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1. Introduction

During the last 15 years, numerical analysis of one-dimensional Volterra Integral
equations has been discussed in [2] (and in the references cited there). The numer-
ical methods for two-dimensional Volterra Integral equation seem to have been

studied in some places. Ref. [1] proposed a class of explicit Runge-Kutta type me-
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thods of order 3 (without analyzing their convergence). Brunner and Kauthen [3]
introduced collocation and iterated collocation methods for two-dimensional linear
Volterra integral equation. Guo-giang and Hayami [4] introduced extrapolation
method of iterated collocation solution for two-dimensional nonlinear Volterra
integral equation. Recently in [5] P. Darnia and A. Ebadian introduced the numeri-
cal solution of non-linear Volterra integral equations.

The subject of the presented paper is to apply three-dimensional (DTM) for solving
nonlinear three-dimensional Volterra equations. For this purpose we will consider-

nonlinear three-dimensional Volterra equation of the second kind.

1.1 ulx,y,z) = gx,y,z) + fox foy fOZ(D(x,y,z,r,s, t,u)dtdsdr
where
(x,y,z) e D =[0,X] x [0,Y] x [0, Z], u(x,y,2)

is an unknown function, g(x, y, z) and @(x,y,z,r,s,t,u) are given analytical func-

tions defined, respectively on D and
F={(x,y,z7rs,tu):0<r<x<X,0<r<y<Y 0<t<z<Z,0<u< o}

Order to solve three-dimensional non-linear Volterra equation by differential trans-
form, its basic theory is stated in next section.

2. Main Result

Definition 2.1. Consider the analytical function of three variables u(x, y, z) which is
defined on D < R3 and (x,,V,, o) € D. Three dimensional Differential Transform
method of u(x, v, z) is denoted by U(k, h, 1) is defined on N3 U(0,0,0), as following

2.1 U(k, h1) =

1 [6k+h+lu(x,y,z)

kil oxkoayhozl (X0Y0,Z0) !

where u(x,y, z) is original function and U(k, h,1) is called transformed function.

Inverse differential transform U (k, h, 1) in Eq(2.1) is defined as following
2.2 u(x,y,2) = Xitzo Lh=o Zizo Uk, b, 1) (x — x0)*(y — ¥0)"(z — 20)".
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By combining Eqgs(2.1) and (2.2) with (x,, o, 2,) = (0,0,0), the function u(x,y, z)

can be written as

— \ 00 oo oo 1 ak+h+lu(xv3/vz) k~hol
2.3 u(x’y’ z) = Zk:o Zh:o Zl:o k!h!l![ dxkoyhazl xyrz.

In real applications, the function u(x, y, z) is expressed by finite series and Eq(2.3)

can bewritten as following

1 [6k+h+lu(x,y,z) ke hol

2.4 u(x,y, z) = LOZLOZ” SeFayhasl | X V7

1=0 gipi
This equation implies that

— \ o0 oo oo 1 ak+h+lu(xvyz) khol
2.5 u(x,y,z) = Zk=p+1zh=q+1zl=n+1 k!h!l![ 9xkayhazl xX"y“z,

is negligibly small. The fundamental mathematical properties of three-dimensional

differential transform are pressed in the following theorem.

Theorem 2.2. If U(k, h,1), F(k, h,1) and G(k, h, 1) are three-dimensional differential
transform of the functions u(x, v, z), f(x, v, z), g(x, y, z) respectively, then
1. Ifulx,y,z)=f(xv,2)+ g(x,v,2),then
U(k,h 1) =F(x,y,z) +G(x,y,2).
2. Ifulx,y, z) = xPyiz" then U(k,h,1) = §(k —p)6(h — q)6(L — 7).

PTIITf(x,y,2)
0xPoyd9z" '

Ulk,h, 1) =(k+1)..(k +p)(h+1)..(h+ )+ 1) .. ({+71)F(k +p,+q,l +71).

3. Ifulx,y,z) = then

4. 1fu(x,y,z) = sin(ax + by + cz), then

__akpbhcl . k+h+l
Uk, h,1) = kIR sin( 2 ).
kph L
5. 1fu(x,y,z) = e™+0Y+Zhen U(k, h, [) = ak|1:lllc' .

Theorem 2.3. If u(x,y,z) = f(x,y,2)g(x,y,z) and U(k, h, 1), F(k, h,1) and
G(k, h,1) are as Theorem 2.2, then

Ulk,h, 1) =Yk St St F@r s, t)G(k—1,h—s,l—1t).
Proof. It is easy to verify that for every k, h and [ € NU{0}, we have
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Mg (ry.z) _
dxkayhoz!

