
Existence of positive solutions for third-order boundary value

problems

N. Nyamoradi ∗

Department of Mathematics, Faculty of Sciences

Razi University, 67149 Kermanshah, Iran.

Abstract

In this work, by employing the Guo-Krasnoselskii fixed point theorem, we study the existence
of positive solutions to the third-order two-point non-homogeneous boundary value problem

−u′′′(t) = a(t)f(t, v(t)),
−v′′′(t) = b(t)h(t, u(t)),
u(0) = u′(0) = 0, αu′(1) + βu′′(1) = 0,
v(0) = v′(0) = 0, αv′(1) + βv′′(1) = 0,

where α ≥ 0 and β ≥ 0 with α+ β > 0 are constant.

Keywords: Positive solution, Two-point boundary value problem, Fixed point theorem.

1 Introduction

Third-order differential equations arise in a variety of different areas of applied mathematics and
physics. Recently, the boundary value problems of third-order differential equations have received
much attention. One may see Anderson [1], Anderson and Davis [2], Bai [3], Boucherif and Al-Malki
[4], Graef and Yang [5], Grossinho and Minhos [6], Sun [13], Yao [14] and Yu et al. [15], and the
references therein for related results. For example, in [1], Anderson obtained some existence results
for positive solutions for the following BVP

x′′′(t) = f(t, x(t)) t1 ≤ t ≤ t3 (1)

x(t1) = x′(t2) = 0, γx(t3) + δx′′(t3) = 0, (2)

by using the well-know Guo-Krasnoselshkii and Leggett-Williiams fixed point theorems [7, 10, 11].
In [13], Sun by the Guo-Krasnoselshkii fixed point theorem [7, 10] established various results on the
existence of single and multiple positive solutions to some third-order differential equation satisfying
the following three-point boundary conditions:

x(0) = x′(η) = x′′(1) = 0,

∗E-mail address: nyamoradi@razi.ac.ir. NN thanks Razi University for support.
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where η ∈ [ 12 , 1). In [8], Guo et al. obtained some existence results for at least one positive solution
for the following BVP

u′′′(t) + a(t)f(u(t)) = 0 0 < t < 1 (3)

u(0) = u′(0) = 0, u′(1) = αu′′(η), (4)

where 0 < η < 1 and 1 < α < 1
η . In [9], Ling Hu et al. established result on the existence and

multiplicity of positive solution for the following BVP:
−u′′(t) = f(x, v),
−v′′(t) = g(x, u),
αu(0)− βu′(0) = 0, γu(1) + σu′(1) = 0,
αv(0)− βv′(0) = 0, γv(1) + σv′(1) = 0.

In [12], Li Yunhong et al. considered the existence of positive solutions for the following BVP:
−u′′′(t) = a(t)f(t, v(t))
−v′′′(t) = b(t)h(t, u(t)),
u(0) = u′(0) = 0, u′(1) = αu′(η),
v(0) = v′(0) = 0, v′(1) = αv′(η) = 0.

Motivated greatly by the above-mentioned excellent works, in this paper we will consider the exis-
tence of positive solutions for the following nonlinear third- order two-point boundary value problem

−u′′′(t) = a(t)f(t, v(t))
−v′′′(t) = b(t)h(t, u(t)),
u(0) = u′(0) = 0, αu′(1) + βu′′(1) = 0,
v(0) = v′(0) = 0, αv′(1) + βv′′(1) = 0,

(5)

where α ≥ 0 and β ≥ 0 with α+ β > 0 are constant.
Here, by a positive solution u∗ of BVP (5) we mean a solution u∗ of BVP (5) which satisfies u∗ > 0,
0 < t < 1. We give the following assumptions:
(H1) a, b : [0, 1] → [0,∞) is continuous and

0 <

∫ 1

0

s
(
1− αs

α+ β

)
a(s)ds < ∞,

0 <

∫ 1

0

s
(
1− αs

α+ β

)
b(s)ds < ∞.

