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Abstract 

In this paper we study the (p,q)-Laplacian systems with concave nonlinearities. Using some 

asymptotic behavior  𝑓  at zero and infinity, three nontrivial solutions are established. 
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1 Introduction 

In this paper, we consider problems  

 

−∆𝑝 𝑢 = 𝜆 𝑢 𝑝−2𝑢 + 𝑓𝑢 𝑥, 𝑢, 𝑣                            𝑖𝑛  Ω

−Δ𝑞𝑣 = 𝜆 𝑣 𝑞−2𝑣 + 𝑓𝑣 𝑥, 𝑢, 𝑣                               𝑖𝑛 Ω

𝑢 = 𝑣 = 0                                                                𝑖𝑛  𝜕Ω

                    (1.1) 

Where  Ω ⊂ 𝑅𝑁 ,  𝑁 ≥ 1  is a bounded with smooth domain and 𝐹 ∈  𝐶1 Ω  × 𝑅2, 𝑅 . 

The functional corresponding to problems (1.1) is  

𝐽𝜆 𝑢, 𝑣 =
1

𝑝
  ∇𝑢 𝑝  𝑑𝑥 +

1

𝑞Ω
  ∇v q dx −

λ

pΩ
  u pdx −

λ

qΩ
  v q dx −  F(x, u, v)

ΩΩ
 dx 

Let  𝑊 = 𝑊0
1,𝑃 Ω × 𝑊0

1,𝑞
(Ω) with the norm 
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 (𝑢, 𝑣) =  ∇𝑢 𝑝 +  ∇𝑣 𝑞 = (  ∇𝑢 𝑝
Ω

𝑑𝑥)
1

𝑝 + (  ∇v 𝑞
Ω

𝑑𝑥)
1

𝑞 . 

It is well known operator -Δ has a sequence of eigenvalues  𝜆𝑘  satisfying   

0 < 𝜆1 < 𝜆2 < ⋯ < 𝜆𝑘 → +∞.  For general  𝑝, 𝑞 ∈  1, +∞ , (−∆𝑝 , −∆𝑞)  has a smallest 

eigenvalue, i.e., the principle value, 𝜆1 , which is positive, isolated, simple (see[2])  and 

admit the following variational characterization  

𝜆1 =
𝑖𝑛𝑓

0≠𝑢,𝑣∈𝑊0
1,𝑝

(Ω)×𝑊0
1,𝑞

(Ω)

  ∇𝑢 𝑝𝑑𝑥+  ∇𝑣 𝑞𝑑𝑥
ΩΩ

  𝑢 𝑝𝑑𝑥+  𝑣 𝑞𝑑𝑥
ΩΩ

                      (1.2) 

Furthermore, the  𝜆1 − eigenfunctions do not change in Ω , and by the maximum principle 

we may suppose that  𝜙1 > 0   is a  𝜆1 − eigenfunction. There are many paper concerned 

with the resonance problem. In [7] L. Shi proved that there exists 𝜆∗ > 0 such that p-

Laplacian multiple solutions for a class of (p,q)-Laplacian systems (1.1). Consider the 

following conditions hold: 

(i) 𝑓 0,0 = 0. 

(ii) 𝑓 ∈ 𝐶1 Ω × 𝑅2 , 𝑅  and 𝑓′  0,0 > 𝜆1. 

(iii) For some positive integer 𝑘 ≥ 1, 
𝑙𝑖𝑚

 (𝑠, 𝑡) → −∞

𝑓(𝑥, 𝑠, 𝑡)

 𝑠 𝑝 +  𝑡 𝑞
< 𝜆1 ≤ 𝜆𝑘 <

𝑙𝑖𝑚

 (𝑠, 𝑡) → +∞

𝑓(𝑥, 𝑠, 𝑡)

 𝑠 𝑝 +  𝑡 𝑞
< 𝜆. 

In this paper we extend this result to the case 1 < 𝑝, 𝑞 < +∞; Furtheremore, here the  
𝑙𝑖𝑚

 (𝑠,𝑡) →+∞

𝑓(𝑥,𝑠,𝑡)

 𝑠 𝑝+ 𝑡 𝑞
∈ (𝜆𝑘 , 𝜆𝑘+1) relaxed to  

𝜇2 ≤
lim⁡𝑖𝑛𝑓

 (𝑠, 𝑡) → ∞

𝑓(𝑥, 𝑠, 𝑡)

 𝑠 𝑝−2𝑠 +  𝑡 𝑞−2𝑡
≤

lim⁡𝑠𝑢𝑝

 (𝑠, 𝑡) → ∞

𝑓(𝑥, 𝑠, 𝑡)

 𝑠 𝑝−2𝑠 +  𝑡 𝑞−2𝑡
≤ 𝜇3, 

Where  𝜇2 , 𝜇3 ∈ (𝜆1, +∞). 

