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Abstract

In this paper, we prove the existence of positive weak solution for the nonlinear elliptic system

—Apu = Au® + piv?, oz e,
—Agv = Xu + ,ugvd, T €€,
u=0=wv, x € 092,

where Agz = div(|Vz[*72V2), s > 1, A1, A2, p1 and s are positive parameters, and Q is a
bounded domain in RY, a4+ ¢ < p—1and b+d < ¢ — 1. We also discuss a multiplicity result
when 0 < A1, Ag, u1, o < A* for some A*. We obtain our results via the method of sub - and super

solutions.
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1 Introduction

Consider the system
—Apu = A\u® + piv?, oz e,
—Agv = Aouf + pvd, € Q, (1.1)
u=0=wv, x € 082,

where Ayz = div(|Vz]*72V2), s > 1, A1, Ao, 1 and g are positive parameters, and € is a bounded
domain in RY with smooth boundary 9. In addition, we assume that 1 < p,q < N.

Chen in [3] discussed the system —Apu = A’ —Ajv = Mucv? with zero Dirichlet boundary
condition. Our goal is somewhat modest: to find an analogue result for problem (1.1). The
boundary value problem

—Apu = A1 fi(u) + p1g1(v), x €,
—Agu = Aafo(v) + paga(u), =€, (1.2)
u=0=uv, x € 01,

have been studied extensively in recent years (see [1, 6]). Ali and Shivaji [1] studied the existence
of positive solution for the problem (1.2) with A\; 4+ p; and A9 + pa large when

g1(M[ga(2)]V/* 1)

lim =0
z—0 1
for every M > 0, lim 212 = 0 and lim 2@ = 0. Also we refer to [6] for results on systems related
z—0 ** z—0 T

to (1.2) in the case p = ¢ and nonlinearities with falling zeroes.

These problems arise in some physical models and are interesting in applications at combustion,
mathematical biology, chemical reactions.

The above assumption for the problem (1.1) implies bc < (p — 1)(¢ — 1). In this work, we
first prove the existence of positive solution with each positive parameters A1, Ag, p1, 2, and next
establish the existence of at least two positive solution when 0 < A1, Ag, p1, 2 < A* for some A\*.
Our approach is based on the method of sub- and supersolutions (see [4, 5, 7]).

The main results of this paper are Theorems 1.1 and 1.3.

Theorem 1.1. Suppose that a,d >0, b,c>0,a+c<p—1andb+d < q—1. Then problem (1.1)
has a positive weak solution for each positive parameters A1, As, i1 and .

Remark 1.2. By Theorem 1.1 in [1], there exists a positive solution of the problem (1.1) for A1+ 1
and Ay + pg large. But in our paper, (1.1) has a positive solution for each positive parameters
AL, A2, 1 and pa.

Theorem 1.3. Suppose that a,d >0, b,c >0, a+c<p—1andb+d < qg—1. Then there exists
A* > 0 such that for 0 < A1, Ao, p1, 2 < X*, (1.1) has at least two positive weak solutions.

2 Proof of Theorem 1.1

Proof. We shall establish Theorem 1.1 by constructing a positive weak subsolution (¢1,12) €
Wol? x Wyl and a supersolution (21, z2) € Wol? x Wyl? of (1.1) such that ¢; < z for i = 1,2.
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That is , 14, 2; satisfies (¢1,12) = (0,0) = (21, 22) on 09,

/ V1 P2V, V frda </ (Alw(f-l-m?ﬁg)fldl‘,
0 0

[ 1Vt 902V fate < [ (Nt + )
0 0

/ VP2V 21V frda > / (Alzf + Wg) fudz,
0 Q

/ ‘VZQ’q_QVZQ.Vdex Z/ ()\zzf—i-/@zg)fgdx,
Q Q

for all test functions f; € Wo''? and fo € Wy with f1, fo > 0.
Let A, and A, be the first eigenvalue of the problems, respectively,
—Appp = )\pggg—l’x €N, ¢p,=0,z€9,

-1 (2.1)
_Aq¢q = Aq‘b(q] RURS Qv ¢q = 0, S 89,

where ¢, and ¢, denote the corresponding eigenfunctions, respectively, satisfying ¢,, ¢, > 0 in Q
and |V¢,| > 0, |Vdy| > 0 on 9. Without loss of generality, we let ||¢p|l, = |l¢qllq = 1.
Since bc < (p—1—a)(qg — 1 — d), we can take k such that

—1—
¢ <k<u.

g—1-d b (22)

We shall verify that (¢1(z),v2(z)) = (J(ﬁg, akd)g/) is a subsolution of (1.1), where p’ = p/(p —
1),¢ = q/(qg—1) and ¢ > 0 is small and specified later. Let the test function f;(x) € WoP with
fi(x) > 0. Then it follows from (2.1) that

