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Abstract

Linear programming problems with trapezoidal fuzzy variables (FVLP) have recently at-

tracted some interest. Some methods have been developed for solving these problems. Fuzzy

primal and dual simplex algorithms have been recently proposed to solve these problems.

These methods have been developed with the assumption that an initial Basic Feasible So-

lution (BFS) is at hand. In many cases, finding such a BFS is not straightforward and some

works may be needed to get the simplex algorithm started. In this paper, we propose a

penalty method to solve FVLP problems in which the BFS is not readily available.

1 Introduction

Many application problems, modeled as mathematical programming problems, may be for-

mulated with uncertainty. Fuzzy programming approach is useful to treat a problem under
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uncertainty. The concept of decision making in fuzzy environment was first proposed by

Bellman and Zadeh [2]. Several kinds of fuzzy linear programming problems have appeared

in the literature and different methods have been proposed to solve such problems. The first

formulation of Fuzzy Linear Programming (FLP) is proposed by Zimmermann [12]. Some

methods have been developed for solving these problems by introducing and solving certain

auxiliary problems. Mahdavi-Amiri et al. [10] have developed a new fuzzy primal and dual

simplex algorithm for solving the FVLP problem. As they have been mentioned the fuzzy

primal algorithm needs an initial basic feasible solution (see[10]). In some cases, such a

solution is not straightforward. Hence in this paper we propose a fuzzy Big-M method for

solving these types of problems where directly can find a basic feasible solution if there exist.

Our discussion, here is outlined as follows: In next section we briefly give some necessary

concepts of fuzzy set theory. In Section 3 we first define a Linear Programming with Fuzzy

Variables (FVLP) problem and then formulate a real problem as FVLP problem. Further-

more,the fundamental concepts and theorems are given to complete our discussion in this

section. We also introduce a Big-M method for solving FVLP problems and illustrate it with

an example in Section 4. Finally, we conclude in Section 5.

2 Preliminaries

We review the fundamental notations of fuzzy set theory, initiated by Bellman and Zadeh

[2], to be used throughout this note and which is taken from ([5],[6],[8],[9]and[10]). We give

here, some basic definitions on fuzzy numbers comparison that will be used for illustrating

our approach. In this way, and for methodological reasons, in spite that the approach that

is designed will work correctly for any kind of fuzzy numbers, we prefer in the following to

focus on the usual case of trapezoidal fuzzy numbers.

Definition 1. Let X be the universal set. Ã is called a fuzzy set in X if Ã is a set of ordered

pairs Ã =
{(

x, µÃ (x)
)
|x ∈ X

}
, where µÃ (x) is the membership function of x in Ã.

remark 1. The membership function of Ã specifies the degree of membership of element x

in fuzzy set Ã (in fact, µÃ shows the degree that x belongs to Ã).

Definition 2. The α-level set of Ã is the set Ãα =
{
x ∈ R|µÃ (x) ≥ α

}
, where α ∈ (0, 1] .

The lower and upper bounds of any α-level set Ãα are represented by finite numbers infx∈Ãα

and supx∈Ãα
.

Definition 3. The support of a fuzzy set Ã is a set of elements in X for which µÃ (x) is

positive, that is, suppÃ =
{
x ∈ X|µÃ (x) > 0

}
.
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Definition 4. A fuzzy set Ã is convex if

µÃ (λx+ (1− λ) y) ≥ min
{
µÃ (x) , µÃ (y)

}
, ∀x, y ∈ Xand λ ∈ [0, 1] .

Definition 5. A convex fuzzy set Ã on R is a fuzzy number if the following conditions hold:

(a)Its membership function is piecewise continuous.

(b)There exist three intervals [a, b],[b, c] and [c, d] such that µÃ is increasing on [a, b], equal

to 1 on [b, c], decreasing on [c, d] and aqual to 0 elsewhere.

remark 2. In the above definition, we say interval [b, c] is the modal set of fuzzy number Ã.

Definition 6. Let Ã =
(
aL, aU , α, β

)
denote the trapezoidal fuzzy number, where

[
aL − α, aU + β

]
is the support of Ã and

[
aL, aU

]
its modal set.

remark 3. We denote the set of all trapezoidal fuzzy numbers by F (R). If a = aL = aU

then we obtain a triangular fuzzy number, and we show it with Ã = (a, α, β).

2.1 Arithmetic on fuzzy numbers

Let ã =
(
aL, aU , α, β

)
and b̃ =

(
bL, bU , γ, θ

)
be two trapezoidal fuzzy numbers. Define

x > 0, x ∈ R; x.ã =
(
xaL, xaU , xα, xβ

)
,

x < 0, x ∈ R; x.ã =
(
xaU , xaL,−xβ,−xα

)
,

ã+ b̃ =
(
aL + bL, aU + bU , α + γ, β + θ

)
,

ã− b̃ =
(
aL − bU , aU − bL, α + θ, β + γ

)
.