Our main result is as follows. 

Theorem 1.1.  Assume that  𝑓 ∈  Ω  × 𝑅2, 𝑅  and 𝑓 𝑥, 0,0 = 0 𝑎. 𝑒. If the following 

conditions hold  

(i) There exists constant 𝜇0 > 𝜆1  such that 

lim ⁡𝑖𝑛𝑓
 (𝑠,𝑡) →∞

𝑓(𝑥,𝑠,𝑡)

 𝑠 𝑝−2𝑠+ 𝑡 𝑞−2𝑡
≥ 𝜇0           Uniformly for 𝑎. 𝑒. 𝑥 ∈ 𝛺;           (1.3) 

(ii) There exist constants 𝜇1 , 𝜇2 , 𝜇3 > 0 with 𝜇1 < 𝜆1 < 𝜇2  such that 

lim ⁡𝑠𝑢𝑝
  𝑠,𝑡  →∞

𝑓 𝑥,𝑠,𝑡 

 𝑠 𝑝−2𝑠+ 𝑡 𝑞−2𝑡
≤ 𝜇1 ,                                    (1.4) 
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𝜇2 ≤
lim⁡𝑖𝑛𝑓

 (𝑠, 𝑡) → +∞

𝑓(𝑥, 𝑠, 𝑡)

 𝑠 𝑝−2𝑠 +  𝑡 𝑞−2𝑡
≤

lim⁡𝑠𝑢𝑝

 (𝑠, 𝑡) → +∞

𝑓(𝑥, 𝑠, 𝑡)

 𝑠 𝑝−2𝑠 +  𝑡 𝑞−2𝑡
≤ 𝜇3, 

Hold uniformly for 𝑎. 𝑒. 𝑥 ∈ 𝛺, then there exist such that problem (1.1) admits at least three 

nontrivial solutions for 𝜆 ∈  0, 𝜆∗ . 

2 proof of the main result 

Define the functional 𝐽𝜆 :𝑊0
1,𝑝

(Ω) × 𝑊0
1,𝑞

(𝛀) →R   by 

𝐽𝜆 𝑢, 𝑣 =
1

𝑝
  ∇𝑢 𝑝

Ω

𝑑𝑥 +
1

𝑞
  ∇𝑣 𝑞

Ω

𝑑𝑥 −
𝜆

𝑝
  u 𝑝

Ω

𝑑𝑥 −
𝜆

𝑞
  𝑣 𝑞𝑑𝑥 −  

𝐹 𝑥, 𝑢, 𝑣 𝑑𝑥

ΩΩ

 

Clearly, 𝐽𝜆 ∈ 𝐶1(𝑊0
1,𝑝

(Ω) × 𝑊0
1,𝑞

(𝛀),R). It is obviouse that the critical points of correspond 

to the weak solutions of problem (1.1).   

Lemma  2.1.  Assume that the assumptions of theorem 1.1 hold.  Then the functional  

𝐽𝜆(𝑢, 𝑣) satisfies the (PS) condition. 

Proof: Assume that   𝑢𝑛 , 𝑣𝑛 = 𝑧𝑛  𝑛∈𝑁 ⊂ 𝑊0
1,𝑝

(Ω) × 𝑊0
1,𝑞

(Ω) is a (PS) sequence, i.e., for 

some  𝑀 > 0, 

 𝐽𝜆 𝑢𝑛 , 𝑣𝑛  ≤ 𝑀,    ∇𝐽𝜆 𝑢𝑛 , 𝑣𝑛 → 0  𝑎𝑠  𝑛 → ∞.                           (2.1) 

It suffices to prove that   𝑢𝑛 , 𝑣𝑛 = 𝑧𝑛  is bounded in 𝑊0
1,𝑝

(Ω) × 𝑊0
1,𝑞

(Ω). In fact, if not, we 

may assume by contradiction that there exist a sequence of   𝑢𝑛 , 𝑣𝑛 = 𝑧𝑛   with 

 (𝑢𝑛 , 𝑣𝑛) → +∞ and  𝜀  with 𝜀𝑛 → 0 in 

 𝑊0
−1,𝑝 ′

(Ω) × 𝑊0
−1,𝑞 ′

(Ω)  such that  

−∆𝑝𝑢 𝑛 = −𝜆 𝑢𝑛  
𝑝−2𝑢 + 𝑓𝑢(𝑥, 𝑢𝑛 , 𝑣𝑛)       in     𝑊0

−1,𝑝 ′
(Ω)                               (2.2) 

Taking  −𝑢𝑛
− as test function in (2.2), we obtain   

 ∇𝑢𝑛
− 𝑝

𝑝
=  𝜆 𝑢𝑛

− 𝑝

Ω

𝑑𝑥 −  𝑓𝑢
Ω

 𝑥, 𝑢𝑛 , 𝑣𝑛 𝑢𝑛
− 𝑑𝑥 −  𝜀𝑛

Ω

𝑢𝑛
−𝑑𝑥. 