(H2) f, h : [0, 1]× [0,∞) → [0,∞) is continuous.
Also, throughout this paper, C[0, 1] be the Banach space with norm ∥u∥ = max0≤t≤1 |u| and

G(t, s) =

{
αt2(1−s)
2(α+β) + βt2

2(α+β) , t ≤ s
αt2(1−s)
2(α+β) + βt2

2(α+β) −
(t−s)2

2 , s ≤ t
. (6)

Inspired and motivated by the works mentioned above, in this work we will consider the existence
or nonexistence of positive solutions to BVP (5). We shall first give a new form of the solution,
and then determine the properties of the Green’s function for associated linear boundary value
problems; finally, by employing the Guo-Krasnoselskii fixed point theorem, some sufficient conditions
guaranteeing the existence of a positive solution. The rest of the article is organized as follows: in
Section 2, we present some preliminaries and the Guo-Krasnoselskii fixed point theorem that will be
used in Section 3. The main results and proofs will be given in Section 3. Finally, in Section 4, an
example is given to demonstrate the application of our main result.
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2 Preliminaries

In this section, we present some notation and preliminary lemmas that will be used in the proofs of
the main results.

Definition 1. Let X be a real Banach space. A non-empty closed set P ⊂ X is called a cone of X
if it satisfies the following conditions:
(1) x ∈ P, µ ≥ 0 implies µx ∈ P ,
(2) x ∈ P,−x ∈ P implies x = 0.

Lemma 1. Let u, v ∈ C+[0, 1] := {u ∈ C[0, 1], u(t) ≥ 0, t ∈ [0, 1]}, then the unique solution of the
BVP (5) is given by

u(t) =

∫ 1

0

G(t, s)a(s)f(s, v(s))ds, (7)

v(t) =

∫ 1

0

G(t, s)b(s)h(s, u(s))ds, (8)

where

G(t, s) =

{
αt2(1−s)
2(α+β) + βt2

2(α+β) , t ≤ s
αt2(1−s)
2(α+β) + βt2

2(α+β) −
(t−s)2

2 , s ≤ t
.

Proof. In fact, if u(t) is a solution of the BVP (5), then we may suppose that

u(t) = −1

2

∫ t

0

(t− s)2a(s)f(t, v(s))ds+At2 +Bt+ C.

By the boundary conditions (5), we get B = C = 0 and

A =
α

2(α+ β)

∫ 1

0

(1− s)a(s)f(s, v(s))ds+
β

2(α+ β)

∫ 1

0

a(s)f(s, v(s))ds.

Therefore, BVP (5) has a unique solution

u(t) = −1

2

∫ t

0

(t− s)2a(s)f(s, v(s))ds +
αt2

2(α+ β)

∫ 1

0

(1− s)a(s)f(s, v(s))ds

+
βt2

2(α+ β)

∫ 1

0

a(s)f(s, v(s))ds.

Similarly, we also obtain (8). The proof is complete.

We need some properties of the function G in order to discuss the existence of positive solutions.
For convenience, we define

g(s) = s
(
1− αs

α+ β

)
s ∈ [0, 1]. (9)

Lemma 2. For any (t, s) ∈ [0, 1]× [0, 1], we have

0 ≤ G(t, s) ≤ g(s).
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Proof. First, we will show that G(t, s) ≥ 0 for any (t, s) ∈ [0, 1] × [0, 1]. Since it is obvious in case
0 ≤ t ≤ s ≤ 1, we only need to prove the case 0 ≤ s ≤ t ≤ 1. Now we suppose that 0 ≤ s ≤ t ≤ 1.
Then

G(t, s) =
αt2(1− s)

2(α+ β)
+

βt2

2(α+ β)
− (t− s)2

2

=
1

2(α+ β)
[αt2(1− s) + βt2 − (α+ β)(t− s)2]

=
−1

2(α+ β)
[αt2s− αts+ α(s2 − ts)− βts+ β(s2 − ts)]

=
1

2(α+ β)
[αts(1− t) + αs(t− s) + βts+ βs(t− s)] ≥ 0. (10)

Next, we will prove that G(t, s) ≤ g(s) for any (t, s) ∈ [0, 1]× [0, 1].
In fact, for any fixed s ∈ [0, 1], it easy to see that

Gt(t, s) =

{
αt(1−s)
(α+β) + βt

(α+β) , t ≤ s
αt(1−s)
(α+β) + βt

(α+β) − (t− s), s ≤ t
.

