
31
i +w24

i w
32
i −w34

i )(w
33
i )

−1u1
i + v

1
i − δvi ,

(3.1)


n0,1
i = (w12

i )
−1(y0

i −w
42
i (w

44
i )

−1v0
i),

n0,3
i = u0

i − δui −w
13
i (w

12
i )

−1y0
i + (w13

i (w
12
i )

−1w42
i −w43

i )(w
44
i )

−1v0
i,

n0,4
i = (w44

i )
−1v0

i.

(3.2)

Take a coordinate transformation z = hi(t), t ∈ [−T 0
i , T 1

i ], substituting it into (1.1), and using γ̇i(t) =
f(γi(t)), Żi(t) = Df(γi(t))Zi(t), one can see that (1.1) is transformed into the following form:

ṅ
j
i = ϕ

j∗
i (t)gµ(γi(t), 0)µ+ h.o.t., i = 1, 2, j = 1, 3, 4.

Thus, the map F1
i : S

0
i → S1

i is defined by Ni(−T 0
i )→ Ni(T

1
i ),

n
j
i(T

1
i ) = n

j
i(−T

0
i ) +M

j
iµ+ h.o.t., i = 1, 2, j = 1, 3, 4.

That is,
n

1,j
i = n0,j

i +Mj
iµ+ h.o.t., i = 1, 2, j = 1, 3, 4, (3.3)

where Mj
i =
∫+∞
−∞ ϕj∗i (t)gµ(γi(t), 0)dt, i = 1, 2, j = 1, 3, 4, (see [4, 9, 10]).

Next, we consider the map F0
i : q

1
i−1 ∈ S1

i−1 → q0
i ∈ S0

i, where q1
i−1 = (x1

i−1,y1
i−1, (u1

i−1)
∗, (v1

i−1)
∗)∗,

q0
i = (x0

i,y
0
i, (u

0
i)
∗, (v0

i)
∗)∗.
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Let ηi(µ) = min{ρ1
i(µ), λ

1
i(µ)}, ηi = ηi(0), ρ

1
i = ρ

1
i(0), λ

1
i = λ

1
i(0) and τi be the flying time from q1

i−1 to
q0
i, si = e

−ηi(µ)τi . Neglecting all higher order terms we get (see [4, 5])

x1
i−1 ≈ s

λ1
i
(µ)

ηi(µ)

i x0
i ≈ s

λ1
i
(µ)

ηi(µ)

i δ, y0
i ≈ s

ρ1
i
(µ)

ηi(µ)

i y1
i−1 ≈ s

ρ1
i
(µ)

ηi(µ)

i δ,

u1
i−1 ≈ s

B1
i
(µ)

ηi(µ)

i u0
i, v0

i ≈ s
B2
i
(µ)

ηi(µ)

i v1
i−1.

(3.4)

Let Fi = F1
i ◦ F0

i: S
1
i−1 → S1

i. Then Fi is the Poincaré map induced by system (1.1) in some tubular
neighborhood of the heteroclinic loop Γ .

By (3.2), (3.3), and (3.4), we get the expression of the map Fi as follows:
n1,1
i = (w12

i )
−1δs

ρ1
i
(µ)

ηi(µ)

i +M1
iµ+ h.o.t.,

n1,3
i = u0

i − δui −w
13
i (w

12
i )

−1δs

ρ1
i
(µ)

ηi(µ)

i +M3
iµ+ h.o.t.,

n1,4
i = (w44

i )
−1s

B2
i
(µ)

ηi(µ)

i v1
i−1 +M

4
iµ+ h.o.t..

(3.5)

Let Gi(q1
i−1) = (G1

i,G
3
i,G

4
i) = Fi(q

1
i−1) − q

1
i,q

1
0 = q1

2. Owing to (3.1) and (3.5), we have
G1
i = δ[(w

12
i )

−1(si)
ρ1
i
(µ)

ηi(µ) − (si+1)
λ1
i+1(µ)
ηi+1(µ) ] +M1

iµ+ h.o.t.,

G3
i = u

0
i − δui −w

13
i (w

12
i )

−1δ(si)
ρ1
i
(µ)

ηi(µ) − (w33
i )

−1(si+1)
B1
i+1(µ)
ηi+1(µ)u0

i+1 +M
3
iµ+ h.o.t.,

G4
i = −v1

i + δvi +w
14
i δ(si+1)

λ1
i+1(µ)
ηi+1(µ) + (w44

i )
−1(si)

B2
i
(µ)

ηi(µ) v1
i−1 +M

4
iµ+ h.o.t..

(3.6)

Thus, there is a one to one correspondence between the two point heteroclinic loop, 1-homoclinic or
1-periodic orbit of (1.1), and the solution Q = (s1,u0

1, v1
1, s2,u0

2, v1
2) of the following bifurcation equation

with si > 0, i = 1, 2:
(G1

1,G3
1,G4

1,G1
2,G3

2,G4
2) = 0. (3.7)

4. Bifurcation problems of 1-heteroclinic and 1-homoclinic orbits

In this section, we study the existence and the uniqueness of 1-heteroclinic and 1-homoclinic orbit.
Consider the solution of the bifurcation equation (3.7) at Q = 0 and µ = 0, we have

G ≡
∂(G1

1,G3
1,G4

1,G1
2,G3

2,G4
2)

∂(s1, s2,u0
1,u0

2, v1
1, v1

2)

=



δ(w12
1 )−1 ρ

1
1(µ)
η1(µ)

(s1)
ρ1

1(µ)
η1(µ)

−1
−δ

λ1
2(µ)
η2(µ)

(s2)
λ1

2(µ)
η2(µ)