Similarly, 

 ∇𝑣𝑛
− 𝑞

𝑞
=  𝜆 𝑣𝑛

− 𝑞𝑑𝑥 −  𝑓𝑣
ΩΩ

 𝑥, 𝑢𝑛 , 𝑣𝑛 𝑣𝑛 
– 𝑑𝑥 −  𝜀𝑛𝑣𝑛

−

Ω

𝑑𝑥. 



G.A. Afrouzi and M. Bai/ TJMCS Vol. 4 No. 1 (2012) 60 - 70 

63 
 

In view of (4.1), for any 𝜀 ∈  0, 𝜆1 − 𝜇1 , there exists 𝐶 = 𝐶 𝜀 > 0 such that  

𝑓 𝑥, 𝑠, 𝑡 ≥  𝜇1 + 𝜀   𝑠 𝑝−2𝑠 +  𝑡 𝑞−2𝑡 − 𝐶      ∀𝑠, 𝑡 < 0   𝑎. 𝑒, 𝑥 ∈ 𝛺 .         (2.3) 

Then by the sobolev embedding and Poincare inequality there exist 𝐶1 , 𝐶2 > 0 

Such that  

  ∇𝑢𝑛
− 𝑝

𝑝
+  ∇𝑣𝑛

− 𝑞
𝑞
≤ 

 𝜆  𝑢𝑛
− 𝑝 +  𝑣𝑛

− 𝑞 𝑑𝑥 +   𝜇1 + 𝜀   𝑢𝑛
− 𝑝 +  𝑣𝑛

− 𝑞 𝑑𝑥 −   𝐶 − 𝜀𝑛 

ΩΩΩ

 𝑢𝑛
− + 𝑣𝑛

− 𝑑𝑥

≤ 𝐶1  𝜆

Ω

  𝑢𝑛
− 𝑝 +  𝑣𝑛

− 𝑞 𝑑𝑥 +  
𝜇1+𝜀

𝜆1
Ω

  𝑢𝑛
− 𝑝 +  𝑣𝑛

− 𝑞 𝑑𝑥

+ 𝐶2    𝑢𝑛
− +  𝑣𝑛

−  

Ω

 𝑑𝑥. 

Hence by 𝜇1 + 𝜀 < 𝜆1,  it follows that   𝑢𝑛
−, 𝑣𝑛

− = 𝑧𝑛
− ⊂ 𝑊0

1,𝑝
(Ω) × 𝑊0

1,𝑞
(Ω) is bounded. For 

any 𝑛, we take 𝜓𝑛,𝑘 = −( 𝑢𝑛 + 𝑣𝑛 𝑘)− with 𝑘 > 0 as test function in (2.2), using again (2.3), 

we get 

  ∇𝜓𝑛,𝑘  
𝑝

Ω

𝑑𝑥 ≤ 

 − 𝜆  𝑢𝑛
− 𝑝−2 +  𝑣𝑛

− 𝑞−2 𝜓𝑛,𝑘𝑑𝑥 +   𝜇1 + 𝜀 

ΩΩ

  𝑢𝑛
− 𝑝−2 +  𝑣𝑛

− 𝑞−2 𝜓𝑛,𝑘𝑑𝑥 

− (𝐶 − 𝜀𝑛)𝜓𝑛,𝑘

Ω

𝑑𝑥. 

We can obtain that   (𝑢𝑛
−, 𝑣𝑛

−) ∞  is bounded. By the standard regularity theory (see [4]), it 

follow that there exists 𝐶3 > 0 such that, for every 𝑛, 𝑢𝑛 ∈ 𝐶1,𝜎(Ω ) for some 𝜎 > 0 and  

 (∇𝑢𝑛+∇𝑣𝑛) ∞ ≤ 𝐶3(1 +  (𝑢𝑛 + 𝑣𝑛) ∞).                                                     (2.4) 

Thus by  (𝑢𝑛 , 𝑣𝑛) ∞ → +∞ it follows that  (𝑢𝑛
+, 𝑣𝑛

+) ∞ → +∞.               (2.5) 