2.2 Ranking function

An effective approach for ordering the elements of F (R) is also to define a ranking function

R : F (R) → R which maps each fuzzy number into the real line, where a natural order exists.

We define orders on F (R) by:

ã ≽ b̃ if and only if R (ã) ≥ R
(
b̃
)

ã ≻ b̃ if and only if R (ã) ≥ R
(
b̃
)

ã ∼= b̃ if and only if R (ã) = R
(
b̃
)

where ã and b̃ are in F (R) . Also we write ã ≼ b̃ if and only if b̃ ≽ ã.

We restrict our attention to linear ranking functions, that is, a ranking function R such that
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R
(
kã+ b̃

)
= kR (ã) +R

(
b̃
)

for any ã and b̃ belonging to F (R) and any k ∈ R.

We consider the linear ranking functions on F (R) as:

R (ã) = cLa
L + cUa

U + cαα + cββ,

where ã =
(
aL, aU , α, β

)
, and cL, cU , cα, cβ are constants, at least one of which is nonzero. A

special version of the above linear ranking function was first proposed by Yager[11] as follows:

R (ã) = 1
2

∫ 1

0
(inf ãλ + sup ãλ) dλ

which reduces to

R (ã) = aL+aU

2
+ 1

4
(β − α).

Then, for trapezoidal fuzzy numbers ã =
(
aL, aU , α, β

)
and b̃ =

(
bL, bU , γ, θ

)
, we have

ã ≽ b̃ if and only if aL + aU + 1
2
(β − α) ≥ bL + bU + 1

2
(θ − γ) .

3 Fuzzy linear programme

3.1 Definition of model

Here we first define a general form of the problem which will be discussed in this paper.

Consider a Linear Programming with Fuzzy Variables (FVLP) as follows:

min z̃ ≈ cx̃ (1)

s.t. Ax̃ ≽ b̃

x̃ ≽ 0̃

where c ∈ Rn, x̃ ∈ (F (R))n , A ∈ Rm×n, b̃ ∈ (F (R))m and b̃ ≽ 0̃.

Note that an FVLP problem is a linear programming problem in fuzzy environment in which

the decision making variables and right-hand sides are fuzzy numbers.
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3.2 Formulation of a problem

An alloy producer, produces 2 types of alloys P1 and P2. These alloys consists of Zinc and

Tin(F1, F2). The tableau below shows the amount of F1 and F2 used in per unit of alloys.

The average cost of per kilogram of P1 and P2 are 10 and 6 cents, respectively. The minimum

daily supplyes metals F1 and F2 are approximately 49 and 45 units, respectively. The producer

wants to know in order to minimize the cost of Zinc and Tin how many kilograms of alloys

P1 and P2 he must produce daily?

Products

Metal P1 P2

F1 1 6

F2 4 2

Now if we assume that the fuzzy variables x̃1 and x̃2 be the daily supplyes metals F1 and F2

respectively, then this problem can be formulated as follows:

min z̃ ≈ 10x̃1 + 6x̃2

s.t. x̃1 + 6x̃2 ≽ (46, 52, 2, 2)

4x̃1 + 2x̃2 ≽ (42, 48, 4, 4)

x̃1, x̃2 ≽ 0̃

3.3 Fuzzy basic feasible solution

First of all, we briefly describe Fuzzy Basic Feasible Solution (FBFS) for the FVLP prob-

lem as established by Mahdavi-Amiri and Nasseri [8]. Consider the FVLP problem and

A = [aij]m×n. Assume rank(A) = m. Partition A as [B N ] where B, m × m, is non-

singular. It is obvious that rank(B) = m. Let yj be the solution to By = aj. It is

apparent that the basic solution x̃B ≈ (x̃B1 , ..., x̃Bm)
T ≈ B−1b̃, x̃N ≈ 0̃ is a solution of

Ax̃ = b̃. In fact, x̃ =
(
x̃T
B x̃T

N

)T
. If x̃B ≽ 0̃, then the basic solution is feasible and

the corresponding fuzzy objective value is: z̃ ≈ cBx̃B, where cB = (cB1 , ..., cBm). Now,

corresponding to every nonbasic variable x̃j, 1 ≤ j ≤ n, j ̸= Bi, i = 1, ...,m, define

zj = cByj = cBB
−1aj. The following result concerns the non-degenerated problems, where

every fuzzy basic variable corresponding to every basis B is positive. Observe that for any

basic index j = Bi, 1 ≤ i ≤ m, we have B−1aj = ei where ei = (0, ..., 0, 1, 0, ..., 0)T is the ith

unit vector, since Bei = [aB1 , ..., aBi
, ..., aBm ] ei = aBi

= aj, and so we have:
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zj − cj = cBB
−1aj − cj = cBei − cj = cBi

− cj = cj − cj = 0.

