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Abstract

In this paper, we solve nonlinear system of Fredholm-Volterra integro-differential equations
by using discrete collocation method. These types of systems of integral equations are
important and they can be used in engineering and some of the applied sciences such as
population dynamics, reaction-diffusion in small cells and models of epidemic diffusion. Also
these equations with convolution kernel can be solved by discrete collocation method. By the
above mentioned method we approximate solution of equation by no smooth piecewise
polynomials, for validity and ability the method we solve some examples with high accuracy.

1. Introduction

At first we introduce some of methods for solving integral equations and integro-differential
equations. In [1, 6] authors used from numerical methods for solving Fredholm integral
equations also in [8] Fredholm integro-differential was solved by wavelet Petrov-Galerkin
method. One application of the above equation is in chemical absorption kinetics, see [5]. Also
in [3, 7] some of results about solving Volterra integral equations are presented. Semi
orthogonal spline wavelets and spline are used for solving integro-differential equation
respectively in [2, 4]. Consider the system of nonlinear Fredholm-Volterra integro-differential
equations with convolution kernel,
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SR OY” O =10+ [ kEIGHE T+ [ k€06, (v, (.

mﬁqr(t) V0= 5,0+ [ k(1) Gy () dr + [ K, (t, 1), (, () d 7, (1)

y"0)=«,, v,”(0)=p,r=01,..(m-2), te[0,T]

where p,(t), q,(t) forr=0,1...,m-1 and k;(t,7) for i =1...,4 and f (t) for s=12 are
known functions and Y,(7),Y,(r) are unknown that must be determined. G, (y,(z)) for

i =1...,4 are nonlinear respect to y,(7), Y,(r). For approximating of Y,(t), s=12 we use
Lagrange polynomial interpolation obtained by no smooth piecewise polynomial space, so we
introduce mesh I, on [0, T],
I, ={t,=nh; n=01..,N, Nh=T}.

We define U (7), s=1,2 as an element of no smooth piecewise polynomial with degree less
than m as follows,
Uso(z), ty<z<t,
ug,(z), t<r<t,,
Y (7) = u,(7) = 5 (2)
U va(7), tyy <7<ty
s=12.

In fact u (7)€ S:3(1,) where,

{0 ={us(2)] ug(r)=us n()eMm-1, 7(tn, th41l, s=L2, n=0,.N-1}, 3)
t,=0, t =Ty,

to simplicity we choose T=1 and we begin to use Lagrange interpolation with
(Ci,Y n;) points for n=0,1,..., (N-1), s=1,2 and i =0,1,...m, to find u ,(t) in (2) where vy,

is an approximation y(t,;) and c¢;, i=1..,m are m-points Gauss as collocation parameters

that can be obtained by roots of Legendre polynomial on [0,1], we give Gauss’s points in the

case of m=4,

p(s)=+7(20s° —30s? +12s —1) =0,

5-15 1 5+/15 (4)
¢, = ' C,=7, GC= '
10 2 10
and also, ¢, =1can be introduced as an end- point of [0, 1], also mesh points follow that,
t,=t,+ch, i=L.,m, n=01.,(N-1).

By considering of interpolation we can write
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U t,;)=Ysni» i=L..,m, n=021..,(N-1), s=12 (5)
and,
us,n(tn+0h):iLi(0)ys,n,i' #<[0,1], s=12, n=01...(N-1), (6)

where L;(0), i=12,...,m are Legendre polynomials.
Assume r =t +6h, so7 €(t,,t,,,], in this way U (7), s =1,2 will be restricted to subintervals

such as (t,,t,.,].