X n I K\ CR (1 a‘r‘+S+tf(x'y'Z) ak—‘r‘+h—s+l—tg(x'y'z)
Z‘r=0 ZS=0 Zt=0(r) (S) (t) dxTdySazt axk—rayh—sazl—t

2.6

Now by using relation (2.4) and Definition 2.1, with (x,, v, z,) = (0,0,0), we have

1 I:ak+h+lu(x'yvz) _
knit L axkoyhaz!

1 k h ! R (1 6T+5+tf(x,y,z) ak—T+h—S+l—tg(x'y'Z) _
k!h!l! ZT:O Zszo Zt:O(T)(S)(f) AxToysazt  axk-rayh—sazl-t

U(k, h1) =

k Zh Zl 1 6T+S+tf(x,y,z) 1 ak—T+h—S+l—tg(x'y'Z)
r=0£4s=0 4t=0 115111 gxT9ySdzt (k—7)!(h—s)!(I—t)! dxk-Tayh-sgzl-t ’

and finally, we obtain
Ulk,h, 1) =Yk Sr St F(@r s, t)G(k—1,h—s,l—1t).

Theorem 2.4. If u(x,y,z) = fi(x,y,2) f,(x,y,2) ... f,(x,y,2), then
U(k,h,1) =
K10 Zn 0+ Zrvmo Ln120 Lanopmo = Ly =0 Lbn-1=0 Lt ym0 - LesmolF1 (71,51, t1) %
Fy(ry — 11,8, — S, ty —t1) X .. X F (11 — T2, Sn—1 — Sp—2, tn_1 —
tho)F (k= 11, h —Sp_q, 1 — ty_y).
Proof. We will proof the Theorem by induction on n. According to the Theorem 2.3,
for n = 2, the theorem is clear. Suppose the theorem is correct for n > 3. We set
g9(x.y.2) = fi(x,y,2) ,(x,¥,2) ... fu-1(x,,2).
By using Theorem 2.3 and hypothesis, we have
2.7 Uk, h, 1) = X5 o028 =026, =0 G(Tne1, Sn—1, ta—1) Py (k —
Tnet, B — Sp_1, L — th_1),
and
2.8 G(k,h 1) =
Km0 Dt I 0 mg Db y=0 - D imol Fa(ry,s1,4) %
F3(rs — 15,85 — Sy, tg —ty) X .. X Fy_j(k—1,_5,h—5s,_5,1 —
tn-2)]-
The assertion is obtained by substituting Eq (2.8) in Eq (2.7).

Theorem 2.5. If (x,y,2) = fo" foy foz f(r, s, t)dtdsdr, then
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O ifk=0o0or h=00rl=0
U(k,h 1) =
( )= —F(k 1,h—1,1-1)if k,h1=123
khl

Proof. By using Leibniz formula and mathematical induction on k, h and [, we have

du(xyz) _ rx vy 1f(r.s.2)
20 T g

z h=1g¢(p,

2.10 M = 2 2 20029 gear,

u(xyz) v z 3 1f(xst)
211 ot = Ly Loy e dsdt.

Hence, by applying Egs (2.9), (2.10) and (2.11) in Definition 2.1 with (x,, v, z9) =
(0,0,0), we have U(k,h,1) =0ifk =0orh=0o0rl=0,and fork > 1,h > 1 and

[ >1, weget

Uk, h,1) = 1 [ak+h+lu(x,y,z) __1 gkth [f; y ol 1f(rsz)d dr]z

kL oxkoayhozl k'hlll dxkayh az-1
1 [fx ah+l Zf(ryz) _ 1 I:ak—1+h—1+l—1f(x'yvz)
KRl axk Xo oyh-1gzl-1 T ki L axk-1gyh-1gz1-1

Therefore by Definition 2.1 with (x,, o, 2,) = (0,0,0), we will have
Uk, h1) = —F(k = 1,h = 1,0 - 1),

Theorem 2.6.1f (x,y,2) = [ [ [o fi(r.s,)fo(r,5,1) ... fu(r, 5, t)dtdsdr, then

U(k,h,1)
Tn— T2 Sp— S2 th-1
khl Z Z Z Z Z Z Z Z Z[Fl(rlaslatl)
Th—1=07p-2=0 =05p-1=05Sp—2=0 =0tnp-1=01ty_2=0 t1=

X Fy(ry—1,S, — st —t)) X .. xE(k—1—r,_,h—1—5s,_ 4,1l —1—t,_;1)]
where k =1,2,..,p,h=12,..,qand L =1.2,..,nand U(k,h,1) =0if k=0 or
h=0o0rl=0.

Proof. We set g(r,s,t) = fi(r,s,t) fo(r,s,t) ... f,(r,s,t), then

u(x,y,z) = fox foy fozg(r,s, t)dtdsdr.
The assertion is obtained by applying Theorem 2.5 and Theorem 2.4.