If t ≤ s, then

Gt(t, s) =
αt(1− s)

(α+ β)
+

βt

(α+ β)
= t

(
1− αs

α+ β

)
≤ s

(
1− αs

α+ β

)
= g(s).

If s ≤ t, then

Gt(t, s) =
αt(1− s)

(α+ β)
+

βt

(α+ β)
− (t− s)

=
1

α+ β
[αs(1− t) + βs]

= s
(
1− αt

α+ β

)
≤ s

(
1− αs

α+ β

)
= g(s).

Therefore,

Gt(t, s) ≤ g(s) (t, s) ∈ [0, 1]× [0, 1].

Then, for any (t, s) ∈ [0, 1]× [0, 1] we have

G(t, s) =

∫ t

0

Gτ (τ, s)dτ ≤
∫ t

0

g(s)dτ = tg(s) ≤ g(s).

So, we have the conclusion.

Lemma 3. For any (t, s) ∈ [τ, 1]× [0, 1], we have

γg(s) ≤ G(t, s),

where γ = β
2(α+β)τ

2, and τ satisfies
∫ 1

τ
g(s)a(s)ds > 0.
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Proof. If s = 0, then by Lemma 2, the result follows. Now suppose (t, s) ∈ [τ, 1] × (0, 1]. Then for
τ ≤ t ≤ s ≤ 1, by (3), we have

G(t, s)
1
2g(s)

=

αt2(1−s)
2(α+β) + βt2

2(α+β)

1
2s
(
1− αs

α+β

) ≥
αt2(1−s)
(α+β) + βt2

(α+β)(
1− αs

α+β

) ≥ αt2(1− s)

(α+ β)
+

βt2

(α+ β)
≥ β

(α+ β)
t2.

On the other hand, for 0 < s ≤ t ≤ 1, by (10) we have

G(t, s) ≥ βts

2(α+ β)
≥ βt2s

2(α+ β)
. (11)

Also by (6) and (11), we have

G(t, s)
1
2g(s)

=

βt2s
2(α+β)

1
2s
(
1− αs

α+β

) ≥
βt2s
(α+β)(

1− αs
α+β

) ≥ β

(α+ β)
t2.

Thus

1

2

βt2

(α+ β)
g(s) ≤ G(t, s) ∀(t, s) ∈ [τ, 1]× (0, 1].

Therefore,

1

2

βτ2

(α+ β)
g(s) ≤ G(t, s) ∀(t, s) ∈ [τ, 1]× (0, 1].

Hence, we have the result.

Lemma 4. IF u ∈ C+[0, 1], then the unique solution u(t) of the BVP (5) is nonnegative and satisfies
mint∈[τ,1] u(t) ≥ γ∥u∥.

Proof. It is obvious that u(t) is nonnegative. For t ∈ [0, 1], by Lemma 2, it follows that

u(t) =

∫ 1

0

G(t, s)a(s)f(s, v(s))ds

≤
∫ 1

0

g(s)a(s)f(s, v(s))ds,

and therefore,

∥u∥ ≤
∫ 1

0

g(s)a(s)f(s, v(s))ds.

On the other hand, for any t ∈ [τ, 1], from (7) and Lemma we obtain that

u(t) =

∫ 1

0

G(t, s)a(s)f(s, v(s))ds

≥ γ

∫ 1

0

g(s)a(s)f(s, v(s))ds.

Hence,

min
t∈[τ,1]

u(t) ≥ γ∥u∥.

Then, we achieve the desired result.
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Denote

P = {u ∈ C+[0, 1];minu(t)t∈[τ,1] ≥ γ∥u∥}.