We may assume that 𝑧𝑛 =  (𝑢𝑛 , 𝑣𝑛) → ∞ 𝑎𝑠 𝑛 → ∞. Define 𝑢 𝑛 =
𝑢𝑛

𝑧𝑛
 ,𝑣 𝑛 =

𝑣𝑛

𝑧𝑛
. 
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Denote 𝑔 𝑥, 𝑠, 𝑡 = −𝜆  𝑠 𝑝−2𝑠 +  𝑡 𝑞−2𝑡 + 𝑓 𝑥, 𝑠, 𝑡 . In view of (2.1), for all 𝜙 ∈ 𝑊0
1,𝑝

(Ω) ×

𝑊0
1,𝑞

(Ω), we have  

   ∇𝑢 𝑛  
𝑝−2∇𝑢 𝑛∇𝜙 −

𝑔𝑢 (𝑥,𝑢𝑛 ,𝑣𝑛 )

𝑧𝑛
𝑝−1 𝑑𝑡 → 0

Ω
                                              (2.6) 

Since  𝑔 is countinous and  (𝑢𝑛
−, 𝑣𝑛

−) ∞ is uniformly bounded, using (1.3)-(1.5) and (2.5), 

there exist constant 𝐶4, 𝐶5 > 0 and  𝜀 ∈ (0, 𝜇2 − 𝜆1) such that  

 𝜇2 − 𝜀  𝑢 𝑛 𝑥  
𝑝−1 −

𝐶4

 𝑧𝑛 ∞
𝑝−1 ≤

𝑔(𝑥, 𝑢𝑛 , 𝑣𝑛)

 𝑧𝑛 ∞
𝑝−1 ≤  𝜇3 + 𝜀  𝑢 𝑛  

𝑝−1 +
𝐶5

 𝑧𝑛 ∞
𝑝−1  

Hold uniformly for 𝑎. 𝑒. 𝑥 ∈ 𝛺. In a similarly way, we get 𝑢 𝑛 → 𝑣 0. By the regularity theory 

(see [4]), there exists a constant 𝑀2 > 0 such that, for every   𝑛,  (𝑢 𝑛 , 𝑣 𝑛) 𝐶1,𝜎 ≤ 𝑀2, set 

𝑤𝑛 =
𝑧𝑛

 𝑧𝑛 ∞
. Then by the compact imbedding of 𝐶1,𝜎 (Ω ) 

into 𝐶1(Ω ), passing to a subsequence if  possible, we have  

𝑤𝑛 → 𝑤0                in    𝐶1(Ω )                                                              (2.8) 

With   𝑢 0 ∞ = 1, then  (𝑢 𝑛 , 𝑣 𝑛) is bounded Which  𝑢 𝑛 1,𝑝 +  𝑣 𝑛 1,𝑞 = 1. 

Using again that   (𝑢 𝑛 , 𝑣 𝑛)  is bounded and 𝑢 𝑛 =
𝑢𝑛

+−𝑢𝑛
−

 𝑧𝑛 ∞
, we can see that 𝑢 0 ≥ 0 and 𝑢 0 ≢ 0, 

similarly for 𝑣 𝑛 =
𝑣𝑛

+−𝑣𝑛
−

 𝑧𝑛 ∞
 and we can see that 𝑢 0 ≥ 0 and 𝑢 0 ≢ 0. 

Denote 𝛼𝑛 𝑥 =
𝑔(𝑥,𝑢𝑛 ,𝑣𝑛 )

 𝑧𝑛 ∞
𝑝−1 . By (2.7) and (2.8) if follows that there exists 𝛼 ∈ 𝐿∞(Ω) satisfying     

𝜇2 − 𝜀 ≤ 𝛼 𝑥 ≤ 𝜇3 + 𝜀                                         (2.9) 

Such that  

𝛼𝑛 → 𝛼( 𝑢 0 
𝑝−2𝑢0 +  𝑣 0 

𝑝−2𝑣0)      weakly     in     𝐿∞(Ω)                         (2.10) 

By (2.6), (2.8), (2.10) we obtain  

  ∇𝑢 0 
𝑝−2∇𝑢0

Ω

∇𝜙𝑑𝑥 =   𝛼(𝑥) 𝑢 0 
𝑞−2𝑢0 

Ω

𝜙𝑑𝑥 

For every 𝜙 ∈ 𝑊0
1,𝑝

(Ω) × 𝑊0
1,𝑞

(Ω). Consequently, similarly  

  ∇𝑣 0 
𝑝−2∇𝑣0

Ω

∇𝜙𝑑𝑥 =   𝛼(𝑥) 𝑣 0 
𝑞−2𝑣0 

Ω

𝜙𝑑𝑥 



G.A. Afrouzi and M. Bai/ TJMCS Vol. 4 No. 1 (2012) 60 - 70 

65 
 

(𝑢 0, 𝑣 0) is a nontrivial solution of  

 