−1 0 0 0 0

δ
w13

1
w12

1

ρ1
1(µ)
η1(µ)

(s1)
ρ1

1(µ)
η1(µ)

−1 0 1 0 0 0

0 δw14
1
λ1

2(µ)
η2(µ)

(s2)
λ1

2(µ)
η2(µ)

−1 0 0 −1 0

−δ
λ1

1(µ)
η1(µ)

(s1)
λ1

1(µ)
η1(µ)

−1
δ(w12

2 )−1 ρ
1
2(µ)
η2(µ)

(s2)
ρ1

2(µ)
η2(µ)

−1 0 0 0 0

0 δ
w13

2
w12

2

ρ1
2(µ)
η2(µ)

(s2)
ρ1

2(µ)
η2(µ)

−1 0 1 0 0

δw14
2
λ1

1(µ)
η1(µ)

(s1)
λ1

1(µ)
η1(µ)

−1 0 0 0 0 −1


.
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Since ηi(µ)=min{ρ1
i(µ), λ

1
i(µ)},

λ1
i(µ)
ηi(µ)

− 1 and ρ1
i(µ)
ηi(µ)

− 1 have only one zero, so, the rank of G is at least
5 as s1 = s2 = µ = 0.

Moreover, if (ρ1
1 −λ

1
1)(ρ

1
2 −λ

1
2) > 0, then, by the continuity and |µ|� 1, we have (ρ1

1(µ)−λ
1
1(µ))(ρ

1
2(µ)−

λ1
2(µ)) > 0 is always true, that is

|det(G)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δ(w12
1 )−1 ρ

1
1(µ)
η1(µ)

(s1)
ρ1

1(µ)
η1(µ)

−1
−δ

λ1
2(µ)
η2(µ)

(s2)
λ1

2(µ)
η2(µ)

−1 0 0 0 0

−δ
λ1

1(µ)
η1(µ)

(s1)
λ1

1(µ)
η1(µ)

−1
δ(w12

2 )−1 ρ
1
2(µ)
η2(µ)

(s2)
ρ1

2(µ)
η2(µ)

−1 0 0 0 0

δ
w13

1
w12

1

ρ1
1(µ)
η1(µ)

(s1)
ρ1

1(µ)
η1(µ)

−1 0 1 0 0 0

0 δ
w13

2
w12

2

ρ1
2(µ)
η2(µ)

(s2)
ρ1

2(µ)
η2(µ)

−1 0 1 0 0

0 δw14
1
λ1

2(µ)
η2(µ)

(s2)
λ1

2(µ)
η2(µ)

−1 0 0 −1 0

δw14
2
λ1

1(µ)
η1(µ)

(s1)
λ1

1(µ)
η1(µ)

−1 0 0 0 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= δ2

(
(w12

1 w
12
2 )−1 ρ

1
1(µ)ρ

1
2(µ)

η1(µ)η2(µ)
(s1)

(
ρ1

1(µ)
η1(µ)

−1)
(s2)

(
ρ1

2(µ)
η2(µ)

−1)
−
λ1

1(µ)λ
1
2(µ)

η1(µ)η2(µ)
(s1)

(
λ1

1(µ)
η1(µ)

−1)
(s2)

(
λ1

2(µ)
η2(µ)

−1)

)
6= 0.

From the implicit function theorem, we have

Theorem 4.1. Suppose that (H1)-(H3) are valid, and for |µ| small enough, (3.7) has a unique solution about s2,µ

s1 = s1(s2,µ), u0
i = u

0
i(s2,µ), v1

i = v
1
i(s2,µ), i = 1, 2,

or about s1, µ
s2 = s2(s1,µ), u0

i = u
0
i(s1,µ), v1

i = v
1
i(s1,µ), i = 1, 2.

Specifically, if (ρ1
1 − λ

1
1)(ρ

1
2 − λ

1
2) > 0, then, (3.7) has a unique solution

si = si(µ), u0
i = u

0
i(µ), v

1
i = v

1
i(µ), i = 1, 2,

satisfying si(0) = 0, u0
i(0) = 0, v1

i(0) = 0, i = 1, 2.

By Theorem 4.1, (3.6), and (3.7), it is easy to see that the equation (G3
1,G4

1,G3
2,G4

2) = 0 always has a
unique solution u0

i = u
0
i(s1, s2,µ), v1

i = v
1
i(s1, s2,µ), i = 1, 2, for δ, |µ|, and s1, s2 small enough. Substituting

it into (G1
1,G1

2) = 0, we get  (s2)
λ1

2(µ)
η2(µ) = (w12

1 )−1(s1)
ρ1

1(µ)
η1(µ) + δ−1M1

1µ+ h.o.t.,

(s1)
λ1

1(µ)
η1(µ) = (w12

2 )−1(s2)
ρ1

2(µ)
η2(µ) + δ−1M1

2µ+ h.o.t..

(4.1)

Theorem 4.2. Suppose that (H1)-(H3) are valid, M1
i 6= 0, i = 1, 2, then the following are true:

(i) Near µ = 0, there exists a unique surface Li with codimension 1 and normal vector M1
i at µ = 0, such that

system (1.1) has a heteroclinic orbit joining p1 and p2 near Γi if and only if µ ∈ Li and |µ|� 1.

(ii) When rank(M1
1,M1

2) = 2, L1 and L2 are transversal at µ = 0. Let L12 = L1 ∩ L2, which is codimension 2,
the system (1.1) has a heteroclinic loop near Γ for µ ∈ L12 and |µ|� 1, that is, Γ is persistent.