It is obvious that P is cone.
Define the operator T1 and T2 as follows

T1u(t) =

∫ 1

0

G(t, s)a(s)f(s, v(s))ds, (12)

T2v(t) =

∫ 1

0

G(t, s)b(s)h(s, u(s))ds (13)

for t ∈ [0, 1], it can be shown that T1 : P → X := C[0, 1] and T2 : P → X are continuous.

Lemma 5. The operator defined in (12) is completely continuous and satisfies T1(P ) ⊆ P .

Proof. The operator defined in (12) by an application of the Ascoli-Arzela theorem, is completely
continuous and by Lemma 4, we know that T1(P ) ⊆ P .

Our approach is based on the following Guo-Krasnoselskii fixed point theorem of cone expansion-
compression type [10].

Theorem 1. Let X be a Banach space and P ⊆ X a cone in E. Assume Ω1 and Ω2 are open subsets
of X with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let T : P

∩
(Ω2\Ω1) → P be a completely continuous operator. In

addition suppose either
(A) ∥Tu∥ ≤ ∥u∥, ∀u ∈ P ∩ ∂Ω1 and ∥Tu∥ ≥ ∥u∥, ∀u ∈ P ∩ ∂Ω2 or
(B) ∥Tu∥ ≥ ∥u∥, ∀u ∈ P ∩ ∂Ω1 and ∥Tu∥ ≤ ∥u∥, ∀u ∈ P ∩ ∂Ω2

holds. Then T has a fixed point in P
∩
(Ω2\Ω1).

3 Main results

In this section, we discuss the existence of a positive solution of BVP (5). We give the following
assumptions:

(A1) lim
v→o+

sup
t∈[0,1]

f(t, v)

v
= 0, lim

u→o+
sup

t∈[0,1]

h(t, u)

u
= 0,

(A2) lim
v→∞

inf
t∈[0,1]

f(t, v)

v
= ∞, lim

u→∞
inf

t∈[0,1]

h(t, u)

u
= ∞,

(A3) lim
v→o+

inf
t∈[0,1]

f(t, v)

v
= ∞, lim

u→o+
inf

t∈[0,1]

h(t, u)

u
= ∞,

(A4) lim
v→∞

sup
t∈[0,1]

f(t, v)

v
= 0, lim

u→∞
sup

t∈[0,1]

h(t, u)

u
= 0.

We will show BVP (5) has at least one positive solution when (A1) and (A2) or (A3) and (A4) are
satisfied.

Theorem 2. Assume (A1) and (A2) or (A3) and (A4) are satisfied, then BVP (5) has at least one
positive solution.

Proof. We divide the proof into two steps.
Step 1. Assume that (A1) and (A2) hold. Since (A1) holds, for ϵ > 0, there exists 1 > R1 > 0 such
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that f(t, v) ≤ ϵv, h(t, u) ≤ ϵu, for each (t, v) ∈ [0, 1]× [0, R1] and (t, u) ∈ [0, 1]× [0, R1].
Set Ω1 = {u ∈ C[0, 1] : ∥u∥ < R1} and let ϵ satisfies

max
{∫ 1

0

g(s)a(s)ds,

∫ 1

0

g(s)b(s)ds
}
· ϵ ≤ 1. (14)

Then, for any u ∈ P ∩ ∂Ω1, from Lemma 2 and Lemma 5 and using (14) we have

T1u(t) =

∫ 1

0

G(t, s)a(s)f(s, v(s))ds

≤
∫ 1

0

g(s)a(s)ϵv(s)ds

≤ ϵ

∫ 1

0

g(s)a(s)

∫ 1

0

G(s, r)b(r)h(r, u(r))drds

≤ ϵ2∥u∥
∫ 1

0

g(s)a(s)ds ·
∫ 1

0

g(r)b(r)dr

≤ ∥u∥,

which implies that

∥T1u∥ ≤ ∥u∥ for u ∈ P ∩ ∂Ω1. (15)