−∆𝑝𝑤0 = 𝛼 𝑥 𝑤0
𝑝−1

                  𝑖𝑛 Ω

   −∆𝑞𝑤0 = 𝛼 𝑥 𝑤0
𝑞−1

                  𝑖𝑛 Ω   

        𝑤0 = 0                                𝑜𝑛 𝜕Ω

                                                  (2.11) 

By the maximum principle of vazquez’s  [9], it follows that 𝑤0 𝑥 > 0 for 𝑥 ∈ Ω. 

Furthermore, there is a positive constant 𝛿 > 0 and 𝜑 = (𝜑1, 𝜑2) such that  

𝛿𝜑 ≤ 𝑤0                𝑜𝑛 𝜕Ω                                                              (2.12) 

By (2.9),(2.11) and 𝜇2 > 𝜆1, for any  𝜀 ∈ (0,
𝜇2−𝜆1

2
), we get 

−∆𝑝𝑤0 > (𝜆1, 𝜆1 + 𝜀)𝑤0
𝑝−1

                                                                    (2.13) 

And 

−∆𝑞𝑤0 > (𝜆1, 𝜆1 + 𝜀)𝑤0
𝑞−1

. 

Take  𝜓 = (𝜓1, 𝜓2) and 𝜓 = 𝛿𝜑 and 𝜇 ∈ (𝜆1, 𝜆1 + 𝜀). Then we have  

−∆𝑝𝜓 = 𝜆1𝜓
𝑝−1 ≤ 𝜇𝜓𝑝−1  

and 

−∆𝑞𝜓 = 𝜆1𝜓
𝑞−1 ≤ 𝜇𝜓𝑞−1. 

By (2.12) and (2.13), by the method of sub and supersolution, for any 𝜀 > 0 small enough, 

we can obtain a solution  𝑢 , 𝑣  ∈ [𝜓, 𝑤0] of the following problems 

 

−Δ𝑝𝑢 = 𝜇𝑢𝑝−1                       𝑖𝑛Ω

−Δ𝑞𝑣 = 𝜇𝑣𝑞−1                       𝑖𝑛Ω

𝑢 = 𝑣 = 0                          𝑜𝑛 𝜕Ω

  

However, this is contrary to this fact that  𝜆1 is isolated. Hence   (𝑢𝑛
+, 𝑣𝑛

+)   is also 

uniformly bounded. Thus by (2.4) we can see that the sequence   (𝑢𝑛 , 𝑣𝑛   is uniformly 

bounded. Then using standard arguments we can see that 𝐽𝜆  satisfies the (PS) condition. 

This completes the proof. 

 

Define   
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𝑓+ 𝑥, 𝑠, 𝑡 =  
𝑓 𝑥, 𝑠, 𝑡           𝑡, 𝑠 ≥ 0

                0             𝑡, 𝑠 ≤ 0       
  

Define the corresponding functional 𝐽𝜆(𝑢 ,𝑣)
+ :𝑊0

1,𝑝 Ω × 𝑊0
1,𝑞 Ω → 𝑅 as follows. 

𝐽𝜆
+ 𝑢, 𝑣 =

1

𝑝
  ∇𝑢 𝑝

Ω

𝑑𝑥 +
1

𝑞
  ∇𝑣 𝑞

Ω

𝑑𝑥 −
𝜆

𝑝
  𝑢+ 𝑝

Ω

𝑑𝑥 −
𝜆

𝑞
  𝑣+ 𝑞

Ω

𝑑𝑥 −  𝐹+ 𝑥, 𝑢, 𝑣 

Ω

𝑑𝑥, 

Where ∇𝐹 = (𝑓𝑢 , 𝑓𝑣). Obviously,  𝐽𝜆
+ ∈ 𝐶1(𝑊0

1,𝑝 Ω × 𝑊0
1,𝑞 Ω , 𝑅). Similarly, define  

𝑓− 𝑥, 𝑠, 𝑡 =  
𝑓 𝑥, 𝑠, 𝑡           𝑡, 𝑠 ≤ 0

                0             𝑡, 𝑠 ≥ 0       
  

Define the corresponding functional 𝐽𝜆(𝑢 ,𝑣)
− :𝑊0

1,𝑝 Ω × 𝑊0
1,𝑞 Ω → 𝑅 as follows. 