The following theorem characterizes optimal solutions.

Theorem 1. (optimality conditions) Assume the FVLP problem is non-degenerate. If a

basic solution x̃B = B−1b̃, x̃N ≈ 0̃ is feasible to (1)and zj ≥ cj for all j, 1 ≤ j ≤ n then the

fuzzy basic solution is a fuzzy optimal solution to (1).

Proof: See Mahdavi-Amiri and Nasseri [8].

Theorem 2. Let x̃B = B−1b̃ is a fuzzy basic feasible solution of the problem max z̃ ≈ cx̃

such that Ax̃ ≈ b̃ and x̃ ≽ 0̃. If for any column aj in A which is not in B, the condition

(zj − cj) < 0 hold and yij > 0 for some i, j ∈ {1, 2, ...,m} then it is possible to obtain a new

fuzzy basic feasible solution by replacing one of the columns in B by aj.

Proof: See[8].

Theorem 3. If in an FVLP problem, there is a column aj in A (not in basis) for which

zj − cj < 0 and yij ≤ 0, i = 1, ...,m, then the FVLP problem is unbounded.

Proof: It is straight forward.

We write the above FVLP problem in the following tableau format:

Basis x̃B x̃N R.H.S.

z̃ 0 zN − cN = cBB
−1N − cN ỹ00 = cBB

−1b̃

x̃B I Y = B−1N ỹ0 = B−1b̃

Now we are going to give the concept of pivoting and change of basis.

If x̃k enters the basis and x̃Br leaves the basis, then pivoting on yrk in the simplex tableau is

stated as follows:

1. Divide row r by yrk

2. For i = 0, 1, ...,m and i ̸= r, update the ith row by adding to it −yik times the new rth

row.

4 Big-M Method

The simplex algorithm was conceived by Dantzig for solving Linear Programming (LP)problems.

This method starts with a Basic Feasible Solution (BFS)and moves to an improved BFS, un-

til the optimal point is reached or else unboundedness of the objective function is verified.
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In order to initialize this algorithm a BFS must be available. In many cases, finding such

a BFS is not straightforward and some work may be needed to get the simplex algorithm

started.To this end, there are two techniques in linear programming literature: Two-phase

method and Big-M method [1]. But there may be some LP models for which there are not any

BFSs, i.e., the model is infeasible. Both Two-phase method and Big-M method distinguish

the infeasibility. Here we focus on Big-M method.

Consider a generic LP model. After manipulating the constraints and introducing the re-

quired slack variables, the constraints are put in the format AX = b,X ≥ 0 where A is a

m × n matrix and b ≥ 0 an m × 1 vector. Considering C as cost vector, the following LP

model is dealt with:

min CX (P )

s.t. AX = b

X ≥ 0

Furthermore, suppose that we do not have a starting BFS for simplex metod, i.e, A has no

identity submatrix. In this case we shall resort to the artificial variables to get a starting

BFS, and then use the simplex method itself and get rid of these artificial variables. The use

of artificial variables to obtain a starting BFS was first provided by Dantzig [3, 4].

To illustrate, suppose that we change the restrictions by adding an artificial vector R leading

to the system AX + R = b, (X,R) ≥ 0. This forces an identity submatrix corresponding to

the artificial vector and gives an immediate BFS of the new system, namely (X = 0, R = b).

Even though we now have a starting BFS and the simplex method can be applied, we have

in effect changed the problem. In order to get back to our original problem, we must force

these artificial variables to zero, because AX = b ⇔ AX + R = b, R = 0. In Big-M method

we assign a large penalty coefficient to these variables in the original objective function in

such a way as to make their presence in the basis at a positive level very unattractive from

the objective function point of view. More specifically, (P ) is changed to:

min CX +MR P (M)

s.t. AX +R = b

(X,R) ≥ 0
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where M is a very large positve number. The term MR can be interpreted as a penalty

to be paid by any solution with R ̸= 0. Therefore the simplex method itself will try to get

the artificial variables out of the basis, and then continue to find an optimal solution of the

original problem. Hereafter ‘*’ indicates the optimality, zj − cj is the reduced cost of the jth

variable, and yj = B−1aj, where B is the basis of the simplex method associated with the

related iteration and aj is the jth column of the technological coefficients matrix (for P (M)

it is [A I]). Four possible cases may arise while solving P(M):

(A1) : (X
∗, R∗) is an optimal solution of P(M), in which R∗ = 0

(A2) : (X
∗, R∗) is an optimal solution of P(M), in which R∗ ̸= 0

(B1) : zk − ck = max (zj − cj) > 0, yk ≤ 0, and all artificials are equal to zero.