On the other hand, since (A2) holds, for ρ > 0, there exists R2 > R1 such that f(t, v) ≥ ρv, h(t, u) ≥
ρu, for (t, v) ∈ [0, 1]× [γR2,∞), (t, u) ∈ [0, 1]× [γR2,∞). Set Ω2 = {u ∈ C[0, 1] : ∥u∥ < R2} and let
ρ satisfies

(ργ)2γ

∫ 1

τ

g(s)a(s)ds ·
∫ 1

τ

g(s)b(s)ds > 1. (16)

For any u ∈ P ∩ ∂Ω2, by Lemma 4 one has mint∈[τ,1] u(t) ≥ γ∥u∥ = γR2. Thus, from (12) and (16)
we can conclude that

T1u(t) =

∫ 1

0

G(t, s)a(s)f(t, v(s))ds

≥ ργ

∫ 1

τ

g(s)a(s)v(s)ds

≥ ργ

∫ 1

τ

g(s)a(s)

∫ 1

τ

G(s, r)b(r)h(r, u(r))drds

≥ (ργ)2
∫ 1

τ

g(s)a(s)ds ·
∫ 1

τ

g(r)b(r)u(r)dr

≥ (ργ)2γ∥u∥
∫ 1

τ

g(s)a(s)ds ·
∫ 1

τ

g(r)b(r)dr

≥ ∥u∥,

and thus

∥T1u∥ ≥ ∥u∥ for u ∈ P ∩ ∂Ω2. (17)

Therefore, by (15), (17) and the first part of Theorem 1 we know that the operator T1 has a fixed
point in P

∩
(Ω2\Ω1). Similarity, it can be proven that T2 has a fixed point in P

∩
(Ω2\Ω1).
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Step 2. Assume that (A3) and (A4) hold. Since (A3) holds, for A > 0, there exists R3 > 0 such
that f(t, v) ≥ Av, h(t, u) ≥ Au, for (t, v) ∈ [0, 1]× [0, R3], (t, u) ∈ [0, 1]× [0, R3], where A satisfies

(Aγ)2γ

∫ 1

τ

g(s)a(s)ds ·
∫ 1

τ

g(s)b(s)ds > 1. (18)

So, for any u ∈ P with ∥u∥ = R3, we have

T1u(t) =

∫ 1

0

G(t, s)a(s)f(s, v(s))ds

≥ Aγ

∫ 1

τ

g(s)a(s)v(s)ds

≥ Aγ

∫ 1

τ

g(s)a(s)

∫ 1

τ

G(s, r)b(r)h(r, u(r))drds

≥ (Aγ)2
∫ 1

τ

g(s)a(s)ds ·
∫ 1

τ

g(r)b(r)u(r)dr

≥ (Aγ)2γ∥u∥
∫ 1

τ

g(s)a(s)ds ·
∫ 1

τ

g(r)b(r)dr

≥ ∥u∥,

and consequently, ∥T1u∥ ≥ ∥u∥. So, if we set Ω3 = {u ∈ P : ∥u∥ < R3}, then

∥T1u∥ ≥ ∥u∥ for u ∈ P ∩ ∂Ω3. (19)

Now consider the assumption (A4) and consider four cases:
Case(i). Suppose f, h are bounded, say f(t, v) ≤ M,h(t, u) ≤ M for all u, v ∈ [0,∞). In this case
we choose

R4 = max
{
2R3,M ·max

{∫ 1

0

g(s)a(s)ds,

∫ 1

0

g(s)b(s)ds
}}

,

so that for any u ∈ P with ∥u∥ = R4, we have

T1u(t) =

∫ 1

0

G(t, s)a(s)f(s, v(s))ds ≤ M

∫ 1

0

g(s)a(s)ds ≤ R4.

So, ∥T1u∥ ≤ ∥u∥. Similarly, we also obtain ∥T2v∥ ≤ ∥v∥ for any v ∈ P with ∥v∥ = R4.
Case(ii). Suppose f is bounded and h is unbounded, say f(t, v) ≤ M for all v ∈ [0,∞). Now, since

limu→∞ supt∈[0,1]
h(t,u)

u = 0, there exists R0 > 0 such that

h(t, u) ≤ µu for u ∈ [R0,∞),

where µ > 0 satisfies

µ ·
∫ 1

0

g(s)b(s)ds ≤ 1.

