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Abstract
In this work, we implement the residual power series (RPS) method for solving the time fractional nonlinear Riccati initial

value problem {
Dαt y(t) + ay(t) + by

2(t) = c, 0 < α 6 1, 0 6 t < R,
y(0) = d,

where a,b, c,d are constants andDαt is the Caputo fractional derivative. An analytical solution of y(t) is obtained as a convergent
fractional power series in t. To demonstrate the dependability of the proposed method, three illustrative examples are offered and
the obtained results are compared with some existing results in the literature. Moreover, the results show that the approximate
solutions are continuously communicate, as α increases, until the first derivative is reached. c©2017 all rights reserved.
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1. Introduction

Nonlinear fractional equations play a major role in various fields, such as fluid mechanics, optical
fibers, solid state physics, geochemistry, and so on. This is due to the fact that fractional derivatives
can grasp the history of the variable under consideration. Exact solutions for the majority of fractional
differential equations (FDEs) cannot be found easily, thus analytical and numerical methods must be used.
In fact, several numerical methods for solving FDEs have been presented in the literature and they have
their own advantages and limitations.

In the present work, we mainly deal with a new analytical method proposed by Arqub in 2013 to solve
fuzzy differential equations [1]. Later, this method was modified [9] and applied successfully to several
kinds of classical and fractional differential equations [2–5, 10, 11, 13, 16, 17, 23, 24]. The main feature of
RPS method is that during the transition from simple linearity to complex nonlinearity, there is no need
for any conversion. This makes the RPS method suitable for solving nonlinear problems [16].

The motivation of this paper is to apply the residual power series (RPS) method to solve the quadratic
Riccati differential equation of fractional order which reads
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Dαt y(t) + ay(t) + by
2(t) = c,

with initial condition y(0) = d, where α is the fractional derivative in the Caputo sense and 0 < α 6 1.
The Riccati differential equation is named after the Italian Nobleman Count Jacopo Francesco Riccati
(1676 − 1754). Due to the important role for these equations in optimal control and diffusion problems
[6], many authors have made attempts to solve these equations using different numerical methods. Such
methods are: the Laplace-Adomian-Pade method [15], the modified homotopy perturbation method [20],
the He’s variational iteration method [14], the Chebyshev wavelet operational matrix method [18], the
finite difference method and Pade-variational iteration method [22] and the shifted Jacobi polynomial
integral operational matrix method [19].

The paper is organized as follows: in Section 2, some definitions and theorems regarded Caputo’s
derivative and fractional power series are given. Detailed derivation of the RPS solution of the fractional
Riccati has been discussed in Section 3. Finally, the performance of the RPS method has been tested in
Section 4.

2. Preliminaries

Many definitions and studies of fractional calculus have been proposed in the literature. These defini-
tions include: Grunwald-Letnikov, Riemann-Liouville, Weyl, Riesz and Caputo sense. In the Caputo case,
the derivative of a constant is zero and one can define, properly, the initial conditions for the fractional
differential equations which can be handled by using an analogy with the classical integer case. For these
reasons, researchers prefer to use the Caputo fractional derivative [7, 8, 12, 21] which is defined as follows.

Definition 2.1. Let m be the smallest integer that exceeds α, the Caputo fractional derivatives of order
α > 0 is defined as

Dαy(t) =
dαy(t)

dtα
=


1

Γ(m−α)

∫t
0
(t− τ)m−α−1d

my(τ)

dτm
dτ : m− 1 < α < m,

dmy(t)

dtm
: α = m ∈N .

As a direct implementation, the Caputo fractional derivative of the power function satisfies

Dαtp =


Γ(p+ 1)

Γ(p−α+ 1)
tp−α : m− 1 < α < m, p > m− 1,

0 : m− 1 < α < m, p 6 m− 1.

Now, we survey some needed definitions and theorems regarded the fractional power series (FPS)
also, more information can be found in [1, 2, 9].

