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Abstract

In this paper we study the (p,q)-Laplacian systems with concave nonlinearities. Using some
asymptotic behavior f atzero and infinity, three nontrivial solutions are established.
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1 Introduction
In this paper, we consider problems

—A, u = AlulP"?u + f, (x,u,v) in Q
—Av = Av|T2v + f,(x,u,v) inQ (1.1)
u=v=20 in 00

Where Q ¢ RV, (N > 1) is a bounded with smooth domainand F € C'(Q x R? R).
The functional corresponding to problems (1.1) is

A A
Li(u,v) = ifﬂ |[Vul|? dx +§fQ |Vv|d dx—;fQ lulPdx — Efﬂ |v]9dx — fﬂ F(x,u,v) dx
Let W = W," (@) x W,"(Q) with the norm
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1 1
I, w1l = 19ull, + [190ll, = (f, [Val? dx)? + (J, 19v]7 dx)e.
It is well known operator -A has a sequence of eigenvalues {1, } satisfying

0 <A <A < <A > +oo. For general (p,q) € (1,4+),(—A,,—4,) has a smallest
eigenvalue, i.e., the principle value, A4; , which is positive, isolated, simple (see[2]) and
admit the following variational characterization

1 = inf Jo VulPdx+ [, |Vv|9dx
1= 1, 1,
0#u,veW; ™ (Q)xWy ! (Q) Jo ulPdx+[, lv|9dx

(1.2)

Furthermore, the A; — eigenfunctions do not change in 1, and by the maximum principle
we may suppose that ¢; >0 isa A; — eigenfunction. There are many paper concerned
with the resonance problem. In [7] L. Shi proved that there exists A* > 0 such that p-
Laplacian multiple solutions for a class of (p,q)-Laplacian systems (1.1). Consider the
following conditions hold:

@  f(0 =0.
(i) feCct(QxR%R)andf (0,0) > A,.
(iii) For some positive integer k > 1,
lim x,S,t lim x,S,t
f(x,s,t) < <2< f(x,s,t)
I(s, )] » —oos|P + [¢] (s, )] > +oos|P + [¢]4

In this paper we extend this result to the case 1 < p,q < +o0; Furtheremore, here the

lim f(xs,t)
[(s,t)|>+00 |s|P +|t|4

€ (A, Akq1) relaxed to

- liméin f(x,s,t) - limisup f(x,s,t)
27 (s, t)| = o |s|P=2s + [t]9-2t = |(s,t)| = o |s[P—2s + [t]a—2t ~

U U3,

Where u,, u; € (44, +0).
Our main result is as follows.

Theorem 1.1. Assume that f € (Q xR%R) and f(x,0,0) =0a.e. If the following
conditions hold

(i) There exists constant y, > A; such that

im ,S,t
lim fin f(xst) > Lo
[(s,t)|>00 |s|P—254|t|9-2¢

Uniformly for a.e.x € (; (1.3)

(ii)  There exist constants pq, 4y, uz > 0 with y; < A; < u, such that

lim@up _ flost) <y (1 4’)

[(s,t)]>00 |s|P—254|t|92¢
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limizin f(x,s,t) limizsup f(x,s,t) -
|(s, )] = +oo|s[P=2s + [t|972t T |(s,t)| = +o0 |s[P72s + [t]972t ~ Hs,

Hy =

Hold uniformly for a.e.x € £, then there exist such that problem (1.1) admits at least three
nontrivial solutions for A € (0,1%).

2 proof of the main result

Define the functional J,: W, 7 () x W,"? (@) =R by

1 1 2 A
11, v) =—f|Vu|pdx+—f|w|qdx——f|u|P dx——jlvlqu—JF(x’u’v)dx

Clearly, J, € CY(W,? () x W, (Q),R). It is obviouse that the critical points of correspond
to the weak solutions of problem (1.1).

Lemma 2.1. Assume that the assumptions of theorem 1.1 hold. Then the functional
J1(u, v) satisfies the (PS) condition.