(B2) : zk − ck = max (zj − cj) > 0, yk ≤ 0, and not all artificials are equal to zero.

remark 4. A Two-phase method for solving FVLP problem was proposed later [7]. Here we

are going to solve an FVLP problem using Big-M method.

Consider the following problem:

min Z̃ = 10x̃1 + 6x̃2

s.t. x̃1 + 6x̃ ≥ (46, 52, 2, 2)

4x̃1 + 2x̃2 ≥ (42, 48, 4, 4)

x̃1, x̃2 ≽ 0̃

First of all we add the slack variables:

min Z̃ = 10x̃1 + 6x̃2

s.t. x̃1 + 6x̃− x̃3 = (46, 52, 2, 2)

4x̃1 + 2x̃2 − x̃4 = (42, 48, 4, 4)

x̃1, x̃2, x̃3, x̃4 ≽ 0̃

As its seen no initial basic variable is available and hence we may use the Big-M method to

solve the problem.

Therefore, the problem changes to the following form:

min Z̃ = 10x̃1 + 6x̃2 +MR̃1 +MR̃2

s.t. x̃1 + 6x̃− x̃3 + R̃1 = (46, 52, 2, 2)
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4x̃1 + 2x̃2 − x̃4 + R̃2 = (42, 48, 4, 4)

x̃1, x̃2, x̃3, x̃4, R̃1, R̃2 ≽ 0̃

The problem is written in the tableau format as:

Basis x̃1 x̃2 x̃3 x̃4 R̃1 R̃2 R.H.S.

z̃ −10 −6 0 0 −M −M 0

R̃1 1 6 −1 0 1 0 (46, 52, 2, 2)

R̃2 4 2 0 −1 0 1 (42, 48, 4, 4)

Because R̃1 and R̃2 are basic variables, so the cost row must be equal to zero. Hence the next

tableau will be as following:

Basis x̃1 x̃2 x̃3 x̃4 R̃1 R̃2 R.H.S.

z̃ −10 + 5M −6 + 8M −M −M 0 0 (88M, 100M, 6M, 6M)

R̃1 1 6 −1 0 1 0 (46, 52, 2, 2)

R̃2 4 2 0 −1 0 1 (42, 48, 4, 4)

It is obvious that x̃2 is an entering fuzzy variable and R̃1 is a leaving fuzzy variable. Then

after pivoting the next tableau is given as:

Basis x̃1 x̃2 x̃3 x̃4 R̃1 R̃2 R.H.S.

z̃ −9 + 11
3
M 0 M

3
− 1 −M 1− 4

3
M 0 (48 + 74M

3
, 52 + 98M

3
, 2 + 14M

3
, 2 + 14M

3
)

x̃2
1
6

1 −1
6

0 1
6

0 (46
6
, 52

6
, 2
6
, 2
6
)

R̃2
11
3

0 1
3

−1 −1
3

1 (74
3
, 98

3
, 14

3
, 14

3
)

So x̃1 is an entering fuzzy variable and R̃2 is a leaving fuzzy variable. The last tableau is

given in the below. Now we can see all artificial variables leaves the basis. So we can remove

their columns

Basis x̃1 x̃2 x̃3 x̃4 R̃1 R̃2 R.H.S.

z̃ 0 0 −2
11

−27
11

2
11

−M 27
11

−M (1148
11

, 1478
11

, 176
11
, 176

11
)

x̃2 0 1 −2
11

1
22

2
11

−1
22

(68
11
, 83
11
, 6
11
, 6
11
)

x̃1 1 0 1
11

−3
11

−1
11

3
11

(74
11
, 98
11
, 14
11
, 14
11
)

Therefore, the fuzzy optimal solution of the FVLP problem which is obtained by the Big-M

method is x̃1 =
(
74
11
, 98
11
, 14
11
, 14
11

)
, x̃2 =

(
68
11
, 83
11
, 6
11
, 6
11

)
and the fuzzy optimal value of its objective

function is z̃ =
(
1148
11

, 1478
11

, 176
11
, 176

11

)
.

326

S.H. Nasseri and Z. Alizadeh/ TJMCS Vol .3 No.3 (2011) 318 - 328



5 Conclusions

The Big-M method is a known auxiliary technique to start the simplex algorithm. In particu-

lar, we have illustrated the mentiond method by formulating and solving a linear programming

problem with fuzzy variables.
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