Definition 2.2. A power series expansion of the form∞∑
m=0

cm(t− t0)
mα = c0 + c1(t− t0)

α + c2(t− t0)
2α + · · · ,

where 0 6 m− 1 < α 6 m, t 6 t0 is called fractional power series PS about t = t0.

Theorem 2.3. Suppose that f has a fractional PS representation at t = t0 of the form

f(t) =

∞∑
m=0

cm(t− t0)
mα, 0 6 m− 1 < α 6 m, t0 6 t < t0 + R.

If Dmαf(t) are continuous on (t0, t0 + R) for m ∈N, then cm =
Dmαf(t0)

Γ(mα+ 1)
and R is the radius of convergence.

Next, we present in details the derivation of the residual power series solution to the fractional Riccati
equation.
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3. Residual power series (RPS) for solving fractional Riccati equation

Consider the fractional Riccati initial value problem{
Dαt y(t) + ay(t) + by

2(t) = c,
y(0) = d,

(3.1)

where 0 < α 6 1, 0 6 t < R, and a,b, c,d ∈ R. The RPS method propose the solution for Eq. (3.1) as a
fractional power series (FPS) about the initial point t = 0 of the form

y(t) =

∞∑
n=0

an

Γ(nα+ 1)
tnα, 0 < α 6 1, 0 6 t < R.

Apparently, according to the initial condition, it yields that a0 = d. Next, we let yk(t) to denote the
k-th truncated series of y(t) for k > 1, which can be used to approximate the solution, i.e.,

yk(t) = d+

k∑
n=1

an

Γ(nα+ 1)
tnα, 0 < α 6 1, 0 6 t < R. (3.2)

Now, we define the residual function, Resy(t), for Eq. (3.1) as

Resy(t) = D
α
t y(t) + ay(t) + by

2(t) − c,

and accordingly, the k-th residual function, Resy,k(t), is

Resy,k(t) = D
α
t yk(t) + ayk(t) + by

2
k(t) − c. (3.3)

It is clear that limk→∞ Resy,k(t) = Resy(t) = 0 for all t > 0. As the fractional derivative of a constant
function in the Caputo’s sense is 0, we have Dnαt Resy(t) = 0. Also, the fractional derivative Dnαt of
Resy(t) and Resy,k(t) are matching at t = 0 for each n = 0, 1, 2, ...,k.

To obtain the value of the coefficients ai, i = 1, 2, 3, ...,k in Eq. (3.2), we substitute the k-th truncated
series of y(t) into Eq. (3.3) and by using the fact [1, 9] that

D
(k−1)α
t Resy,k(0) = 0, 0 < α 6 1, k = 1, 2, 3..., (3.4)

we obtain an algebraic system in ai, i = 1, 2, 3, ...,k.
Now, we explicitly apply the previous discussion to find ai under our consideration.
First, to determine a1, we consider (k = 1) in (3.3)

Resy,1(t) = D
α
t y1(t) + ay1(t) + by

2
1(t) − c.

But, y1(t) = d+
a1

Γ(α+1)t
α. Therefore,

Resy,1(t) = a1 + a

(
a0 +

a1

Γ(α+ 1)
tα
)
+ b

(
a0 +

a1

Γ(α+ 1)
tα
)2

− c.

From Eq. (3.4) we deduce that Resy,1(0) = 0. Thus,

a1 = −a0a− ba
2
0 + c,

where a0 = d.
Second, to obtain a2, we substitute the 2-nd truncated series y2(t) = a0 +

a1
Γ(1+α)t

α + a2
Γ(1+2α)t

2α into
the 2-nd residual function Resy,2(t), i.e.,
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Resy,2(t) = a1 +
a2

Γ(α+ 1)
tα + a

(
a0 +

a1

Γ(α+ 1)
tα +

a2

Γ(2α+ 1)
t2α
)

+ b

(
a0 +

a1

Γ(α+ 1)
tα +

a2

Γ(2α+ 1)
t2α
)2

− c.
(3.5)

Applying Dαt on both sides of Eq. (3.5) and solving Dαt Resy,2(0) = 0, will produce the same result as if
we just consider the coefficient of the variable tα in the expansion of (3.5) and multiply it by Γ(α+ 1). This
argument is based on the fact that by Caputo derivative, Dαt (tα) = Γ(α+ 1) and Dαt

(
tb
)
|t=0 = 0, b > α.