If define

q(r) = max{h(t, u) : t ∈ [0, 1], 0 ≤ u ≤ r},

we have that

lim
r→∞

q(r) = ∞.
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Let R4 = max
{
2R3, R0,M ·

∫ 1

0
g(s)a(s)ds

}
and be such that

q(r) ≤ q(R4) ≤ µR4 for r ∈ [0, R4].

(We are able to do this since q is unbounded.) For u ∈ P with ∥u∥ = R4, we have

T1u(t) =

∫ 1

0

G(t, s)a(s)f(t, v(s))ds

≤ M

∫ 1

0

g(s)a(s)ds

≤ M

∫ 1

0

g(s)a(s)ds ≤ R4.

Thus, ∥T1u∥ ≤ ∥u∥. for any v ∈ P with ∥v∥ = R4

T2v(t) =

∫ 1

0

G(t, s)b(s)h(t, u(s))ds

≤
∫ 1

0

g(s)b(s)q(R4)ds

≤ µR4

∫ 1

0

g(s)b(s)ds ≤ R4.

So, ∥T2v∥ ≤ ∥v∥.
Case(iii). Suppose f is unbounded and h is bounded. This case similar to be case (ii).
Case(iv). Suppose f and h are unbounded, by assumption (A4), there exists R0 > 0 such that

f(t, v) ≤ µv, h(t, u) ≤ µu for u, v ∈ [R0,∞),

where µ > 0 satisfies

µ ·max
{∫ 1

0

g(s)a(s)ds,

∫ 1

0

g(s)b(s)ds
}
≤ 1.

We can therefore choose

R4 = max
{
2R3, R0,M ·max

{∫ 1

0

g(s)a(s)ds,

∫ 1

0

g(s)b(s)ds
}}

.

So, or any u, v ∈ P and ∥u∥ = R4, ∥v∥ = R4, t ∈ [0, 1], we can obtain ∥T1u∥ ≤ ∥u∥, ∥T2v∥ ≤ ∥v∥.
Therefore, in either case we may put Ω4 = {u ∈ P : ∥u∥ < R4}; then

∥T1u∥ ≤ ∥u∥, ∥T2v∥ ≤ ∥v∥ for u, v ∈ P ∩ ∂Ω4.

Thus, by the second part of Theorem 1 we know that the operator T1 has a fixed point in P
∩
(Ω4\Ω3).

Similarity, it can be proven that T2 has a fixed point in P
∩
(Ω4\Ω3). Therefore the BVP (5) has at

least one positive solution. Hence, we have the conclusion.

4 Application

Example 3. Consider the following boundary value problem system:
−u′′′(t) = 1

t
√
1−t

(v2(t)),

−v′′′(t) = 1
t
√
1−t

(
u(t)

√
u(t)| lnu(t)|

)
,

u(0) = u′(0) = 0, u′(1) + u′′(1) = 0,
v(0) = v′(0) = 0, v′(1) + v′′(1) = 0,

(20)
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where

a(t) = b(t) =
1

t
√
1− t

, α = β = 1,

f(t, v(t)) = v2(t), h(t, u(t)) = u(t)
√
u(t)| lnu(t)|.

It is not difficult to verify that

0 <

∫ 1

0

g(s)a(s)ds =

∫ 1

0

g(s)b(s)ds = 4 < ∞,

lim
v→o+

sup
t∈[0,1]

f(t, v)

v
= 0, lim

u→o+
sup

t∈[0,1]

h(t, u)

u
= 0,

lim
v→∞

inf
t∈[0,1]

f(t, v)

v
= ∞, lim

u→∞
inf

t∈[0,1]

h(t, u)

u
= ∞.

Then by Theorem 2, system (20) has at least one positive solution.
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