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Abstract 

In this paper, with the aid of symbolic computation, an algebraic algorithm is 
proposed to construct soliton-like solutions to (2+1)-dimensional differential- 
difference equations. The famous (2+1)-dimensional Toda equation is explicitly 
solved and some new classes of soliton-like solutions are obtained. 
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1. Introduction 

Differential-difference equations (DDEs) play a crucial role in modeling of many 
physical phenomena such as particle vibrations in lattices, currents in electrical 
networks, pulses in biological chains, etc. Unlike difference equations which are 
fully discretized, DDEs are semi-discretized with some (or all) of their special 
variables discretized while time is usually kept continuous. Some aspects of DDEs, 
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such as integrability criteria, the computation of densities and symmetries, 
conservation laws and transformation theory, etc., have been studied extensively 
[1-6]. 

Not long ago, Baldwin et al [7]. presented an algorithm to find exact 
solutions of DDE in terms of tanh function and found kink-type solutions in many 
spatially discrete nonlinear models such as Hybrid lattice [7],Volterra lattice [8], 
discrete mKdV lattice [7, 9], Ablowitz-Ladik lattice [9], Toda lattice [10]. Then some 
extended algebraic methods [11 - 14] dedicate to seeking exact traveling solutions 
of DDE(s). 
    Recently, Zhu [15] extend the Exp-function method [16] and derived exact 
general solutions to the (2+1) dimensional Toda lattice. The Exp method is proved 
to be nice and simple in seeking travelling solutions of DDES. But up to now, there 
are no algebraic methods to find non- traveling solutions. 

In this paper, we propose an algorithm to solve (2+1)-dimensional DDEs and 
find exact non-traveling wave solutions. Our method is powerful when seeking for 
soliton-like solutions of NDDEs. 
 
2. Preliminaries  

Suppose the DDE we discuss here is given in the following nonlinear 
polynomial form 
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where ( ) ( , )nu t u n t  is a dependent variable; t  is a continuous variable; n , m , 

iP Z . 

To compute the non-travelling wave solutions to Eq. (1), we assume 

  ( , ) ( )n nu t x u   

where  

( , ).n dn r t x                           (2) 

Step 1. Suppose that solutions to Eq. (1) satisfy the following form: 
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where 0 ( , ),a t x 1( , ),a t x ( , ),Na t x 1( , ),b t x ( , ),Nb t x 1( , )c t x and ( , )Nc t x  are 

unknown functions to be determined later. N can be determined by balancing the 

highest degree linear term and the nonlinear term of ( )nu t .  

Meanwhile, if ( )d sinh
d
 

 , by using separation of variables method, we can 

derive 

( ) ( )sinh csch   and ( ) ( ).cosh coth               (5) 

When 0ip  , we can obtain 
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Step  2.: Simple computation leads to the following identity: 

( ) ( , ) .
in p i n in p d r t x dp        

For ( ) ( )n nsinh csch    and ( ) ( )n ncosh coth   , we can have  
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Substituting (3) into Eq. (1), clearing the denominator, we obtain a finite 

series of ( ) ( )( 0,1,..., , 0,1).k i
n nsinh cosh i m k    Setting the coefficients of 

( ) ( )k i
n nsinh cosh   to zero, we get a set of difference differential equations with 

respect to the unknown ,i ia b  and ic  

Step 3. Solve the nonlinear over-determined differential-difference equations. 
Explicit soliton-like solutions to Eq. (1) can be derived. 
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3. Non-traveling solutions of (2+1)-Dimensional Toda Lattice 

The (2+1)-dimensional Toda equation is 
2
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We assume soliton-like solutions to Eq. (8) in the form 
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Eq. (9) can be rewritten as the following expression by means of Eq. (5), 

   0 1 1 1

1

( , ) ( , ) ( ) ( , ) ( ) ( , ) ( )
( , ) ( )

n n n n

n

u a t x a t x tanh a t x coth b t x csch
c t x sech

  





   


        (10) 

Substituting Eq. (9) and Eq. (4) into Eq. (8), clearing the denominator and 

setting the coefficients of all powers like ( ) ( )k i
n nsinh cosh   

( 0,1,..., , 0,1.)i m k   to zero, yields some over-determined difference differential 

equations with unknown functions with respect to 

1 0 1 1 1( , ), ( , ), ( , ), ( , ), ( , )a t x a t x a t x b t x c t x   and ( , )n t x . 

We omit the equations for simplicity and solve the over-determined 
differential equations by the symbolic tool Maple. We can have the following 
fourteen classes of explicit non-traveling as 
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( ), ( )i iF t F x and iC are arbitrary in all the above fourteen families. 
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Consider the solution Family 10. Setting 1 2
21, ( ), 100,

2
C C d arctanh n     

2 1( ), ( ) ( ),F sech t F x tanh x   Family 10 reads  

100 ( ) ( ) ( ) ( ),n nu sech t tanh x tanh coth      

where 
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The exact solution Family 10 is illustrated in the Fig 1. 

 

Fig 1. The shape of Family 10 with 1 2
2( ) ( ), ( ) ( ), ( )

2
F x tanh x F t sech t d arctanh    

 
Families of solutions 8-14 aren't linear functions depended on t  and they are 

more general than constant ones. As we known, Family 2, Family 8, Family 9 and 
Family10 can be found in Ref. [17]. Other ten Families presented in this paper 
have not been found in previous literature. This paper also provides some exact 
solutions of the Toda lattice for various nonlinear approximate techniques 
[18-22].        
 
Conclusions 

With symbolic computation, when applying our proposed method to Eq. (1), a 
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rich variety soliton-like solutions given in forms of sech, tanh, coth, csch. Our 
method can also be used to construct non-traveling solutions of other higher 
dimensional DDE(s).   
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