Proof. If s1 = s2 = 0, then (4.1) becomes {
M1

1µ+ h.o.t. = 0,
M1

2µ+ h.o.t. = 0.
(4.2)

Thus, the necessary and sufficient condition for the persistence of Γi is that (4.2) has solution.
If M1

i 6= 0, then M1
iµ+ h.o.t. = 0, i = 1, 2 has solution which defines a surface Li in the neighborhood

of µ = 0. It is easy to see that Li has codimension 1 and a normal vector M1
i at µ = 0.
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L1 and L2 are transversal (resp. tangent) at µ = 0 if and only if M1
1 and M1

2 are linearly independent
(resp. dependent). In the transversal case, i.e., rank(M1

1,M1
2) = 2, L12 = L1 ∩ L2 has a manifold structure

near µ = 0 (see [2]). In fact, L12 is a surface with codimension 2 such that (1.1) has heteroclinic loop near
Γ for µ ∈ L12 and |µ|� 1, that is, Γ is persistent.

Denote R1 = {µ :M1
1µ > 0, 42M

1
2µ < 0, |µ|� 1}, R2 = {µ :M1

2µ > 0,41M
1
1µ < 0, |µ|� 1}.

Theorem 4.3. Suppose that the hypotheses (H1)-(H3) are valid. If the region Ri is not empty, then, there exists
a unique (l − 1)-dimensional surface L̃i ⊂ Ri, such that, for µ ∈ L̃i, system (1.1) has a 1-homoclinic orbit Γ̃i
connecting pi, where, i = 1, 2, L̃1, and L̃2 are defined by

(δ−1M1
1µ)

ρ1
2(µ)

λ1
2(µ) = (−δ−1w12

2 M
1
2µ) + h.o.t., (4.3)

and

(δ−1M1
2µ)

ρ1
1(µ)

λ1
1(µ) = (−δ−1w12

1 M
1
1µ) + h.o.t., (4.4)

respectively. Moreover, L̃i has a normal vector Vi =

{
M1
i+1, ρ1

i+1 > λ
1
i+1,

M1
i, ρ1

i+1 < λ
1
i+1,

at µ = 0.

Proof. If si = 0, si+1 > 0, then (4.1) becomes(si+1)
λ1
i+1(µ)
ηi+1(µ) = δ−1M1

iµ+ h.o.t.,

(si+1)
ρ1
i+1(µ)
ηi+1(µ) = −δ−1w12

i+1M
1
i+1µ+ h.o.t..

So, we have

(δ−1M1
iµ)

ρ1
i+1(µ)

λ1
i+1(µ) = (−δ−1w12

i+1M
1
i+1µ) + h.o.t.,

which defines a surface L̃i with codimension 1 in regions Ri.
It is easy to see that, if ρ1

i+1(µ)> λ
1
i+1(µ) (ρ

1
i+1(µ)< λ

1
i+1(µ)), then L̃i has a normal vector Vi =M1

i+1

(M1
i), which means L̃i is tangent to Li+1 (Li) at µ = 0.
About the bifurcation diagrams, see Figures 3, 4, 5, 6.
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5. Bifurcation problems of 1-period orbits

In this section, we discuss 1-period orbit bifurcation problems of Γ as hyperbolic ratio βi = ρ1
i/λ

1
i > 1,

i = 1, 2, and locate the corresponding bifurcation surfaces. In other words, we study the solutions of (4.1)
satisfying s1 > 0, s2 > 0.
(H4) Assume ρ1

i > λ
1
i, i = 1, 2.

Denote βi(µ) = ρ1
i(µ)/λ

1
i(µ) > 1, βi = βi(0), i = 1, 2. In this case, the equation (4.1) turns to{

s2 = (w12
1 )−1s

β1(µ)
1 + δ−1M1

1µ+ h.o.t.,
s1 = (w12

2 )−1s
β2(µ)
2 + δ−1M1

2µ+ h.o.t..
(5.1)

From (5.1), we get

s
β1(µ)
1 + δ−1w12

1 M
1
1µ+ h.o.t. = w12

1
(
w12

2 (s1 − δ
−1M1

2µ+ h.o.t.)
) 1
β2(µ) , (5.2)

s
β2(µ)
2 + δ−1w12

2 M
1
2µ+ h.o.t. = w12

2
(
w12

1 (s2 − δ
−1M1

1µ+ h.o.t.)
) 1
β1(µ) . (5.3)

Let

V1(s1) = s
β1(µ)
1 + δ−1w12

1 M
1
1µ+ h.o.t., N1(s1) = w

12
1
(
w12

2 (s1 − δ
−1M1

2µ+ h.o.t.)
) 1
β2(µ) ,

and
V2(s2) = s

β2(µ)
2 + δ−1w12

2 M
1
2µ+ h.o.t., N2(s2) = w

12
2
(
w12

1 (s2 − δ
−1M1

1µ+ h.o.t.)
) 1
β1(µ) .

Case 1. (A1) ∆1 = ∆2 = 1.
Obviously, if (A1) holds, we have

R1 = {µ :M1
1µ > 0,M1

2µ < 0, |µ|� 1}, R2 = {µ :M1
2µ > 0,M1

1µ < 0, |µ|� 1}.

Theorem 5.1. Suppose that the hypotheses (H1)-(H4) and (A1) are valid.

(i) The system (1.1) does not have any 1-period orbit, but has exactly one 1-homoclinic orbit Γ̃1 near Γ as µ ∈
L̃1 ⊂ R1. And in R1, V1(s1) is not tangent to N1(s1) at arbitrary s1 for 0 < s1, |µ|� 1.