/Q VP72 V1.V frda = (ap')™! /Q 00 |Vl” V.V frda
= (aly ! [ (190 2V6, 9 (010) = 190, 1] da
=@y [ Outy? = V) e
Similarly,
/Q |V¢2|‘1*2V¢2,Vf2dgz = (akq/)qil /Q (Agdg? — [V @g|?) fadz,
for all fo(z) € Wob? with fo(z) > 0. Let n > 0, > 0 be such that
Ap®p” — [V dp|” <0, Agohg” — [Vg|* <0, z € Qy, (2.3)

and p1 < ¢p, ¢y < 1 on Qy = Q\ Q,, where Q,, = {z € Q : d(x,09) < n}. (This is possible since
¢p = ¢qg =0 and |Vo,|, |V, > 0 on 0Q.)
We have from (2.3) that

Qy Qy

@ [ O = 1VaMpdr <0< [ (Aot + k) s
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and
(@)t [ gty = Vo fade <0< [ (har + pavd) e
n Qn
On the other hand, in Qy let 11 = (p—1—a)/e, o = p—1—a)/(p—1—a—2¢), s1 =
(g—1—=4d)/b, sa=(¢q—1—d)/(g—1—d—b); Note that (1/r1) + (1/r2) =1,(1/s1) + (1/s2) = 1.
We have from (2.2) that
a kb

p—1————2>p—1—a—kb>0,
ry T2

Thus we choose o > 0 such that

_1—a _kb 1 11
o’ T TP Apdpl’ < A171 2 Na(Hq, z € Qo,
klg—1—-<4)y—< , 1L
oM q" 1)‘q¢qq < Xt pgce TP 2 € Qo

where 6 =p/(p—1—a),y=¢q/(q¢ — 1 — d). Furthermore

adry = w > 20—y,
p—1l—a—-c” p—-1
dq qd /
dryss = > = ¢d,
T T —d b= g1 1
and L4
q—1—- c pc /
= _— > -
ps1 = p(=— )>p(p_1_a)_p_1 P,
p—l—a qb /
=q(———) > > =q'b.
qr2 = g¢(—_—) Q(q_l_d)_q_l q

These relations and Young inequality show that

(ap' P! /Q Ouby? — [VéplP) frdar < (ap!)?! /Q A, ? Frda

1 a 1 kb
S / ()\1 1ol MCL(S)(erQ or2 Hq)fld‘r
Qo

1 kb

1 a
oy @071 T3 g1 1;4)72
§/ Mmomp®)™ (2o pf)
Qo

1 T2

] fidz

IN

1l a 5 1 kb
[(M” o)t + (pr2 o /ﬂ)”] frda

(=}

(/\10_a'ua6r1 + Mlo_kb'uqrg)fldx

0

IN

(AL0%7 + pu10* 9, 1Y) frda

0

(A + path) frda,

0

S~ o — o
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and

(a kq/)q I/QO (>‘q¢q |V¢q| ) fadx < ( a /q 1/ Ag®q? fodx

S/ (o™ 01 1) (127 02 ) foda
Qo
1

1 1 kd
S/ [(Azswslﬂp)sl+(M232032ud)82 fadz
Qo

:/ ()\QUc'upsl + 19 O_kd dSQ)del‘
Qo

A

_/<&w%w+mﬁ%ﬂ%mm

Qo

— [ Ot + i)
Qo
Thus the (¢1,12) is a subsolution of (1.1).
Next, we construct a supersolution of (1.1). Let e,(x),eq(x) be the positive solutions, respec-
tively, of the problems
—Ape, =128, e,=02¢c0Q,

(2.4)
—Ageqg=1,2€Q, e;=0,z¢€00.

Let (21, 22) := (Aep, Beg), where the constants A, B > 0 are large and to be chosen later. Then we
have from (2.4) that

/ ‘V21|p_2v21.Vf1d$ = Ap_l/ fleC,
Q Q (2.5)

/|VZ2‘q2VZ2.Vf2dI:Bq1/f2d$-
Q Q

Let | = |lep|loc, L = ||€gl/oc- Since p,g > 1,a <p—1,d < g — 1, so that

a d

x
;= 0=1lim 1,hmacp1—00*hmavq L
r—o00 P~ z—oo 91 z—o0 T—00

These imply that there exist positive large constants A,B such that
AP > A (AD® + p1 (BL)Y, BT > M\ (AD€ 4 pp(BL)Y.