According the above process now, nonlinear system (1) can be converted the following form:

3
N

P YO =10+ [ k608, (D + [ K, E7IC, v, () 7+

_‘
Il
o

K, (.G, (Y, () 7+ [ K, (t, G, (¥, () 7,

—

0

m-1 t t (7)
> a0y, O =10+ ] k)G @+ [ ks €0)Gy,()dr+
ka8, (v (D 7+ [ K, (6, DG, (v, (D .
Also the discrete form of system (1), is given by,
Fa®)=f,0+[ k€06, (@) dr+ [ "k, (.1)G,(y, () d7, 8)
> P OY.20 = Fu©+ [ KEDG . dr+ [ ko060 (9)
R =0+ [ kG, (y: () d 7+ [ "k (6.0 G, (v, (D) dr, (10)
>0, 0)Y:70 = Fa @)+ ket DG, a4 [ K, €28,y (). (11)

We use Eqgs.(2-7) for obtaining of Eqs.(8-11), so we have
t, t,
Foaltn ) =F16) + [ kit DG 7+ [ 'K, (t, )G, U (2))d 7,

Foo(to) =Fo(t ) +] ket )G U, () 7 + [ Koty 1 1)8, (U, (D))d 7, (12)
n=01..,(N -1, i=1....m, s=12.

and,
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il—i(r)(tn,i)yl,n,i = nl(tn |)+J. n| 1T)G (U (T))d T+J. k (tnl 1T)GZ(US(T))d 7,

il‘i(r)(tn,i)yz,n,i = nz(tnl +J- n| ’T)G (U (T))dT+J k (tn i 1T)G (U (T))d 7, (13)
n7:0,1,...,(N -1, i=4....m, r=01...,(m-1), s=12.

where U (7), s =12 is given in (3). We compute F, ,(t,;) andF ,(t,;); n=01..., (N -1),
and i =1,2,...,m by (12) such that they can use for obtaining Yy, ;g insystem(13).
In (12) for n=j we have:
t t
Fraty )=fut, )+ [ Kty DG, (2)d 7+ 'Kt 7)G, U, (2)d 7,

520L0=thj)+j:k3¢“,ﬂsgmsgndf+j:kAgj,ﬂe4@5@»df, (14)
j=01..,(N -1, s=12

From (3), (7) and (14) we can write

Ol(tOI) f(tOI) 1
FLt =R )+ S [ p“r)G(u“Jr»dr—%Jpl (t,,.7)G, Obp(ﬂ)dr} (15)
=1, (N -1),
and
Fo,z(to,i ):fz(to,i)’ =1..
F,-,z(tj,i)=f2(t,-,i)+“ 3 [ s G, N+ [, G, (Dde |, (16)
—1,..,(N —1).

By substituting F,,(t,;) and F_,(t,;) for n=01...(N-1), i=12..,m in (14) we obtain

Ysni'S by the following system:
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m ] t (N-1) tp+1
DL () Vani = Foalty )+ [ Kt 0) Gy Uy o () d+ Z [, ety 1) Go (U (1)) 7,
i=1 "
m (N -1) 1
DL () Yans = Fralty) + [ alty7) Gty (7)) dr + Zj (1) G (U, , () dz  (17)
i=1
=1..,(N=-1, i=L1....m,r=0,...,(m=-1).
L m (0-¢;) Tt
Here Lagrange polynomials introduce by Ly (0)= II ( ),rztp+9h, where 6= ® and
i=1 Cq =G
i 0 |
also,u, ,(7) =D L, (0)Y,,nq =L, p=0,1..,(N-1), s=12. (18)
q=1 g=1

Considering of the above formulations, at first by solving algebraic system (17), we find vy, ;'
S, 1=12,...,m ,n=0L..,(N-1),s=12, thenby (18), u, ,(z), , p=L..,(N-1),s=12 can be
found and finally u (t), s=12 is give by (2) as an approximation of y,(t), s=12.