(ii) The system (1.1) does not have any 1-period orbit, but has exactly one 1-homoclinic orbit Γ̃2 near Γ as µ ∈
L̃2 ⊂ R2. And in R2, V2(s2) is not tangent to N2(s2) at arbitrary s2 for 0 < s2, |µ|� 1.
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Proof. (i) By (5.2), we have

V̇1(s1) = β1(µ)s
β1(µ)−1
1 ,

Ṅ1(s1) =
1

β2(µ)
w12

1 (w12
2 )

1
β2(µ) (s1 − δ

−1M1
2µ+ h.o.t.)

1
β2(µ)

−1

=
1

β2(µ)
w12

1 w
12
2
(
w12

2 (s1 − δ
−1M1

2µ+ h.o.t.)
) 1
β2(µ)

−1
.

By β1(µ) > 1 > 1
β2(µ)

, we have Ṅ1(s1) > β1(µ)s
1

β2(µ)
−1

1 > V̇1(s1) > 0 for 0 6 s1 � 1.

So, by Theorem 4.3 and the above inequality, we get V1(0) = N1(0) and Ṅ1(s1) > V̇1(s1) for µ ∈ L̃1,
0 6 s1 � 1. Therefore, V1(s1) < N1(s1) is always right for s1 > 0, µ ∈ L̃1. That is, the system (1.1) does
not have any 1-period orbit for µ ∈ L̃1.

At the same time, Ṅ1(s1) 6= V̇1(s1), 0 6 s1 � 1, which means V1(s1) is not tangent to N1(s1) at arbitrary
s1 for 0 < s1, |µ|� 1 in R1.

(ii) The proof is similar.

Due to the definitions of Li, Ri, L̃i and above lemma, we define some open regions. In R1, open set
(R1)0 is bounded by L1 and L̃1, and open set (R1)1 is bounded by L2 and L̃1. In R2, open set (R2)0 is
bounded by L2 and L̃2, and open set (R2)1 is bounded by L1 and L̃2.

Denote D1 is the open region whose boundaries are L1 and L2, such that D1
⋂
{µ : M1

1µ > 0,M1
2µ >

0, |µ|� 1} 6= ∅. D0 is the open region whose boundaries are L2 and L1, such that D0
⋂
{µ :M1

1µ < 0,M1
2µ <

0, |µ|� 1} 6= ∅.
We obtain the following theorem and the corresponding bifurcation figure.

Theorem 5.2. Suppose that hypotheses (H1)-(H4) and (A1) are valid, then the following conclusions are true.

(i) The system (1.1) has exactly one simple 1-period orbit near Γ as µ ∈ (R1)1.

(ii) The system (1.1) has exactly one 1-homoclinic loop homoclinic to p1 near Γ as µ ∈ L̃1.

(iii) The system (1.1) does not have any 1-period orbit and 1-homoclinic loop near Γ as µ ∈ (R1)0.

(iv) The system (1.1) has exactly one simple 1-period orbit near Γ as µ ∈ (R2)1.

(v) The system (1.1) has exactly one 1-homoclinic loop homoclinic to p2 near Γ as µ ∈ L̃2.

(vi) The system (1.1) does not have any 1-period orbit and 1-homoclinic loop near Γ as µ ∈ (R2)0.

(vii) The system (1.1) has exactly one simple 1-periodic orbits near Γ as µ ∈ D1.

(viii) The system (1.1) does not have any 1-periodic orbits near Γ as µ ∈ D0.

Proof. By (4.3) and (5.2), we know that for µ ∈ L̃1, V1(s1) = N1(s1) has a unique solution s1 = 0, that is,

V1(0) = N1(0) (L̃1 : δ−1M1
1µ+ h.o.t. =

(
−δ−1w12

2 M
1
2µ+ h.o.t.

) 1
β2(µ) ). Thus, the system (1.1) has exactly

one 1-homoclinic loop homoclinic to p1 near Γ as µ ∈ L̃1 (see Figure 7).

For µ ∈ (R1)0, V1(0) = δ−1w12
1 M

1
1µ+ h.o.t. < N1(0) = w12

1

(
−δ−1w12

2 M
1
2µ+ h.o.t.

) 1
β2(µ) , so, V1(s1) =

N1(s1) does not have any small solution satisfying s1 > 0. That is, the system (1.1) does not have any
1-period orbit and 1-homoclinic loop near Γ as µ ∈ (R1)0 (see Figure 8).

For µ ∈ (R1)1, V1(0) = δ−1w12
1 M

1
1µ+ h.o.t. > N1(0) = w12

1

(
−δ−1w12

2 M
1
2µ+ h.o.t.

) 1
β2(µ) , so, V1(s1) =

N1(s1) has exactly one small solution satisfying s1 > 0. That is, the system (1.1) has exactly one simple
1-period orbit near Γ as µ ∈ (R1)1 (see Figure 9).
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Similarly, By (4.4) and (5.3), we know that for µ ∈ L̃2, V2(s2) = N2(s2) has a unique solution s2 = 0,

that is V2(0) = N2(0) (L̃2 : δ−1M1
2µ+ h.o.t. =

(
−δ−1w12

1 M
1
1µ+ h.o.t.

) 1
β1(µ) ). Thus, the system (1.1) has

exactly one 1-homoclinic loop homoclinic to p2 near Γ as µ ∈ L̃2.

For µ ∈ (R2)0, V2(0) = δ−1w12
2 M

1
2µ+ h.o.t. < N2(0) = w12

2
(
−δ−1w12

1 M
1
1µ+ h.o.t.

) 1
β1(µ) , so, V2(s2) =

N2(s2) does not have any small solution satisfying s2 > 0. That is, the system (1.1) does not have any
1-period orbit and 1-homoclinic loop near Γ as µ ∈ (R2)0.