Thus, we get

a2 = −(a+ 2ba0)a1.

Finally, we can obtain the other coefficients ak, k > 3 by considering the k-th residual function Resy,k(t)
and finding the coefficient of the variable t(k−1)α. Then, multiplying the obtained coefficient by the factor
Γ((k− 1)α+ 1) and by running this process, we have the following recurrence relation for k > 2

ak+1 =
∑
i+j=k
i,j∈Z+

κ Γ(kα+ 1)
Γ(iα+ 1)Γ(jα+ 1)

aiajb− (a+ 2a0b)ak, (3.6)

where

κ =

{
−2 : i+ j 6= k,
−1 : i+ j = k.

It should be noted here that the RPS method is a numerical technique based on the generalized Taylor
series formula which constructs an analytical solution in the form of a convergent series. Therefore, one
can achieve a good approximation with the exact solution by using few terms only and thus, the overall
errors can be made smaller by adding more new terms of the RPS approximations.

4. Solutions and effects of fractional order of Riccati’s

The aim of this section is to study the solutions and the effects of the fractional order derivative to
Riccati’s equations. Based on the existence of a closed-form solution and on other applied numerical
methods to Riccati’s equations, three examples are considered to verify the applicability of the proposed
algorithm.

Example 4.1. We first consider the following fractional Riccati equation, which is usually encountered in
optimal control problems,

Dαt y(t) − 2y(t) + y2(t) = 1, 0 < α 6 1, t > 0, (4.1)

subject to the homogeneous initial condition y(0) = 0. Here, a = −2, b = 1, c = 1, and a0 = d = 0. In the
light of RPS algorithm discussed in Section 3, the proposed fractional power series solution for equation
(4.1) is of the form

y(t) =
a1

Γ(α+ 1)
tα +

a2

Γ(2α+ 1)
t2α +

a3

Γ(3α+ 1)
t3α +

a4

Γ(4α+ 1)
t4α + · · · .

Following the recurrence relation (3.6) of an, the first few coefficients an are

a1 = 1,
a2 = 2,
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a3 = 4 −
Γ(2α+ 1)
Γ 2(α+ 1)

,

a4 = 2a3 −
4Γ(3α+ 1)

Γ(2α+ 1)Γ(α+ 1)
,

a5 = 2a4 −
2Γ(4α+ 1)

Γ(3α+ 1)Γ(α+ 1)
a3 −

4Γ(4α+ 1)
Γ 2(2α+ 1)

,

a6 = 2a5 −
2Γ(5α+ 1)

Γ(4α+ 1)Γ(α+ 1)
a4 −

4Γ(5α+ 1)
Γ(3α+ 1)Γ(2α+ 1)

a3,

a7 = 2a6 −
2Γ(6α+ 1)

Γ(5α+ 1)Γ(α+ 1)
a5 −

4Γ(6α+ 1)
Γ(4α+ 1)Γ(2α+ 1)

a4 −
Γ(6α+ 1)
Γ 2(3α+ 1)

a2
3,

a8 = 2a7 −
2Γ(7α+ 1)

Γ(6α+ 1)Γ(α+ 1)
a6 −

4Γ(7α+ 1)
Γ(5α+ 1)Γ(2α+ 1)

a5 −
2Γ(7α+ 1)

Γ(4α+ 1)Γ(3α+ 1)
a3a4,

...

and so on. In particular when α = 1, we have a1 = 1, a2 = 1, a3 = 2, a4 = −8, a5 = −56, a6 = −112,
a7 = 848, a8 = 9088. Therefore, the RPS solution to equation (4.1) of the first order is

y(t) = t+ t2 +
t3

3
−
t4

3
−

7t5

15
−

7t6

45
+

53t7

315
+

71t8

315
+O(t9), (4.2)

which is identical with the terms of the Taylor series expansion for the exact solution

y(t) = 1 +
√

2 tanh

(
√

2t+
1
2

log

(√
2 − 1√
2 + 1

))
.