Proof: Assume that {(u,, v,) = z,}ney © W, P (Q) X W,"9(Q) is a (PS) sequence, i.e., for
some M > 0,

|, (u,, vl <M, V], (u,,v,) >0 as n— oo. (2.1)

It suffices to prove that {(u,,v,) = z,} is bounded in W[)l‘p Q) x Wol‘q (Q). In fact, if not, we
may assume by contradiction that there exist a sequence of {(u,,v,)=z,} with
Il(w,, v,)|l = +o0 and {e} with g, — 0 in

W, () x W, 7 (Q) such that
—Ayuy, = =Au, P 2u+ f,(x,u,,1,)  in w, P (Q) (2.2)

Taking —u,, as test function in (2.2), we obtain

1Vu, |17 =f/1|u;|p dx—fﬁ(x,un,vn)u;dx—fen u, dx.
0 0 a

Similarly,

Vv, |l = f Alvn_lqu—fﬁ,(x,un,vn)v,;dx—f £, vy dx.
G} G} 0
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In view of (4.1), for any € € (0,4; — y,), there exists C = C(e) > 0 such that

flx,s,t) = (ug +&)(Is|P2s + |t]77%t) —C Vs, t<0 a.e,x€N . (2.3)
Then by the sobolev embedding and Poincare inequality there exist C;,C; > 0
Such that

IVuz I} + IV llg <
[ 2z + 10+ [ G+ gl + 10 = [ © - &) (r + v
QO Q QO
_ _ HU1ye _ _
<G [ A0 IP + o 19ax + [ B2 Qg + g 199
1
QO

+ e f Ahes 1l + lvr 1) dx.
O

Hence by py + € < A4, it follows that {(u;,,v,;) = z;} C Wol‘p () x Wol‘q (Q) is bounded. For
any n, we take ¥, , = —((u, + v,)k)~ with k > 0 as test function in (2.2), using again (2.3),
we get

j|v¢n,k|p dx <

Q

_ f Az P72 + |or 192, dx + f Gy +8) (172 + o7 192)ep,
Q QO

- f (€ = ex)Pny dx.
[9)

We can obtain that {|| (u;, v;)|l.} is bounded. By the standard regularity theory (see [4]), it
follow that there exists C; > 0 such that, for every n,u,, € C?(Q) for some ¢ > 0 and

|(Vi, 1 V) |l < C3(1 + ll(wy, + V) Mloo)- (2.4)
Thus by || (u,, )|l = +00 it follows that || (w;}, v;) [l = +00. (2.5)
We may assume that z,, = ||(u,,v,)|| = 0 asn — . Define @i,, = Z—” U, = z—"
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Denote g(x,s,t) = —A(|s|P72s + |t|772¢t) + f(x, s, t).In view of (2.1), for all ¢ € Wol'p (Q) x
W, (), we have

fy IV, |P=2vi, ve — Wdt -0 (2.6)
Since g is countinous and ||(u;, v;;)||« is uniformly bounded, using (1.3)-(1.5) and (2.5),
there exist constant €4, C5 > 0 and € € (0, u, — A;) such that

Cs
-1
llz,, II%,

C4 < g(xJunJvn)

< < (uz + )i, P71 +
1 —1 3 n
llz, II% llz, 1%,

(uz — )i, ()P~ -

Hold uniformly for a.e.x € (2. In a similarly way, we get i, = D,. By the regularity theory
(see [4]), there exists a constant M, > 0 such that, for every n, |[(@,,D,)|lc10 < M,, set

. Then by the compact imbedding of C? (Q)

Zn

w, =
l1znlleo

into C1(Q), passing to a subsequence if possible, we have
w, = W, in C'(Q) (2.8)

With ||@ig|le, = 1, then (i1,,?,) is bounded Which ||, |1, + |9, 1l1,4 = 1.

uf—uy

l1zn lleo

Using again that || (i,,, ,)|| is bounded and ii,, = , we can see that @i, > 0 and @, Z 0,

v,j' —Vp

1znlleo

similarly for ¥, = and we can see that iy > 0 and 1 # 0.