For µ ∈ (R2)1, V2(0) = δ−1w12
2 M

1
2µ+ h.o.t. > N2(0) = w12

2
(
−δ−1w12

1 M
1
1µ+ h.o.t.

) 1
β1(µ) , so, V2(s2) =

N2(s2) has exactly one small solution satisfying s2 > 0. That is, the system (1.1) has exactly one simple
1-period orbit near Γ as µ ∈ (R2)1.

For µ ∈ D0, (5.1) does not have any small solution satisfying s1 > 0, s2 > 0. That is, the system (1.1)
does not have any 1-period orbit and 1-homoclinic loop near Γ as µ ∈ D0.

For µ ∈ D1, (5.1) has exactly one small solution satisfying s1 > 0, s2 > 0. That is, the system (1.1) has
exactly one simple 1-period orbit near Γ as µ ∈ D1.

About the bifurcation diagram, see Figure 10.
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Case 2. (A2) ∆1 = −1, ∆2 = −1.
In this case, we have

R = R1 = R2 = {µ :M1
1µ > 0,M1

2µ > 0, |µ|� 1}.

Obviously, if M1
1µ < 0 or M1

2µ < 0, (5.1) does not have any non-negative solution except s1 = s2 = 0.
Similarly, we have
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Theorem 5.3. Suppose that the hypotheses (H1)-(H4) and (A2) are valid.

(i) The system (1.1) does not have any 1-period orbit, but has exactly one 1-homoclinic orbit Γ̃1 near Γ as µ ∈
L̃1 ⊂ R. In R, V1(s1) is not tangent to N1(s1) at arbitrary s1 for 0 < s1, |µ|� 1.

(ii) The system (1.1) does not have any 1-period orbit, but has exactly one 1-homoclinic orbit Γ̃2 near Γ as µ ∈
L̃2 ⊂ R. In R, V2(s2) is not tangent to N2(s2) at arbitrary s2 for 0 < s2, |µ|� 1.

Proof. (i) By (5.2), we get

V̇1(s1) = β1(µ)s
β1(µ)−1
1 , Ṅ1(s1) =

1
β2(µ)

w12
1 w

12
2
(
w12

2 (s1 − δ
−1M1

2µ+ h.o.t.)
) 1
β2(µ)

−1
.

By β1(µ) > 1 > 1
β2(µ)

, ∆1 = ∆2 = −1 and M1
1µ > 0, M1

2µ > 0, |µ|� 1, it is easy to have

Ṅ1(s1) > V̇1(s1) > 0 for 0 6 s1 � 1.

So, by Theorem 4.3 and the above inequality, we get V1(0) = N1(0) and Ṅ1(s1) > V̇1(s1) for µ ∈ L̃1,
0 6 s1 � 1. Therefore, V1(s1) < N1(s1) is always right for s1 > 0, µ ∈ L̃1. That is, the system (1.1) does
not have any 1-period orbit for µ ∈ L̃1.

At the same time, Ṅ1(s1) 6= V̇1(s1), 0 6 s1 � 1, which means V1(s1) is not tangent to N1(s1) at arbitrary
s1 for 0 < s1, |µ|� 1 in R.

(ii) The proof is similar.

In R, if (5.1) has solution 0 < s1 � 1, 0 < s2 � 1, then by (5.1), we know

−δ−1w12
2 M

1
2µ > s

β2(µ)
2 = ((w12

1 )−1s
β1(µ)
1 + δ−1M1

1µ+ h.o.t.)β2(µ)

> (δ−1M1
1µ+ h.o.t.)β2(µ) = (−δ−1w12

2 M
1
2µ)|L̃1

,

and

−δ−1w12
1 M

1
1µ > s

β1(µ)
1 = ((w12

2 )−1s
β2(µ)
2 + δ−1M1

2µ+ h.o.t.)β1(µ)

> (δ−1M1
2µ+ h.o.t.)β1(µ) = (−δ−1w12

1 M
1
1µ)|L̃2

.

Set (R1)0 is bounded by L2 and L̃1, D1 is bounded by L̃1 and L̃2, set (R2)0 is bounded by L̃2 and L1, and
they have nonempty intersection with R.

So, we have the following theorem and corresponding bifurcation diagram (see Figure 11).

Theorem 5.4. Suppose that the hypotheses (H1)-(H4) and (A2) are valid, then the following conclusions are true.

(i) The system (1.1) has exactly one simple 1-period orbit near Γ as µ ∈ D1.

(ii) The system (1.1) has exactly one 1-homoclinic loop homoclinic to p1 near Γ as µ ∈ L̃1.

(iii) The system (1.1) does not have any 1-period orbit and 1-homoclinic loop near Γ as µ ∈ (R1)0.

(iv) The system (1.1) has exactly one 1-homoclinic loop homoclinic to p2 near Γ as µ ∈ L̃2.

(v) The system (1.1) does not have any 1-period orbit and 1-homoclinic loop near Γ as µ ∈ (R2)0.

(vi) The system (1.1) does not have any 1-period orbit and 1-homoclinic loop near Γ as µ /∈ R which means that
µ ∈ D0 = {µ :M1

2µ < 0, |µ|� 1}∪ {µ :M1
1µ < 0, |µ|� 1}.
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Case 3. (A3) ∆1 = 1, ∆2 = −1.
If (A3) holds, we have

R1 = {µ :M1
1µ > 0,M1

2µ > 0, |µ|� 1}, R2 = {µ :M1
2µ > 0,M1

1µ < 0, |µ|� 1}.

Theorem 5.5. Suppose that the hypotheses (H1)-(H4) and (A3) are valid.

