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Abstract 
Many applications, for instance in finance and in physics, require the calculation 
of high dimensional integrals. The Monte Carlo and quasi Monte Carlo methods 
are frequently used to approximate them. In this paper, we propose a new quasi 
Monte Carlo algorithm based on antithetic variance reduction and Halton's 
sequences for numerical integration. Efficiency of the new algorithm compared to 
the standard Monte Carlo algorithm is shown using example. 
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1.  INTRODUCTION  

The problem of evaluating integrals of high dimension is an important task since it 
appears in many important scientific applications of financial mathematics, economics, 
environmental mathematics and statistical physics. Randomized (Monte Carlo) 
algorithms have proven to be very efficient in solving multidimensional integrals in 
composite domains [1]. However, it is well known fact that the number of realization to 
be generated and deterministic problems to be solved often becomes very large and 
therefore the CPU time requirements may increase. In order to improve the efficiency of 
MC based on methods a variety of variance reduction techniques have been developed 
during the last decades [1-4, 7]. Finding ways of constructing estimators with smaller 
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variance can often lead to an improvement in the efficiency as well. The efficiency is a 
quality measure for estimators that take into account both their variance and 
computation time. Generally, variance reduction technique may increase the accuracy of 
the estimator by a decreased sample standard deviation, instead of larger samples [2, 3].  
Quasi Monte Carlo methods can be succinctly described as deterministic versions of 
Monte Carlo methods. Determinism enters in two ways, namely, by working with 
deterministic points rather than random samples and by the availability of deterministic 
error bounds instead of the probabilistic Monte Carlo error bounds. The connections 
between quasi Monte Carlo methods and uniform pseudorandom numbers arise in the 
theoretical analysis of various methods for the generation of uniform pseudorandom 
numbers. The pseudorandom sequences simulate random samples from a 

 U 0,1 distribution and quasi-random sequences correspond to samples from a  U 0,1  

distribution. In [6, 7] one can find several quasi-random sequences, such as Halton 
sequences, Sobol sequences, Faure sequences, and Niederreiter sequences. 
In this paper, we present a new numerical algorithm for evaluating multidimensional 
integrals based on antithetic variance reduction and Halton's sequences.  

 

A. The Probable error in randomized algorithm 

Suppose that 2( , )X N   is a  random variable.  We have 
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Consider the error function, 
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According the rule of three sigmas [SOBOL]  and the last formula it follows that 
( 3 3 ) (3) 0.997 (4)P X          

 
Now, consider x r    and x r    where 0.6745r  . Then   

 
( ) (0.6745) 0.5 (5)P X          

This equation show that the values of deviating from   by more than r and values 

deviating from  by less than r  are equally probable. Therefore, r is called the 

probable error of X .  
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2. EVALUATIONG MULTIPLE INTEGRALS USING STANDARD MONTE CARLO METHODS 

The Monte Carlo methods give statistical estimates for any linear functional of the 
solution by performing random sampling of a certain random variable X , whose 
mathematical expectation is the desired functional J , i.e., [ ] .E X J  Using 

N independent values (realizations) of 1 2: , ,..., NX X X X , an approximation to J , 

1 2

1
( )NJ X X X

N
     

can then be computed.  
 
Using (5) we have  

1

1 3
( ) 0.997

N

j

j

P X J
N N





    

In practical computations, it is more convenient to use the probable error
0.6754

Nr
N


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Let us approximately compute the following multiple integral 

( )I h x dx
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     

Consider the density function ( )p x  on region [0,1] , 1.s s    Let random variable X  as 
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 where random variable X with the distribution ( )p x . Therefore, we have 
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Now let us consider N independent identically distributed random 

variable 1 2, , , NX X X  , then for sufficiently large N  
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Theorem 1. Based on the probable error, the value 2 var( )   will be minimized, when 

the density function ( )p x  is proportional to ( )h x , i.e.  
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Proof. See [1] 
 

3. THE HALTON SEQUENCE 

One of the most important low-discrepancy sequences, used by many researchers, is the 
Halton sequence. Its definition is based on the radical inverse function defined as follows 
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where p is a prime number and n  is given by 
0 1

m

mn b b p b p    , with integer 

0 jb p  . The Halton sequence, nX , in s-dimensional  is then defined as 

 

1 2
( , , , ), 0,1, (3)

sn p p pX n      

 
where the integer numbers 1 sp , ,  p  are greater than one and pair wise prime. Most of 

the times, they are chosen as the first s  primes. In this paper, we use optimal Halton 
sequence 
 [6, 7]. 

 

4. ANTITHETIC VARIANCE REDUCTION 

This method was introduced by Hammersley and Morton in 1956. It can be applied 
easily to most problems and often produces at least a modest variance reduction. In its 
simplest form, it is based on the idea that instead of estimating  by the average of i.i.d. 

random variables having expectation  , use pairs of negatively correlated random 

variables, again with expectation  . We expect the quantity 
1

[ ( ) (1 )]
2

h U h U   to have 

smaller than ( )h U , where ([0,1] )sU U . If ( )h U  is too small, then (1 )h U  will have a 

good chance of being too large, and conversely. Therefore, we define the estimator  
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5. NUMERIAL EXPERIMENTS 

Here, we present a numerical example to show the effectiveness of our algorithm. We 
compare the proposed algorithm and standard antithetic Monte Carlo algorithm using 
relative error. In this examples, our algorithm gives good estimations with reduced 
standard deviation. Simulations are carried on a on Intel(R), Core(TM)2 CPU, 1.83 GHz 
personal machine. 
 

Example 1.  4

1 2 3 4 1 2 3 4exp( ) , [0,1]I x x x x dx dx dx dx


       .  The referent value of 

the integral is approximately equal to8.7172116201. 
 
Table 1.  The relative error (in absolute value) and the standard deviation for different values of the 
simulations 
 

NUMBER OF  
SIMULATION 

SANDARD ANTITHETIC VARIATES 
(REL. ERROR,  STD. DIV) 

HALTON-BASED ANTITHETIC VARIATES 
(REL. ERROR, STD. DIV) 

N 500  0.0084,1.8619  0.0019,1.8276  

N 1000  0.0038,1.8257  0.0018,1.7913  
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Figure 1. Comparison the standard deviations for three randomized algorithms 

 

 

6. CONCLUDING REMARKS 

Monte Carlo integration is numerical quadrature using random numbers. In other 
words, Monte Carlo integration methods are algorithms for the approximate evaluation 
of definite integrals. The regular algorithms evaluate the integrand over a grid, whereas 
Monte Carlo methods randomly choose the points at which the integrand is evaluated. 
Keep in mind that similar to other numerical techniques, the Monte Carlo evaluation of 
integrals is only an approximation. Although Monte Carlo is efficient for 
multidimensional integrals, it is slow, requiring many samples for convergence. In this 
paper, we proposed a simple and new method to estimate of multidimensional integrals. 
The proposed method is more accurate than the standard Monte Carlo and antithetic 
Monte Carlo methods.  
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