Denote a,, (x) = gtin ) By (2.7) and (2.8) if follows that there exists a € L*({) satisfying

lzn % "
U, —e<alx)<u;+e¢ (2.9)
Such that
a, = a(|ty|P?uy + |99|P"?vy) weakly in L*(Q) (2.10)

By (2.6), (2.8), (2.10) we obtain

[ 19017290, 99z = [ lalaol~2uo] pax
QO QO

For every ¢ € W, (Q) x W,"? (). Consequently, similarly

f V50|72V, Vopdx = f [a(x)[99-2v,] i
QO 9]
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(1y, Dy) is a nontrivial solution of

1

—A,wy = a(wd ™ inQ
—A,wy = a(owd ™ in Q (2.11)
wy =20 on 0Q)

By the maximum principle of vazquez’s [9], it follows that wy(x) > 0 for x € Q.
Furthermore, there is a positive constant § > 0 and ¢ = (¢4, ¢,) such that
dp < wy on 0Q (2.12)

By (2.9),(2.11) and pu, > 44, for any ¢ € (0, ”22;'11), we get

—A,wo > (A, A + W (2.13)
And
—Agwo > (A, 4 + e)wd .
Take ¥ = (Y1,¥,) and Y = d¢ and u € (44,41 + €). Then we have
—0, = APt < !
and
—Agp = Ayt < e,

By (2.12) and (2.13), by the method of sub and supersolution, for any € > 0 small enough,
we can obtain a solution (%, 7) € [y, wy] of the following problems

—A,u = puP~? inQ
—Agv = pvi! inQ
u=v=0 on dQ

However, this is contrary to this fact that A, is isolated. Hence {||(w;,v;)||} is also
uniformly bounded. Thus by (2.4) we can see that the sequence {|[(u,,v,||} is uniformly
bounded. Then using standard arguments we can see that J, satisfies the (PS) condition.
This completes the proof.

Define
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_ f(x,s,t) t,s =0
f+(x,s,t)—{ 0 t,s <0

Define the corresponding functional J;,, ,: Wol'p Q) x Wol'q (©2) - R as follows.

1 1 A A
Ji (w,v) =Ej|Vu|p dx+af|Vv|q dx—;flzﬁlp dx—aflvﬂq dx — J F.(x,u,v)dx,
Q Q Q Q Q

Where VF = (f,, f,). Obviously, J; € C1(W,? (Q) x W,"?(Q), R). Similarly, define

f(x,s,t) t,s<0
0 t,s=0

f(x,s,t) = {

Define the corresponding functional J;, ,,): Wol’p Q) x Wol’q (Q) - R as follows.

_ 1 1 A A
Ji (u,v) =;f|Vu|p dx+5j|Vv|q dx—;jlu‘lp dx—ajlv‘lq dx—JF_(x,u,v)dx,
Q Q Q Q

Q
Where VF = (f,, f,). Itis easily seen that J; € C1(W,"" () x W, (), R).

Using similar arguments as in the proof of lemma 2.1, we obtain the following result.
Lemma 2.2. The functional ];f satisfies the (PS) condition.

To prove Theorem 1.1, we prove some preliminary results as follows.

Lemma 2.3. If (u%,v%) is alocal minimizer of ];f ,then itis also alocal minimizer ofJ,.

Proof: By Theorem 1.1 of Garcia Azorero, Peral Alonso and Manfredi[5], we just need to
show that (u*, vt) is a local minimazer of J, in the C! topology. By the assumption it follow

that (ut, vt) is a €} (Q)-local minimize of ];f i.e., there exists p; > 0 such that
JEtvt) < v), vu € B, (u*, v*)

Where B, (ut,v*) = {(u,v) € Cj (Q): |I(w,v) — wh, vl < pi}. By (1.4), (1.5), we can
see that f is of p-linear growth [5]. Then, for (w,v) € Bpl(ui,vi), we obtain
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Li(w,v) = [, whvE) =], (w,v) — JF(ut, vh)

A
>4 f [ 0P — [k, )P ]dx
P

Q

+&j[|(u,v)|q _ |(ui,vi)|q]dx—f[p(x,u,v) — Fy (o u,v)] dx
q

Q Q

A . A I
= 2 ]I et - [ 1T 0P de = | ot
Q Q

Q

A N A - -
2—f|(u+,v+)|p dx+—f|(u+,v+)|qu
4 q
QO Q
¢ f |, v )| dx + j |(uF, v )| " dx
QO Q

A T oNyp- o
> [ = el v [ 1, o) e
Q

A — =\ng— -
+ o= el v [ 16, v ax
Q

Note p; — 0 implies||(u™, v7)|l, = 0, together withl < p,q < +00, we can see that there
exists p, > 0 small enough such that

Liw*,vt) < J(u,v), V(u,v) € B,, (ut, v¥),

Where B, (u*, v*) = {(u,v) € 5 (Q): I(u, v) — (uF, vH)llc1 < p,}. This completes the

proof.
Lemma 2.4. 0 is alocal minimize of ];\—Ir and J; for A>0.