(i) The system (1.1) does not have any 1-period orbit, but has exactly one 1-homoclinic orbit Γ̃1 near Γ as µ ∈
L̃1 ⊂ R1. And in R1, V1(s1) is not tangent to N1(s1) at arbitrary s1 for 0 < s1, |µ|� 1.

(ii) The system (1.1) does not have any 1-period orbit, but has exactly one 1-homoclinic orbit Γ̃2 near Γ as µ ∈
L̃2 ⊂ R2. And in R2, V2(s2) is not tangent to N2(s2) at arbitrary s2 for 0 < s2, |µ|� 1.

Proof. (i) By (5.1), we have(
(w12

1 )−1s
β1(µ)
1 + δ−1M1

1µ+ h.o.t.
)β2(µ)

= w12
2 (s1 − δ

−1M1
2µ+ h.o.t.), (5.4)(

(w12
2 )−1s

β2(µ)
2 + δ−1M1

2µ+ h.o.t.
)β1(µ)

= w12
1 (s2 − δ

−1M1
1µ+ h.o.t.). (5.5)

Denote V1(s1) and N1(s1) are the left and right hand sides of (5.4), respectively, we have

V̇1(s1) = β2(µ)β1(µ)(w
12
1 )−1s

β1(µ)−1
1

(
(w12

1 )−1s
β1(µ)
1 + δ−1M1

1µ+ h.o.t.
)β2(µ)−1

, Ṅ1(s1) = w
12
2 .

By β1(µ) > 1 > 1
β2(µ)

, ∆1 = 1, ∆2 = −1 and M1
1µ > 0, M1

2µ > 0, |µ|� 1, it is easy to have

Ṅ1(s1) < 0 < V̇1(s1).

So, by Theorem 4.3 and the above inequality, we get V1(0) = N1(0) and Ṅ1(s1) < V̇1(s1) for µ ∈ L̃1,
0 6 s1 � 1. Therefore, N1(s1) < V1(s1) is always right for s1 > 0, µ ∈ L̃1. That is, the system (1.1) does
not have any 1-period orbit for µ ∈ L̃1.

At the same time, Ṅ1(s1) 6= V̇1(s1), 0 6 s1 � 1, which means V1(s1) is not tangent toN1(s1) at arbitrary
s1 for 0 < s1, |µ|� 1 in R1.

(ii) Denote V2(s2) and N2(s2) are the left and right hand sides of (5.5), respectively, the proof is similar
to that of (i).

In R1, if (5.1) has solutions 0 < s1 � 1, 0 < s2 � 1, then by (5.1), we know

−δ−1w12
2 M

1
2µ > s

β2(µ)
2 = ((w12

1 )−1s
β1(µ)
1 + δ−1M1

1µ+ h.o.t.)β2(µ)

> (δ−1M1
1µ+ h.o.t.)β2(µ) = (−δ−1w12

2 M
1
2µ)|L̃1

.

Set (R1)1 is bounded by L1 and L̃1, set (R1)0 is bounded by L̃1 and L2, and they have nonempty
intersection with R1.

In R2, if (5.1) has solutions 0 < s1 � 1, 0 < s2 � 1, then by (5.1), we know

−δ−1w12
1 M

1
1µ < s

β1(µ)
1 = ((w12

2 )−1s
β2(µ)
2 + δ−1M1

2µ+ h.o.t.)β1(µ)

< (δ−1M1
2µ+ h.o.t.)β1(µ) = (−δ−1w12

1 M
1
1µ)|L̃2

.

Set (R2)0 is bounded by L2 and L̃2, set (R2)1 is bounded by L̃2 and L1, and they have nonempty
intersection with R2.

So, we have the following theorem and corresponding bifurcation diagram (see Figure 12).
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Theorem 5.6. Suppose that the hypotheses (H1)-(H4) and (A3) are valid, then the following conclusions are true.

(i) The system (1.1) has exactly one simple 1-period orbit near Γ as µ ∈ (R1)1.

(ii) The system (1.1) has exactly one 1-homoclinic loop homoclinic to p1 near Γ as µ ∈ L̃1.

(iii) The system (1.1) does not have any 1-period orbit and 1-homoclinic loop near Γ as µ ∈ (R1)0.

(iv) The system (1.1) has exactly one simple 1-period orbit near Γ as µ ∈ (R2)1.

(v) The system (1.1) has exactly one 1-homoclinic loop homoclinic to p2 near Γ as µ ∈ L̃2.

(vi) The system (1.1) does not have any 1-period orbit and 1-homoclinic loop near Γ as µ ∈ (R2)0.

(vii) The system (1.1) does not have any 1-period orbit and 1-homoclinic loop near Γ as µ /∈ R1 ∪ R2 which means
µ ∈ D0 = {µ :M1

2µ < 0, |µ|� 1}.
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Case 4. (A4) ∆1 = −1, ∆2 = 1.
If (A4) holds, we have

R1 = {µ :M1
1µ > 0,M1

2µ < 0, |µ|� 1}, R2 = {µ :M1
2µ > 0,M1

1µ > 0, |µ|� 1}.

Denote open set (R1)1 is bounded by L2 and L̃1, set (R1)0 is bounded by L̃1 and L1, and they have
nonempty intersection with R1; open set (R2)0 is bounded by L1 and L̃2, set (R2)1 is bounded by L̃2 and
L2, and they have nonempty intersection with R2.

Similarly, we have the following theorem and corresponding bifurcation diagram (see Figure 13)

Theorem 5.7. Suppose that hypotheses (H1)-(H4) and (A4) are valid, then the following conclusions are true.

(i) The system (1.1) has exactly one simple 1-period orbit near Γ as µ ∈ (R1)1.