Figure 1 shows the effect of different values of the fractional derivative order 0 < α 6 1 for the
approximate solutions y10(t), t ∈ I = [0, 0.5]. It is clear that the approximate solution y10(t) when α = 1
from our algorithm is in high agreement with the exact solution on I. Moreover, the approximate solutions
y10(t) for different values of 0 < α 6 1 continuously approaches, as α increases, to the exact solution when
α = 1. Thus, we anticipate a veracious solution for various values of α.

In order to do further analysis, Table 1 shows a comparison between our approach and other existing
numerical methods for α = 0.5 and α = 0.75. It should be noted that we compare only the 10-term
approximate solution we obtained by RPS with third-component approximate solution (16-term) obtained
by Laplace-Adomian-Pade method (LAPM) [15], the fourth-component approximate solution (16-term)
obtained by Modified Homotopy Perturbation method (HPM) [20], and with 192-block pulse functions
obtained by Chebyshev Wavelets (CW) [18]. It can be deduced from the table that the results obtained
by the 10-term RPS approximate solution compare very well with other methods, especially when α gets
close to 1, but with easily computable components. Thus, more accuracy can be further achieved for
various values of α by adding more terms.

Table 1: Comparison for the solution of Example 4.1 with α = 0.5, α = 0.75.

α = 0.5 α = 0.75
t RPS HPM CW LAPM RPS HPM CW LAPM

0.1 0.593178 0.321730 0.592756 0.356803 0.245431 0.216866 0.310732 0.193401
0.2 0.955952 0.629666 0.933179 0.922865 0.475107 0.428892 0.584307 0.454602
0.3 1.389321 0.940941 1.173983 1.634139 0.710342 0.654614 0.822173 0.784032
0.4 2.351819 1.250737 1.346654 2.204441 0.941954 0.891404 1.024974 1.161985
0.5 4.693042 1.549439 1.473887 2.400447 1.169808 1.132763 1.198621 1.543881
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Figure 1

Example 4.2. Next, we consider the fractional Riccati equation

Dαt y(t) + y
2(t) = 1, 0 < α 6 1, t > 0, (4.3)

subject to the homogeneous initial condition y(0) = 0. By running the recurrence relation (3.6) of an with
a = 0, b = 1, c = 1, a0 = d = 0, we get an = 0 if n is positive even integer,

a1 = 1,

a3 = −
Γ(2α+ 1)
Γ 2(α+ 1)

,

a5 =
2Γ(4α+ 1)Γ(2α+ 1)
Γ(3α+ 1)Γ 3(α+ 1)

,

a7 = −
Γ(6α+ 1)Γ(2α+ 1)

(
4Γ(4α+ 1)Γ(3α+ 1) + Γ(5α+ 1)Γ(2α+ 1)

)
Γ(5α+ 1)Γ 2(3α+ 1)Γ 4(α+ 1)

,

...

and so on. Therefore, the solution of (4.3) in the sense of RPS-algorithm has the form

y(t) =
a1

Γ(α+ 1)
tα +

a3

Γ(3α+ 1)
t3α +

a5

Γ(5α+ 1)
t5α +

a7

Γ(7α+ 1)
t7α + · · · .

In particular when α = 1, we have y(t) = t− t3

3 + 2t5

15 − 17t7

315 + O(t9) which coincides precisely with the
Taylor series expansion for the exact solution y(t) = (e2t − 1)(e2t + 1)−1.

Figure 2 shows the approximate solutions y10(t) for t ∈ I = [0, 0.5] obtained by the RPS-algorithm for
various values of 0 < α 6 1. Apparently, y10(t) for α = 1 is in high agreement with the exact solution on
I. Moreover, y10(t) for different values of α continuously communicates until α = 1 is reached. Thus, a
convenient solution is expected for various values of α.