Thus

AP [ fidx > [ (AM21% + pi22®) frde,

J (A
Q Q
qul fode Z f ()\2216 —i—ungd)fgdac,
Q Q

i.e., (z1,22) is a supersolution of (1.1) with z; < 4; for A, B larg, i = 1,2. Thus, there exists a
solution (u,v) of (1.1) with ¢ < u < 21,99 < v < z9. This completes the proof of theorem 1.1. [
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3 Proof of Theorem 1.3

Proof. To prove Theorem 1.3, we will construct a solution (i1, 2), a strict supersolution ({1, (2),
a strict subsolution (wj,ws), and a supersolution (z1, z9) for (1.1) such that (¢¥1,v2) < ((1,(2) <

(21, 22), (Y1,92) < (wi,w2) < (21, 22), and (w1, w2) £ (C1,¢2). Then by the three-solution theorem
[2, 7], (1.1) has a least three distinct solutions (u;, v;), i = 1,2, 3, such that

(ur,v1) € [(¥1,%2), (C1, C2)], (ug, v2) € [(W1,w2), (21, 22)], (3.1)

and

(usg,v3) € [(¥1,v2), (21, 22)] \ ([(¢1, ¥2), (C1, ()] U [(w1, w2), (21, 22)]).- (3.2)

We first note that (t1,12) = (0,0) is a solution (hence a subsolution). As in section 2, we can
always construct a large supersolution (z1, 22). By the Theorem 1.1 the problem

—Ap(,Jl = AN+ ,Ulojzb, x €€,
—Aybs = X1 + pauin?, € Q,
w1 =0 = w9, x € 010,

has a positive weak solution (Wi, ws). Let J, > 0 be such that

and
HlaX{Oép_l_a,Oép_l_ﬁb,aﬁ(q_l)_c, aﬂ(q—l—d)} < 1.

(This is possible since be < (p — 1)(g — 1)). Let w; = awy and wy = o

Ws. Then for xz € ) we have
/Q Vw1 [P 2Vw, .V fide = aP™? /Q (VW1 P2V, V frda

=af! /Q()\chl“ + p16?) frda

_ /Q(ap—l—a)\lwla_l_ap—l—ﬂlewa)fldx

< /Q()\lwla + pws’) frde,

and
/Q IVws | 2Vw,.V fodz = o"@~ 1) /Q V2|92V W5V fodx
= o1 /Q (MaW1€ 4 patin?) fad
= /Q(Oéﬁ(q_l)_c)\wlc + "D o) foda

< /(>\2w1C + pows®) fodzr.
Q
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Thus (w1, w2) is a strict subsolution of (1.1). Finally we construct the strict supersolution (1, (2).
Let ey, eq,1, L be as described in section 2, and
€q N el el el
(Cl CZ) (67 67)5 AT = mln{ﬁlpfl’ ﬂ/lpflv ,Bqul’ B/qul}

where 0 < e < 1,8 >1and 8 = 3/(8—1). Note that ||(1]lcc = ||(2]lcc = €. For 0 < A1, Ag, g1, pro <
A* observe that

eP—1 et~ 1 1
— = 7(5+2)
r =1t B
Pl Pl
= BT T
> A+ > MG F b, (3.3)

and
€11 | 1
—=+—(z+%)
L La-1°g3  p
€q71 qul
= BLq—l + ﬁqu—l
> Ng + p2 > AaGi€ + oo’ (3.4)

Using the inequalities (3.3) and (3.4), we have

pl
ll’l

/|VC1|p V(.Y frda = fldl‘>/(>\1C1a+M1C2b)f1d$,

/Q’VC2|q2VC2-Vf2dw Tom 1/f2d33>/(/\2C1 + 12G2?) fada,

for all f; € Wol’p,fQ € Wol’q with f1, fo > 0. Thus ({1, (2) is strict supersolution of (1.1). Here
we can choose € small so that (wi,w2) £ ((1,¢2). We note that the proof of Theorem 1.1 we
can choose (z1, z2) large enough that ((1,(2) < (z1,22). Thus there exist three solutions (u;,v;),
i = 1,2, 3, such that satisfies (3.1) and (3.2). Since (¢1,12) = (0,0) is a solution it may turn out
that (ui,v1) = (¢¥1,%2) = (0,0). In any case we have two positive solutions (ug,vs) and (us,vs)
and Theorem 1.3 is proven. O

References

[1] Jaffar Ali, R. Shivaji, Positive solutions for a class of p-Laplacian systems with multiple pa-
rameters, J. Math. Anall. Appl. 335 (2007), 1013-1019.

[2] Herbert Amann, Fized point equations and nonlinear eigenvalue problems in ordered Banach
spaces, STAM Rev. 18 (5) (1976) 620-7009.

[3] C. Chen, On positive weak solutions for a class of quasilinear elliptic systems, Nonlin. Anal.
62 (2005) 751-756

438



M. B. Ghaemi, G. A. Afrouzi, S.H. Rasouli, M. Choubin/ TIMCS Vol .3 No.4 (2011) 432 - 439

[4] P. Drabek, J. Hernandez, Ezistence and uniqueness of positive solutions for some quasilinear
elliptic problem, Nonlin. Anal. TMA, 44 (2001), 189-204.

[5] P. Drébek, P. Krejéi., P. Takac., Nonlinear Differential Equations, Chapman & Hall/CRC,
1999.

[6] Eun Kyoung lee, R. Shivaji, Jinglong Ye, Positive solutions for elliptic equations involving
nonlinearities with fallig zeroes, Appl. Math. Letters 22 (2009), 846-851.

[7] R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlin. Anal.
and Appl., Lecture notes in pure and applied mathematics. 109 (1987), 561-566.

439