Theorem 2.7. If u(x,y,z) = fi(x,y, z) fox foy fozfz(r,s, t)dtdsdr, then
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U(k,h,l)ZEk:Eh:zl:[(k_r)(h_s)(l )Fl(r,s,t)Fz(k—r—l,h—s—1,l

r=1s=1t=1
o)
where k =1,2,..,p,h=12,..,qand L =1.2,..,nand U(k,h,1) =0if k=0 or
h=0orl=0.
Proof. We set g(x,y,2) = [, [, [ f(r,s, t)dtdsdr, then we have
ulx,y,z) = filx,y,2)g(x,y,2).
By using Theorem 2.3 and Theorem 2.5, we get
2.12 Ulk,h, 1) =Yk St S Fi(r s, t)G(k—71,h—s,l—1t),
and we also get

2.13 G(k,h1) =—F,(k—1,h—1,1-1),
khl

where k =12,..,p,h=12,..,qandl =12,..,nand G(k,h,1) =0if k =0or
h = 0or ! = 0. Now the assertion is obtained by substituting relation (2.13), in rela-
tion 2.12.

3. Error Analysis

In this section, we perform the estimating error for the integral equations. Since the
truncated Taylor series or the corresponding polynomial expansion is an approximate
solution of equation(1.1), if we define e, ;, »(x,y,z)as an error function in the fol-
lowing form
epan(69.2) = [u(x,y,2) — upgn(x.7.2)|
Where
up,q,n(xaya z) = i:o ZZ=0 Yo Uk, b, D) (x — x0)*(y — ¥0)"(z — 20)",
Is approximation function, then we can prescribe e, , ,(x,y, z) < 10™, where m is
any positiveinteger, then we increase p and q as far as the following inequality holds
at each points (x, y, z)
epqn(X,y,2z) < 10™.
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In other words, by increasing p, g and n, the error function e, ,, (x,y, z) approaches

to zero.

Example 3.1. Consider the nonlinear Volterra Integral equation
u(x,y,2) = g(x.y,2) — [; [7 J, u(r,s t)dedsdr,
where (x,y, z) € [0,1] x [0,1] % [0,1] and

x2yz+xy?z+xyz?
2

g(x,y,z) = +x+y+2z
Its exact solution can be expressed as u(x,y,z) = x +y + z.
We setf (x,y,z) = [ [ Jo u(r,s, t)dtdsdr, then we have

u(x,y,z) = glx,v,2) — f(x,y,z).

Taking the transformation of this equation , we obtain
U(k,h,1) = G(k,h,l) — F(k,h,1),

where

G(k,h 1) = %(5(k —2)6(h—1)6(1—1) +68(k —1)6(h—2)6(1 — 1) + 5(k —
1)8(h — 1)8( — 2)) + 8(k — 1)8(R)S(L) + 5(k)S(h — 1)8(1) + 8(k)5(h)s(1 — 1),
fork=01,..,p,h=0,1,.,qandl =01,...,n, and
F(k,h,D) =— U(k—1,h=1,1-1) k=1h>11>1

Forp = 1,q = 2, I= 3, and recursive method, we obtain

U(000) U0O0L) U002 UOO3T 9 1 o o
U(O10) UL U©12) UOL)| |1 0 0 o
U(0,20) U(021) U(022) U023)]| o 0 0 ol
U(100) U(101) U(1,02) U(103) ‘|1 00 oi
U110 U(111) U@12) U@113) lO 0 O OJ
U(1,20) U@21) U@22) U@23)] 0 0 00

Now by substituting this relation in equation (2.4), we get

ulx,y,z) =x+y+z.

Example 3.2. Consider nonlinear Volterra Integral equation
ulx,y, z) = g(x,y,z) — 24x?y fox foy fOZ u(r, s, t)dtdsdr,
where (x,y, z) € [0,1] x [0,1] % [0,1] and
g(x,y,z) = AxSy3z + Ax3y3z3 + 4x*y322% + x%y + yz% + xyz.

Its exact solution can be expressed as u(x, v, z) = x%y + yz? + xyz.
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We setf (x, y,z) = —24x2y fox foy fOZ u(r, s, t)dtdsdr, then we have
u(x,y,z) = glx,v,2) + f(x,y,2).
If we take the transformation ofthis equation, we obtain
U(k,h,1) = G(k,h,l) + F(k,h,1),
where
G(k,h 1) =46(k —5)6(h—3)6(1 —1)+45(k —3)6(h—3)6(1—3) +
45(k —4)6(h —3)6(1 —2) +6(k —2)6(h—1)6(1) + 6(k)6(h—1)6(L —2) +
§(k—1)6(h—1)5(1 - 1),
fork=01,..,p,h=01,..,qandl =0,1,...,n, and

P 4 n
1
Fleh)==24) 3 % s 8k = 2)8(h = 16 ()

r=0s5=0t=0
xUlk—r—-1h—-s—-11—-t—-1),
fork=1,..,.p,h=1,..,qand [ =1, .., n

By solving the above recursive equations for p = 3,q = 1 and n = 3, the result are

listed as follows

[U(0,00) U(01) U(02) U(003)
U(010) U(0L1) U(012) U(013)
U(100) U(01) U(L02) U(L03)
U(L10) U(L11) U@12) U(L13) =
U(200) U(201) U(202) U(2003)
U@10) U@Ll U@R12) U213)
U(3,00) U(B01) UB02) U(303).