3. Numerical results
In this section, for validity and ability of proposed method we solve two examples of nonlinear
system of Fredholm-Volterra integro-differential equations

Example 1.
Consider nonlinear system of Fredholm-Volterra integro-differential equations system with
convolution kernel as follows,

DO +ty; O+, 0= L0 +[ ey, @dr+[ -2y, (0)d7,

2+ yit)+y, () +y,(O) =1, (t)+j SIn(t—T)yl(r)dr+I (t—7)*y%(s)dr,
¥1(0)=1 y,(0)=0, y;(0)=0,

3 4
with f(t)—%—%t 19 e Vg f (t)—10 27 A2 B U ost +sint and
13 4 11 10 5 3 7

exact solutions are y,(t)=t°+t+1and vy,(t)=t".

For m=4,h=%,T=l, we use Egs.(15-18) in the discrete collocation method that the

interpolation is interdicted the following form,
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1+t +t2-2.98996x10™t°, 0O<t s%,

ul(t) = 1
1+t +t2+1.61435x107t 3, E<t <1,
and
—3.99694x10 " +5.276x10 Mt —1.46381x10't% +t3, 0<t < %
Uz(t) =

—1.38254x107"° +5.12586x10 "'t +3.30758x10 't 2 +t 2, % <t <1,

Absolute error in some points is show in tablel.
Tablel. Numerical results for example 1.

ti ||u1 (t) -Y (t)nz ”uz (t) -Y, (t)”2
0 2.0x10-10 3.9x10-11
0.1 2.0x10-10 3.4x10-11
0.2 2.1x10-10 2.9x10-11
0.3 2.2x10-10 2.5x10-11
0.4 2.3x10-10 2.0x10-11
0.5 2.5x10-10 1.6x10-11
0.6 2.0x10-11 9.7x10-11
0.7 2.8x10-11 8.8x10-11
0.8 3.6x10-11 8.0x10-11
0.9 4.4x10-11 7.1x10-11
1 5.4x10-11 6.1x10-11

From the numerical results are shown in the table 1, we conclude, that the proposed method
has a high accuracy.

Example 2.
Consider the following nonlinear system of Fredholm-Volterra integro-differential equations,

ty; O+, ()= £,0+ [ (t-0)?e*d 7+ [ cost 1) y,()d 7,
Y30+ Y,(0) = £, () + [ sint - 7 cos(y,()) d 7+ [ ey, () dr,
%,(0)=0, y,(0)=-2, y;(0)=0,

with f,(t)=2-2e" +4t+t* —2cos(L—t) +3sin(l-t) + 4sint and f,(t)=3e™" +t2—%tsintand

exact solutions are y,(t) =t and Y,(t)=t>—-2. In the case of m=4, h =%, T =1 in the
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discrete collocation method and by using (15-18), the interpolation u,(t) and u,(t) can be
introduced by,

—1.31077x107 +t +8.17124x10t? +1.89004x107**t*, 0<t < %

ul(t) =

8.22595x107! +1 +1.66985x107*°t %> —5.33191x10 7t ° %<t <1
and

—2+3.31916x10°t +t2 -5.83213x10t*, 0<t < %
uz(t) =

~2+3.96184x107"°t +t*>—9.86802x107"t?, %<t <1

absolute errors in some points are given in table 2.

Table 2 . Numerical results for example 2

t THOESAG]H Ju, ) -y, ®),
0 1.3x10-11 7.2x10-11
0.1 1.3x10-11 3.9x10-11
0.2 1.3x10-11 5.4x10-12
0.3 1.3x10-11 2.8x10-11
0.4 1.3x10-11 6.1x10-11
0.5 1.3x10-11 9.3x10-11
0.6 1.5x10-11 1.2x10-10
0.7 1.0x10-11 6.6x10-11
0.8 7.6x10-12 9.2x10-12
0.9 5.2x10-12 4.7x10-11
1 3.2x10-12 1.0x10-10

By considering numerical results in the table 2, we have concluded that the discrete
collocation method has a high accuracy and it can be used for other nonlinear problems.

4. Conclusion

In this paper, we have used discrete collocation method for solving system of non-linear
Fredholm-Volterra integro-differential equation. By using this method we have reached high
accuracy that numerical results have shown that our claim is right.
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