𝐽𝜆
− 𝑢, 𝑣 =

1

𝑝
  ∇𝑢 𝑝

Ω

𝑑𝑥 +
1

𝑞
  ∇𝑣 𝑞

Ω

𝑑𝑥 −
𝜆

𝑝
  𝑢− 𝑝

Ω

𝑑𝑥 −
𝜆

𝑞
  𝑣− 𝑞

Ω

𝑑𝑥 −  𝐹− 𝑥, 𝑢, 𝑣 

Ω

𝑑𝑥, 

Where ∇𝐹 = (𝑓𝑢 , 𝑓𝑣). It is easily seen that 𝐽𝜆
− ∈ 𝐶1(𝑊0

1,𝑝 Ω × 𝑊0
1,𝑞 Ω , 𝑅). 

Using similar arguments as in the proof of lemma 2.1, we obtain the following result. 

Lemma 2.2. The functional Jλ
± satisfies the (PS) condition. 

To prove Theorem 1.1, we prove some preliminary results as follows. 

Lemma 2.3.  If  (𝑢±, 𝑣±) is a local minimizer of  Jλ
± , then it is  also a local minimizer of Jλ. 

Proof:  By Theorem 1.1 of Garcia Azorero, Peral Alonso and Manfredi[5], we just need to 

show that (𝑢±, 𝑣±) is a local minimazer of Jλ in the C1 topology. By the assumption it follow 

that  𝑢±, 𝑣±  is a 𝐶0
1(Ω )-local minimize of  Jλ

±  i.e., there exists 𝜌1 > 0 such that  

Jλ
±(𝑢±, 𝑣±) ≤ Jλ

±(u, v),                   ∀𝑢 ∈ 𝐵𝜌1
(𝑢±, 𝑣±) 

Where 𝐵𝜌1
 𝑢±, 𝑣± =   𝑢, 𝑣 ∈ 𝐶0

1 Ω  :   𝑢, 𝑣 −  𝑢±, 𝑣±  𝐶1 < 𝜌1 . By (1.4), (1.5), we can 

see that  𝑓 is of p-linear growth [5]. Then, for (𝑢, 𝑣) ∈ 𝐵𝜌1
 𝑢±, 𝑣± , we obtain 
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𝐽𝜆 𝑢, 𝑣 − 𝐽𝜆 𝑢
±, 𝑣± = 𝐽𝜆 𝑢, 𝑣 − Jλ

± 𝑢±, 𝑣± 

≥
𝜆

𝑝
    𝑢, 𝑣  𝑝 −   𝑢±, 𝑣±  𝑝 𝑑𝑥

Ω

+
𝜆

𝑞
    𝑢, 𝑣  𝑞 −   𝑢±, 𝑣±  𝑞 𝑑𝑥 −   𝐹 𝑥, 𝑢, 𝑣 − 𝐹± 𝑥, 𝑢, 𝑣  

ΩΩ

𝑑𝑥

=
𝜆

𝑝
   𝑢∓, 𝑣∓  

𝑝

Ω

𝑑𝑥 +
𝜆

𝑞
   𝑢∓, 𝑣∓  

𝑞

Ω

𝑑𝑥 −  𝐹∓ 𝑥, 𝑢, 𝑣 𝑑𝑥

Ω

≥
𝜆

𝑝
   𝑢∓, 𝑣∓  

𝑝

Ω

𝑑𝑥 +
𝜆

𝑞
   𝑢∓, 𝑣∓  

𝑞

Ω

𝑑𝑥

− 𝐶     𝑢∓, 𝑣∓  
𝑃
𝑑𝑥 +    𝑢∓, 𝑣∓  

𝑞
𝑑𝑥

ΩΩ

 

≥  
𝜆

𝑞
− 𝐶  𝑢∓, 𝑣∓  

∞

𝑝−𝑞
    𝑢∓, 𝑣∓  

𝑞
𝑑𝑥

Ω

+  
𝜆

𝑝
− 𝐶  𝑢∓, 𝑣∓  

∞

𝑞−𝑝
    𝑢∓, 𝑣∓  

𝑝
𝑑𝑥

Ω

 

Note  𝜌1 → 0 implies (𝑢−, 𝑣−) ∞ → 0, together with1 < 𝑝, 𝑞 < +∞, we can see that there 

exists 𝜌2 > 0 small enough such that  

𝐽𝜆 𝑢
±, 𝑣± ≤ 𝐽𝜆 𝑢, 𝑣 ,                   ∀(𝑢, 𝑣) ∈ 𝐵𝜌2

 𝑢±, 𝑣± ,  

Where 𝐵𝜌2
 𝑢±, 𝑣± =   𝑢, 𝑣 ∈ 𝐶0

1 Ω  :   𝑢, 𝑣 −  𝑢±, 𝑣±  𝐶1 < 𝜌2 . This completes the 

proof. 