(ii) The system (1.1) has exactly one 1-homoclinic loop homoclinic to p1 near Γ as µ ∈ L̃1.

(iii) The system (1.1) does not have any 1-period orbit and 1-homoclinic loop near Γ as µ ∈ (R1)0.

(iv) The system (1.1) has exactly one simple 1-period orbit near Γ as µ ∈ (R2)1.

(v) The system (1.1) has exactly one 1-homoclinic loop homoclinic to p2 near Γ as µ ∈ L̃2.

(vi) The system (1.1) does not have any 1-period orbit and 1-homoclinic loop near Γ as µ ∈ (R2)0.

(vii) The system (1.1) does not have any 1-period orbit and 1-homoclinic loop near Γ as µ /∈ R1 ∪ R2 which means
µ ∈ D0 = {µ :M1

1µ < 0, |µ|� 1}.
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6. Bifurcation problems of 2-period orbits

In this section, we discuss 2-period orbit bifurcation problems of Γ as hyperbolic ratio βi = ρ1
i/λ

1
i > 1,

i = 1, 2 (Figure 14). Let τ3, τ4 be the flying times from q3
2(x

3
2,y3

2, (u3
2)
∗, (v3

2)
∗) ∈ S1

2 to q2
1(x

2
1,y2

1, (u2
1)
∗, (v2

1)
∗) ∈

S0
1, q3

1(x
3
1,y3

1, (u3
1)
∗, (v3

1)
∗) ∈ S1

1 to q2
2(x

2
2,y2

2, (u2
2)
∗, (v2

2)
∗) ∈ S0

2, and s3 = e−η1(µ)τ3 , s4 = e−η2(µ)τ4 , respec-
tively. We have have the bifurcation equation as following.

(w12
1 )−1(s1)

β1(µ) − s2 + δ
−1M1

1µ+ h.o.t. = 0,

(w12
2 )−1(s2)

β2(µ) − s3 + δ
−1M1

2µ+ h.o.t. = 0,

(w12
1 )−1(s3)

β1(µ) − s4 + δ
−1M1

1µ+ h.o.t. = 0,

(w12
2 )−1(s4)

β2(µ) − s1 + δ
−1M1

2µ+ h.o.t. = 0.

(6.1)
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Due to ρ1
1 > λ

1
1, ρ1

2 > λ
1
2, we know that (6.1) has a unique solution s1 = s1(µ), s2 = s2(µ), s3 = s3(µ),

s4 = s4(µ), satisfying s1(0) = 0, s2(0) = 0, s3(0) = 0, s4(0) = 0.

Theorem 6.1. Suppose that hypotheses (H1)-(H4) are valid, then, system (1.1) does not have any 2-heteroclinic
loop which are heteroclinic to p1 and p2 near Γ for |µ|� 1.

Proof. If (6.1) has a solution s1 > 0, s2 > 0, s3 = s4 = 0, then (6.1) becomes
s2 = (w12

1 )−1(s1)
β1(µ) + δ−1M1

1µ+ h.o.t.,

(s2)
β2(µ) + δ−1w12

2 M
1
2µ+ h.o.t. = 0,

δ−1M1
1µ+ h.o.t. = 0,

s1 = δ−1M1
2µ+ h.o.t..

So,
M1

2µ > 0, δ−1M1
1µ+ h.o.t. = 0, w12

2 < 0, w12
1 > 0,

(w12
1 )−β2(µ)(δ−1M1

2µ)
β1(µ)β2(µ) + δ−1w12

2 M
1
2µ+ h.o.t. = 0.

By β1(µ)β2(µ) > 1, we have
M1

1µ+ h.o.t. = 0, M1
2µ+ h.o.t. = 0.

Thus, we have s1 = 0, s2 = 0, so, (1.1) does not have any 2-heteroclinic loop near Γ .
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Theorem 6.2. Suppose that hypotheses (H1)-(H4), (A3) (or (A4)) are valid, then, in (R1)1, there exist an (l− 1)-
dimensional surface L̃3 which is tangent to L2 at point µ = 0, such that system (1.1) has one 2-homoclinic loop
homoclinic to p1 near Γ for µ ∈ L̃3, |µ| � 1 (see Figures 15 and 16). But in the cases (A1) and (A2), system (1.1)
does not have any 2-homoclinic loop homoclinic to p1 near Γ for |µ|� 1.
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Proof. If (6.1) has a solution s1 > 0, s2 > 0, s3 = 0, s4 > 0, then (6.1) becomes
s1 = (w12

2 )−1(s4)
β2(µ) + δ−1M1

2µ+ h.o.t.,

s2 = (w12
1 )−1(s1)

β1(µ) + δ−1M1
1µ+ h.o.t.,

(s2)
β2(µ) + δ−1w12

2 M
1
2µ+ h.o.t. = 0,

s4 = δ−1M1
1µ+ h.o.t..

So, we have

δ−1M1
1µ > 0, ∆2M

1
2µ < 0,

s1 = (w12
2 )−1(δ−1M1

1µ)
β2(µ) + δ−1M1

2µ+ h.o.t. > 0,

s2 = (w12
1 )−1(s1)

β1(µ) + δ−1M1
1µ+ h.o.t.

= (w12
1 )−1

[
(w12

2 )−1(δ−1M1
1µ)

β2(µ) + δ−1M1
2µ
]β1(µ)

+ δ−1M1
1µ+ h.o.t. > 0,

(6.2)

and{
(w12

1 )−1
[
(w12

2 )−1(δ−1M1
1µ)

β2(µ) + δ−1M1
2µ
]β1(µ)

+ δ−1M1
1µ

}β2(µ)

+ δ−1w12
2 M

1
2µ+ h.o.t. = 0. (6.3)

Denote L̃3 is the (l − 1)-dimensional surface defined by (6.3), then, by (6.2) and (6.3), we know L̃3
located in (R1)1 and tangent to L2 at point µ = 0.

