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Abstract
This study concerns the existence of positive solution for the system
{ —Au = Xa(x) f(v), €,

—Av=Ab(z)g(u), €,
u=v=0, x € 08,

where A > 0 is a parameter, (2 is a bounded domain in RV (N > 1) with smooth boundary
0Q and A is the Laplacian operator. Here a(x) and b(z) are C' sign-changing functions
that maybe negative near the boundary and f, g are C'' nondecresing functions such that
f,9:[0,00) = [0,00) ; f(s), g(s) >0;s>0and

1o FO0Tg())

T—00 X

=0,
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for every M > 0.

We discuss the existence of positive solution when f, g, a(z) and b(z) satisfy certain
additional conditions. We use the method of sub-super solutions to establish our results.

Keywords: Laplacian system; Sign-changing weight.
AMS Subject Classification: 35J55, 35J65.

1 Introduction

In this paper we consider the existence of positive solution for the system

—Au = Xa(zx) f(v), z€Q,
—Av=Ab(z)g(u), ze€Q, (1)
u=uv=0, x € 01,

where A > 0 is a parameter, A is the Laplacian operator, ) is a bounded domain in
RN (N > 1) with smooth boundary 992, a(x) and b(z) are C! sign-changing functions that
maybe negative near the boundary and f, g : [0, 00) — [0, 00) are C'! nondecreasing functions
such that f(s), g(s) > 0 for s > 0.

Systems of the form (1) arise in several context in biology and engineering (see [12]). It
provides a simple model to describe, for instance, the interaction of two diffusing biological
species. u and v represent the densities of two species. See [13] for details on the physical
models involving more general elliptic system. We refer to [1, 2, 3, 9, 10] for additional
results on elliptic systems.

For the single-equation, namely equation of the form

—Au = Xa(x) f(u), z €,
{ u=0, x € 9, (2)

with sign-changing weight function has been studied by several authors (see [11, 7]). In a
recent paper [4], the authors established the existence results to the problem (2) for the case
when the Laplacian operator is replaced by a p-Laplacian operator.

This paper extends the recent works in [5, 10], where the authors studied the existence
of positive solution of the system (1) without the weight functions. Here we focus on sign-
changing weight functions a(z) and b(x). Due to this weights functions, the extensions are

challenging and nontrivial. Our approach is based on the method of sub-super solutions, see
[6, 8].
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To precisely state our existence result we consider the eigenvalue problem

“Ap=\p, zEQ,
{¢:o, v € o0, (3)

Let ¢; € C1(Q) be the eigenfunction corresponding to the first eigenvalue A; of (3) such that
d1(z) > 01in Q, and ||¢1]]ec = 1. It can be shown that % < 0 on 0f2. Here n is the outward
normal. This result is well known and hence, depending on €2, there exist positive constants
m, d, o such that

)\1 (Zﬁ% — ‘V¢1‘2 < —m, x € Q(;, 4)

(
¢1 >0, 1E€Q=0\Qs, (5)

with Qs = {z € Q | d(z,09Q) < 6}. We will also consider the unique solution, e(x) € C*(Q),
of the boundary value problem

—Ae(z) =1, z€Q,
0, x € 0182,

to discuss our existence result. It is known that e(z) > 0 in 2 and 82—(5) < 0 on 0N.

Here we assume that the weight functions a(z) and b(z) take negative values in €, but
require a(r) and b(z) be strictly positive in 2 — 5. To be precise we assume that there exist
positive constants ag, a1, by and by Such that a(z) > —ag, b(x) > —by on Qs and a(z) > a4,

b(z) > by on Q — Q.

2 Existence results

In this section, we shall establish our existence result via the method of sub and su-
persolutions. A pair of nonnegative functions (1, 12), (21, 22) are called a subsolution and
supersolution of (1) if they satisfy (¢, 1) = (0,0) = (21, 22) on 0§ and

{ =AYy < Na(z) f(¢ha),
—Avpy < Ab(x) (1),

and

{ —Az > Xa(x) f(z2),
—Azy > Ab(x) g(21).