Lemma 2.4.  0 is a local minimize of  Jλ
± and  𝐽𝜆  for  λ>0 . 

Proof: we just consider the case of 𝐽𝜆 . The other cases can be treated similarly. As shown in 

the proof of lemma 2.3, it suffices to prove that 0 is a local minimizer of 𝐽𝜆  in the 𝐶1 

topology. In fact, for (𝑢, 𝑣) ∈ 𝐶0
1(Ω ), we have  
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Jλ
± 𝑢±, 𝑣± ≥

𝜆

𝑝
   𝑢, 𝑣  𝑃𝑑𝑥 +

𝜆

𝑞
   𝑢, 𝑣  𝑞𝑑𝑥 −  𝐹 𝑥, 𝑢, 𝑣 

ΩΩΩ

𝑑𝑥

≥
𝜆

𝑝
   𝑢, 𝑣  𝑝

Ω

𝑑𝑥 +
𝜆

𝑞
   𝑢, 𝑣  𝑞

Ω

𝑑𝑥 − 𝐶    𝑢 𝑝

Ω

𝑑𝑥 +   𝑣 𝑞𝑑𝑥

Ω

 

≥  
𝜆

𝑝
− 𝐶 𝑢 ∞

𝑞−𝑝
   𝑢 𝑝𝑑𝑥 +  

𝜆

𝑞
− 𝐶 𝑢 ∞

𝑝−𝑞
   𝑣 𝑞𝑑𝑥

ΩΩ

 

If we define 𝐵𝜌3
 0,0 =   𝑢, 𝑣 ∈ 𝐶0

1 Ω  :   𝑢, 𝑣  𝐶1 < 𝜌3 , where  𝜌3 ∈ (0,  
𝜆

𝐶𝑞
 

1

𝑝−𝑞
,  

𝜆

𝐶𝑝
 

1

𝑞−𝑝
), 

then it follows that  

𝐽𝜆 𝑢, 𝑣 ≥ 0,                                           ∀(𝑢, 𝑣) ∈ 𝐵𝜌3
(0,0) . 

The proof is complete. 

Lemma 2.5. There exist 𝜆∗, 𝑡1, 𝑡2 > 0 such that, for 𝜆 ∈ (0, 𝜆∗)  

𝐽𝜆 ±𝑡1𝜙1 , ±𝑡2𝜙2 < 0                          (2.14) 

Proof:  By (1.3)-(1.5), for any given 𝜀 > 0 and 𝑟 ∈  𝑝,
𝑝𝑛

𝑛−𝑝
  if  𝑛 > 𝑝; 𝑟 ∈ (𝑝, +∞) 

If  1 ≤ 𝑛 ≤ 𝑝, there exist 𝐶 > 0  such that   

 𝑝𝐹 𝑥, 𝑧 − 𝜇3 𝑧 
𝑝 ≤ 𝜀 𝑧 𝑝 + 𝐶 𝑧 𝑟 . 