Now by substituting this relation in equation (2.4), we get

oOroOooocoo
ococorooo
ococoocoro
Oocoocooo

u(x,y, z) = x%y +yz? + xyz,

whichis the exact solution.

Example 3.3. Consider nonlinear Volterra Integral
ulx,y, z) = g(x,y,z) + fox foy fozu(r,s, t)dtdsdr,
where (x,y, z) € [0,1] x [0,1] % [0,1] and
g(x,y,z)::ex+y_Fex+z4_ey+z__ex__ey__ez4_1.
Its exact solution can be expressed as u(x, y,z) = e*tv+z,

In the same manner in the previous example, we set

flx,y,z) = fox foy fozu(r,s, t)dtdsdr,
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then we have

u(x,y,z) = g(x,y,2) + f(x,y,2).
Taking the differential transformation of this equation, we obtain

U(k,h 1) =G(k,h 1)+ F(k,h1l),
where

G(k,h,0) = k=01,.,p,h=01,..,q

1
k'h!'

1
G(O,h,l):m ,l=0,1,...,n,h=0,1,...,q

1

G(k,O,l) :m ,k :0,1,...,p,l =O,1,...,n
G(k,h,1) =0,k hl+0,

and we also have

1
Flk,h1) = = U(k = 1,h — 1,1 - 1),
where F(k h,0) = F(k,0,1) = F(O,h,1)=0 , k=01,..,p,h=01,..,q and

[=01,..,n. By solving the above recursive equations for p =q=n=2 and
p = q =n =3, we obtain

Uppa(x,y,2) =1+ (x+y+2) +%(x+y+z)2 +%(x2y+xy2 + x2z+ xz%+
Y2z + yz2) + i (x2y? + x222 + y272) + % (xyz? + xy%z + x2yz) + i (xy?z2 +
x2yz2 + x2y27) + gxzyzzz’
u3y3'3(x,y,z) =1+(x+y+2) +%(x+_’y+z)2 +%(x+_’y+z)3 +i(x2y2 +
x%z% +y2z%) + % By +xy3+x3z+xz3 +y3z+yz3) + %(x2y3 +x3y2 +
X223 + x372 + y223 + y372) + i(x3y3 +x323 + y323) +%(xyzz +xy?z +
xzyz) + i (x:yzz2 + x2y22 + xzyzz) + % (xyz3 + xy3z + x3yz) + % (xyzz3 +
xy322 + x2yz% + x3y22 + x2y37 + x3y2z) + i(xy3z3 + x3y23 + x3y32) +
i(x2y223 +x2y372 4+ x3y272) + %(x2y3z3 + x3y273 4+ x3y322) + gxzyzzz +

ix3y3z3’

which are truncated Taylor series of exact solution. Table 1 shows the absolute errors
at some particular points.
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Table 1

X y z Exact Solution e222(x,y,2) €333(xy.2)
0.1 0.1 0.1 1.3498588076 1.6261825% 1073 1.557798x% 107>
0.01 | 0.1 0.1 1.2336780600 4.8175870x 10™* | 9.492003x 107°
0.01 | 0.01 | 01 1.1274968516 1.8474381x 10™* | 4.338226x 10~°
0.01 | 0.01 | 0.01 1.0304545340 1.5113801x 107® | 1.280568x 10~°
0.001| 0.01 | 0.01 1.0212220516 4.3803265x 1077 | 8.421920x 10710
0.001 | 0.001 | 0.01 1.0120722889 1.7775346x 107 | 4.165485x 10710
0.001 | 0.001 | 0.001 | 1.0030045045 1.5043042x 10~° | 3.637978x 10712

According to Table 1, these results indicate that the use of time steps smaller than
about 0.1, the error function approaches to zero.

4. Conclusion

In this study, we introduced the definition and operation of three-dimensional diffe-
rential transform. Integral equations can be transformed to algebraic equations by
using the differential transform and the resulting algebraic equations are called itera-
tive equations. The overall spectra can be calculated through the initial condition in
association with the iterative equations. Finally, by using this algebraic equations, we
find the approximate solution of the integral equations.
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