(i) If ∆1 = 1, ∆2 = −1, then, by (6.3), we have

−δ−1w12
2 M

1
2µ‖L̃3

> (δ−1M1
1µ)

β2(µ) + h.o.t. = −δ−1w12
2 M

1
2µ‖L̃1

,

this means that L̃3 is located in the region (R1)1.
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(ii) If ∆1 = −1, ∆2 = 1, then, by (6.3), we have

−δ−1w12
2 M

1
2µ‖L̃3

< (δ−1M1
1µ)

β2(µ) + h.o.t. = −δ−1w12
2 M

1
2µ‖L̃1

,

this means that L̃3 is located in the region (R1)1.

(iii) For the case ∆1 = 1, ∆2 = 1, we know, if (s1, s2) is a solution of (5.1), then, the duplication of it, (s1,
s2, s3, s4)=(s1, s2, s1, s2) must be the solutions of (6.1) near (s1, s2, s3, s4) = (0, 0, 0, 0). Therefore, if
s3 = 0, s4 > 0 satisfy (6.1), then (6.1) must have a solution s1 = s3 = 0, s2 = s4 > 0. By the uniqueness
of the solution of (6.1), we get, system (1.1) has no 2-homoclinic loop homoclinic to p1 near Γ for
|µ|� 1.

(iv) For the case ∆1 = −1, ∆2 = −1, the reason is similar to that of ∆1 = 1, ∆2 = 1.

Thus, we get the theorem.

Theorem 6.3. Suppose that hypotheses (H1)-(H4), (A3) (or (A4)) are valid, then, in (R2)1, there exist an (l− 1)-
dimensional surface L̃4 which is tangent to L1 at point µ = 0, such that system (1.1) has exactly one 2-homoclinic
loop homoclinic to p2 near Γ for µ ∈ L̃4, |µ| � 1 (see Figures 17 and 18). But in the cases (A1) and (A2), system
(1.1) has no 2-homoclinic loop homoclinic to p2 near Γ for |µ|� 1.
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Proof. If (6.1) has a solution s1 > 0, s2 > 0, s3 > 0, s4 = 0, then (6.1) becomes
s1 = δ−1M1

2µ+ h.o.t.,

(s3)
β1(µ) = −δ−1w12

1 M
1
1µ+ h.o.t.,

s2 = (w12
1 )−1(s1)

β1(µ) + δ−1M1
1µ+ h.o.t.,

s3 = (w12
2 )−1(s2)

β2(µ) + δ−1M1
2µ+ h.o.t..

So
M1

2µ > 0, ∆1M
1
1µ < 0,

s2 = (w12
1 )−1(δ−1M1

2µ)
β1(µ) + δ−1M1

1µ+ h.o.t. > 0,

s3 = (w12
2 )−1(s2)

β2(µ) + δ−1M1
2µ+ h.o.t.

= (w12
2 )−1

[
(w12

1 )−1(δ−1M1
2µ)

β1(µ) + δ−1M1
1µ
]β2(µ)

+ δ−1M1
2µ+ h.o.t. > 0,

(6.4)
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and{
(w12

2 )−1
[
(w12

1 )−1(δ−1M1
2µ)

β1(µ) + δ−1M1
1µ
]β2(µ)

+ δ−1M1
2µ

}β1(µ)

= −δ−1w12
1 M

1
1µ+ h.o.t.. (6.5)

Denote L̃4 is the (l− 1)-dimensional surface defined by (6.5), then, by (6.4) and (6.5), we know L̃4 is
located in (R2)1 and tangent to L1 at point µ = 0. Thus, we get the theorem.

Denote D2 is a open region which is bounded by L̃3 and L̃4, M1
1 points into D2 from L̃4, and M1

2 also
points into D2 from L̃3.

Theorem 6.4. Suppose that hypotheses (H1)-(H4), (A3) (or (A4)) are valid, then, for µ ∈ D2 and |µ|� 1, system
(1.1) has exactly one 2-periodic loop near Γ . But in the cases (A1) and (A2), system (1.1) has no 2-periodic loop
near Γ for |µ|� 1.

Proof. If (6.1) has a solution s1 > 0, s2 > 0, s3 > 0, s4 > 0, then (6.1) becomes

s1 = (w12
2 )−1s

β2(µ)
4 + δ−1M1

2µ+ h.o.t.,

s2 = (w12
1 )−1s

β1(µ)
1 + δ−1M1

1µ+ h.o.t.,

s3 = (w12
2 )−1s

β2(µ)
2 + δ−1M1

2µ+ h.o.t.,

s4 = (w12
1 )−1s

β1(µ)
3 + δ−1M1

1µ+ h.o.t..

Differentiating both sides of the equations, we get

(s3)µ = δ−1M1
2 +O

(
(w12

2 )−1s
β2(µ)−1
2

)
+ h.o.t.,

(s4)µ = δ−1M1
1 +O

(
(w12

1 )−1s
β1(µ)−1
3

)
+ h.o.t..

Thus, the directional derivatives of s3 along M1
2 at L̃3 and s4 along M1

1 at L̃4 are positive.
Notice that s3 = 0 for µ ∈ L̃3, and s4 = 0 for µ ∈ L̃4, by the monotonicity, we have s3 > 0, s4 > 0 for

µ ∈ D2.
So we get the results.

Combining Theorems 6.1, 6.2, 6.3, and 6.4, we get the following bifurcation figures (Figures 19 and
20).
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