Then the following result holds:

Lemma 2.1. (See [6]) Suppose there exist sub and super- solutions (¢1,9) and (21, 22)
respectively of (1) such that (¢1,15) < (21,22). Then (1) has a solution (u,v) such that
(

(u,v) € [(r, 2), (21, 22)]. -
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We make the following assumptions:

(H1) f,g :[0,00) — [0,00) are C' nondecreasing functions such that f(s), g(s) > 0 for
s> 0.

(H2) For all M > 0,
)

T—00 T

=0.

(H3) Suppose that there exists € > 0 such that:

)\1 ao

(e < min {brg(e0%), a1 FGe o),

m

A1 bo _ I .,
- g(€) < min {blg(§ea ), a1 f(§€0' )},

and

a { 6/\1 6/\1 } < 1
max , < .
big(3€0%) ar f(ze0%) ) = [Ibl|

Now we are ready to state our existence result.

Theorem 2.2. Let (H1) — (H3) hold. Then there exists a positive solution of (1) for
every A € [A.(€), A*(¢)], where

A* = min {

€em me 1 }

ao f(€)" bog(€) " |[blloo

6/\1 6/\1
A = , . 7
max { s ) @)

Remark 2.3. Note that (H3) implies A, < \*.

Example 2.4. Let o > 0, f(z) = ears and g(x) = €. Clearly f,g satisfy (H1) and

(H2) as
o M e®
M a e
lim M = lim et =0.
T—00 T T—00 xr

We can choose € > 0 so small that f, g satisfy (H3).
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Proof of Theorem 2.2. We shall verify that (¢1,12) = (¥,%) where ¢ = %e ? is a
sub-solution of (1). Since Vi) = € ¢ Vo1, a calculation shows that

A = —(3)eAd
= —€e([Va]* + ¢1A¢y)
= E(Alﬁﬁ% - |V¢1|2)'

Thus ) is a sub-solution if

gk~ [Varl?) < Nale) f(5e ).

First we consider the case when z € Q5. We have \; ¢? — |V < —m on Q5 and since

A < A\, then A < 25 Hence
ag f(e)

—AY=e(M ¢l —|Val’) < —me
< —Xag f(e)
< Ay flez )
< Aafz) f(4).

A similar argument shows that

—AY < Ab(x) g(¥)
when z € Q.

On the other hand, on Q \ €5, we note that ¢; > o > 0, a(x) > ai, b(x) > b; and since

e
A > A, we have \ > e (L) Hence

—AY=c¢ ()\1 ¢% - ’V¢1’2)

IA

6)\1

Aay f(%e o?)

< Aa(z) f(¥).

IA

A similar argument shows that:

—A1p < Ab(x) g(¥).

Those we have shown that (1,12) is sub-solution.
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Now, we will prove there exist a c large enough so that (21, 23) = (7 e, g(c) e) is a super-
solution of (1) where [ = ||e(x)||. A calculation shows that:

c
—A Z1 = 7
By (H2) we can choose ¢ large enough so that

c(Mla(@)llo) )™ = f(lg(c)).

Hence

V

Az =% > Aa@)ll f(Lg(c)

Aa(z) f(e(x) g(c))
Aa(z) f(z).

V

Next, since A < \* we have A\ < m Hence

—A Z9

VAR
e ©«
—~
o )
| ~—
~—

v

e
Ml a(e $)

)\b(m) g(zl)a

i.e. (z1,22) is a super-solution of (1) with z; > 9, for ¢ large, i = 1,2. (Note |Ve(z)| # 0

on 0f2). Thus, there exists a positive solution (u,v) of (1) such that (¢, v) < (u,v) < (21, 22).
This completes the proof of Theorem 2.2. O

v
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