In Table 2, our numerical results are compared with other existing two methods for α = 0.5 and
α = 0.75. Here we only choose the 10-term approximation obtained by the RPS-algorithm to be compared
with the fourth-component approximate solution (16-term) obtained by Modified Homotopy Perturba-
tion method (HPM) [20] and with 12-component approximate solution (12-term) obtained by Laplace-
Adomian-Pade method (LAPM) [15]. It can be seen that our results are in accord with their results but
with less computations.
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Figure 2

Table 2: Comparison for the solution of Example 4.2 with α = 0.5, α = 0.75.

α = 0.5 α = 0.75
t RPS HPM LAPM RPS HPM LAPM

0.1 0.33012277 0.273875 0.698739 0.19010097 0.184795 0.736836
0.2 0.43740644 0.454125 0.785655 0.30997577 0.313795 0.870182
0.3 0.50958082 0.573932 0.825857 0.40462777 0.414562 0.914950
0.4 0.57432474 0.644422 0.850066 0.48176169 0.492889 0.935903
0.5 0.65491555 0.674137 0.866733 0.54585356 0.462117 0.947342

Example 4.3. Lastly, we consider the fractional Riccati equation

Dαt y(t) + y(t) − y
2(t) = 0, 0 < α 6 1, t > 0, (4.4)

with nonhomogeneous initial condition y(0) = 1
2 . By applying the recurrence relation (3.6) of an with

a = 1, b = −1, c = 0, and a0 = d = 1
2 , we have an = 0 if n is even integer,

a1 = −
1
4

,

a3 =
Γ(2α+ 1)

16Γ 2(α+ 1)
,

a5 = −
Γ(4α+ 1)Γ(2α+ 1)

32Γ(3α+ 1)Γ 3(α+ 1)
,

a7 =
Γ(6α+ 1)Γ(2α+ 1)

(
4Γ(4α+ 1)Γ(3α+ 1) + Γ(5α+ 1)Γ(2α+ 1)

)
256Γ(5α+ 1)Γ 2(3α+ 1)Γ 4(α+ 1)

,

...

and so on. Thereby, the solution of (4.4) in the sense of RPS-algorithm has the form

y(t) =
1
2
+

a1

Γ(α+ 1)
tα +

a3

Γ(3α+ 1)
t3α +

a5

Γ(5α+ 1)
t5α +

a7

Γ(7α+ 1)
t7α + · · · .



M. Ali, I. Jaradat, M. Alquran, J. Math. Computer Sci., 17 (2017), 106–114 113

Particularly with α = 1, we have y(t) = 1
2 −

t
4 +

t3

48 −
t5

480 +
17t7

80640 +O(t9) which coincides precisely with the
Taylor series expansion of the exact solution y(t) = e−t(1 + e−t)−1.

Figure 3 shows the behavior of the approximate solutions y10(t), t ∈ I = [0, 0.5] for various values of
0 < α 6 1. Clearly, the approximate solution y10(t) when α = 1 from the RPS-algorithm is in harmony
with the exact solution on I. Moreover, y10(t) for different values of α continuously communicates until
α = 1 is reached. Thus, a convenient solution is expected for various values of α.

Figure 3

5. Conclusions

In this paper we used the residual power series (RPS) method to study the solution of the fractional
Riccati equation. We reached to the fact that RPS is very practical and efficient in finding analytical solu-
tions and in addition numerical solutions for wide classes of linear and nonlinear fractional differential
equations. It provides more series solutions that converge very rapidly in real physical problems. Three
concrete examples were tested to manifest the validity of the proposed method and the obtained results
were remarkable and compatible with other methods. Moreover, we noticed that the obtained approxi-
mate solutions for various values of 0 < α 6 1 continuously communicate until the first order derivative
is reached. This is another indicator that our results are likely to be legitimate.
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