Proof: we just consider the case of J,. The other cases can be treated similarly. As shown in
the proof of lemma 2.3, it suffices to prove that 0 is a local minimizer of J; in the C!
topology. In fact, for (u, v) € C}(Q), we have
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A A
JE(ut, vt z—f|(u,v)|de+—f|<u,v>|qu—fF(x,u,v) dx
pQ qﬂ 9]
A A
z—]|(u,v)|p dx+—f|(u,v)|qu—c flulp dx+f|v|qu
pﬂ qﬂ Q Q

2 3 A _
> [rcuullf,’o ””lulpdx+ [a—CIIuII’;’o "]flvl"dx
Q Q

1 1

A\is

If we define B, (0,0) = {(u, v) € C} (@): 1w, v)ll¢1 < p3}, where p; € (0, (Ci)" , (C—)‘*"’),
q 14

then it follows that
J(u,v) =0, V(u,v) € B,,(0,0).
The proof is complete.

Lemma 2.5. There exist A%, t;, t, > 0 such that, for 4 € (0,1%)
Lty 2t2,) <0 (2.14)

Proof: By (1.3)-(1.5), for any givene > 0andr € (p ) if n>p;re(p +x)

If 1 <n < p,thereexist C > 0 such that
IpF(x,2) — uslzI|P| < elz|? + Clz|".

Then, taking € < u3 — 1, we have
Lty tr ) =

B ligllP + 25 Nl + 1252 ) gPdx + 252 [ ¢fdx - [, F(tiy, tag) dx <
%Ilqblllp +%||¢>2||q+"f2| [, ¢ldx —ﬁugf oF dx +"Le [ F dx +
BEC [, ¢hdx = [ —ps +e] 25 [ ¢ dx+“2' [, ¢f dx +'“' Cl, ¢fdx<

- p
(B 1) 9 g I+ el + 1)

Define @(z) =Az97P +2z"? for z=0,where 6= %(“j_s — 1) > 0.
1

Then ¢ (z2) = A(q—p)z? P+ (@ —p—1)z"7P1,
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. Then we

1
= A== denote &, = 21

It is easily seen that ¢'(z,) =0 if z, pa— m—

a-r r-p r-p

havep(z,) = [SOHI + §yr-a| A,

Hence if taking |t|=z,, there exists 7* > 0 such that if A < 1* then

Co(zy) < %(“;j - 1) .

Thus we can see that (2.14) hold for 1 € (0, 4") if we take t; = z,.

Proof of theorem 1.1. By lemma 2.4, 0 is a local minimizer of ]/{—L and J; with ]/{—L (0,0) =
J,(0,0) = 0. In view of lemma 2.5, there exist t;, t;, A* > 0 such that, for

A € (Ol A*)' Wol,p(ﬂi)tfwol,q(n)],li(ul v) S ]/1 (itl(pll itz(pz) < 0 (215)

Then Ji has a nontrivial critical point (u*, v*) of mountain pass type with Ji (u*,v¥) > 0,
which implies that (u®, v*) is a weak solution of the following (p,q)-Laplacian

—A,u = Aut P72 + ££(x, u,v) in Q
—Agv = Av¥|172 + fE(x,u,v) in Q (2.16)
u=v=20 on 0{)

By the weak maximum principle we can see that (iui—r, ivli) > 0 in Q, which implies that

(uli, vli) is also a solution of system (1.1) and

JouE, vt) = JE(ut,vt). In addition, by the fatter of (1.4) it follows that the functional J;

is coercive on Wol’p Q) x Wol’q (©2) and hence bounded below. Combing with (2.15) implies
that J; has a nontrivial global minimizer

(uz,v;) with J;y(u;,vy) <0. Then by lemma 2.3 we can see that (u;,v;) is a local
minimizer J;. Thus (1.1) has at least nontrivial solutions (uy, vy), (uz,vy), (uf, v{).
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