Then, taking 𝜀 < 𝜇3 − 𝜆1, we have 

𝐽𝜆 𝑡1𝜙1, 𝑡2𝜙2 =
 𝑡1  

𝑝

𝑝
 𝜙1 

𝑝 +
 𝑡2 

𝑞

𝑞
 𝜙2 

𝑞 +
 𝑡1 

𝑝

𝑝
𝜆  𝜙1

𝑝
𝑑𝑥 +

 𝑡2 
𝑞

𝑞
𝜆  𝜙2

𝑞
𝑑𝑥 −  𝐹 𝑡1𝜙1, 𝑡2𝜙2 ΩΩΩ

𝑑𝑥 ≤

 𝑡1  
𝑝

𝑝
 𝜙1 

𝑝 +
 𝑡2 

𝑞

𝑞
 𝜙2 

𝑞 +
 𝑡2 

𝑞

𝑞
𝜆  𝜙2

𝑞
𝑑𝑥 −

 𝑡1  
𝑝

𝑝Ω
𝜇3  𝜙1

𝑝

Ω
𝑑𝑥 +

 𝑡1  
𝑝

𝑝
𝜀  𝜙1

𝑝

Ω
𝑑𝑥 +

 𝑡1  
𝑟

𝑝
𝐶  𝜙1

𝑟
Ω

𝑑𝑥 =  𝜆1 − 𝜇3 + 𝜀 
 𝑡1 

𝑝

𝑝
 𝜙1

𝑝

Ω
𝑑𝑥 +

 𝑡2 
𝑞

𝑞
 𝜙2

𝑞

Ω
𝑑𝑥 +

 𝑡1 
𝑟

𝑝
𝐶  𝜙1

𝑟
Ω

𝑑𝑥 ≤

− 
𝜇3−𝜀

𝜆1
− 1 

 𝑡1 
𝑝

𝑝
 𝜙1 

𝑝 + 𝐶(𝜆 𝑡1 
𝑞−𝑝 +  𝑡1 

𝑟−𝑝) 𝜙1 
𝑝  

Define   𝜑 𝑧 = 𝜆𝑧𝑞−𝑝 + 𝑧𝑟−𝑝      𝑓𝑜𝑟       𝑧 ≥ 0, where    𝛿 ≡
1

𝑝
 
𝜇3−𝜀

𝜆1
− 1 > 0. 

Then  𝜑′ 𝑧 = 𝜆 𝑞 − 𝑝 𝑧𝑞−𝑝−1 + (𝑟 − 𝑝 − 1)𝑧𝑟−𝑝−1 . 
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It is easily seen that  𝜑′ 𝑧0 = 0  if z0 = (
λ(p−q)

r−p−1
)

1

r−q . denote 𝛿0 =
𝑝−𝑞

𝑟−𝑝−1
. Then we 

have𝜑 𝑧0 =  𝛿0

𝑞−𝑝

𝑟−𝑞 + 𝛿0

𝑟−𝑝

𝑟−𝑞 𝜆
𝑟−𝑝

𝑟−𝑞 . 

Hence if taking  𝑡 =z0, there exists 𝜆∗ > 0 such that if 𝜆 < 𝜆∗ then  

𝐶𝜑 𝑧0 <
1

𝑝
 
𝜇3−𝜀

𝜆1
− 1  . 

Thus we can see that (2.14) hold for 𝜆 ∈ (0, 𝜆∗) if we take 𝑡1 = 𝑧0. 

 

Proof of theorem 1.1.  By lemma 2.4, 0 is a local minimizer of  𝐽𝜆
± and  𝐽𝜆  with 𝐽𝜆

± 0,0 =

𝐽𝜆 0,0 = 0. In view of lemma 2.5, there exist 𝑡1, 𝑡2 , 𝜆∗ > 0 such that, for 

𝜆 ∈ (0, 𝜆∗), 
𝑖𝑛𝑓

𝑊0
1,𝑝

 Ω ×𝑊0
1,𝑞

 Ω 
𝐽𝜆

± 𝑢, 𝑣 ≤ 𝐽𝜆 ±𝑡1𝜙1 , ±𝑡2𝜙2 < 0               (2.15) 

Then  𝐽𝜆
± has a nontrivial critical point (𝑢±, 𝑣±) of mountain pass type with 𝐽𝜆

±(𝑢±, 𝑣±) > 0 , 

which implies that (𝑢±, 𝑣±) is a weak solution of the following (p,q)-Laplacian 

 

−Δ𝑝𝑢 = 𝜆 𝑢± 𝑝−2 + 𝑓𝑢
± 𝑥, 𝑢, 𝑣                      𝑖𝑛  Ω

−Δ𝑞𝑣 = 𝜆 𝑣± 𝑞−2 + 𝑓𝑣
± 𝑥, 𝑢, 𝑣                      𝑖𝑛  Ω

𝑢 = 𝑣 = 0                                                          𝑜𝑛 𝜕Ω

                                           (2.16) 

By the weak maximum principle we can see that  ±𝑢1
±, ±𝑣1

± ≥ 0   𝑖𝑛  Ω, which implies that 

 𝑢1
±, 𝑣1

±  is also a solution of system (1.1)  and  

𝐽𝜆(𝑢±, 𝑣±) =  𝐽𝜆
±(𝑢±, 𝑣±). In addition, by the fatter of (1.4) it follows that the functional  𝐽𝜆

−  

is coercive on 𝑊0
1,𝑝 Ω × 𝑊0

1,𝑞 Ω  and hence bounded below. Combing with (2.15) implies 

that  𝐽𝜆
− has a nontrivial global minimizer 

 𝑢2
−, 𝑣2

−   with  𝐽𝜆
− 𝑢2

−, 𝑣2
− < 0. Then by lemma 2.3 we can see that  𝑢2

−, 𝑣2
−   is a local 

minimizer  𝐽𝜆 . Thus (1.1) has at least nontrivial solutions  𝑢1
−, 𝑣1

− ,  𝑢2
−, 𝑣2

− ,  𝑢1
+, 𝑣1

+ . 
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