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Abstract

This study concerns the existence of positive solution for the system
−∆u = λ a(x) f(v), x ∈ Ω,
−∆v = λ b(x) g(u), x ∈ Ω,
u = v = 0, x ∈ ∂Ω,

where λ > 0 is a parameter, Ω is a bounded domain in RN(N > 1) with smooth boundary
∂Ω and ∆ is the Laplacian operator. Here a(x) and b(x) are C1 sign-changing functions
that maybe negative near the boundary and f , g are C1 nondecresing functions such that
f, g : [0,∞) → [0,∞) ; f(s), g(s) > 0 ; s > 0 and

lim
x→∞

f(Mg(x))

x
= 0,
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for every M > 0.

We discuss the existence of positive solution when f , g, a(x) and b(x) satisfy certain
additional conditions. We use the method of sub-super solutions to establish our results.

Keywords: Laplacian system; Sign-changing weight.
AMS Subject Classification: 35J55, 35J65.

1 Introduction

In this paper we consider the existence of positive solution for the system
−∆u = λ a(x) f(v), x ∈ Ω,
−∆v = λ b(x) g(u), x ∈ Ω,
u = v = 0, x ∈ ∂Ω,

(1)

where λ > 0 is a parameter, ∆ is the Laplacian operator, Ω is a bounded domain in
RN(N > 1) with smooth boundary ∂Ω, a(x) and b(x) are C1 sign-changing functions that
maybe negative near the boundary and f, g : [0,∞) → [0,∞) are C1 nondecreasing functions
such that f(s), g(s) > 0 for s > 0.

Systems of the form (1) arise in several context in biology and engineering (see [12]). It
provides a simple model to describe, for instance, the interaction of two diffusing biological
species. u and v represent the densities of two species. See [13] for details on the physical
models involving more general elliptic system. We refer to [1, 2, 3, 9, 10] for additional
results on elliptic systems.

For the single-equation, namely equation of the form{
−∆u = λ a(x) f(u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(2)

with sign-changing weight function has been studied by several authors (see [11, 7]). In a
recent paper [4], the authors established the existence results to the problem (2) for the case
when the Laplacian operator is replaced by a p-Laplacian operator.

This paper extends the recent works in [5, 10], where the authors studied the existence
of positive solution of the system (1) without the weight functions. Here we focus on sign-
changing weight functions a(x) and b(x). Due to this weights functions, the extensions are
challenging and nontrivial. Our approach is based on the method of sub-super solutions, see
[6, 8].
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To precisely state our existence result we consider the eigenvalue problem{
−∆ϕ = λϕ, x ∈ Ω,
ϕ = 0, x ∈ ∂Ω.

(3)

Let ϕ1 ∈ C1(Ω) be the eigenfunction corresponding to the first eigenvalue λ1 of (3) such that
ϕ1(x) > 0 in Ω, and ||ϕ1||∞ = 1. It can be shown that ∂ϕ1

∂n
< 0 on ∂Ω. Here n is the outward

normal. This result is well known and hence, depending on Ω, there exist positive constants
m, δ, σ such that

λ1 ϕ
2
1 − |∇ϕ1|2 ≤ −m, x ∈ Ω̄δ, (4)

ϕ1 ≥ σ, x ∈ Ω0 = Ω \ Ω̄δ, (5)

with Ω̄δ = {x ∈ Ω | d(x, ∂Ω) ≤ δ}. We will also consider the unique solution, e(x) ∈ C1(Ω),
of the boundary value problem

{
−∆e(x) = 1, x ∈ Ω,
e(x) = 0, x ∈ ∂Ω,

to discuss our existence result. It is known that e(x) > 0 in Ω and ∂e(x)
∂n

< 0 on ∂Ω.

Here we assume that the weight functions a(x) and b(x) take negative values in Ω̄δ, but
require a(x) and b(x) be strictly positive in Ω− Ω̄δ. To be precise we assume that there exist
positive constants a0, a1, b0 and b1 Such that a(x) ≥ −a0, b(x) ≥ −b0 on Ω̄δ and a(x) ≥ a1,
b(x) ≥ b1 on Ω− Ω̄δ.

2 Existence results

In this section, we shall establish our existence result via the method of sub and su-
persolutions. A pair of nonnegative functions (ψ1, ψ2), (z1, z2) are called a subsolution and
supersolution of (1) if they satisfy (ψ1, ψ2) = (0, 0) = (z1, z2) on ∂Ω and{

−∆ψ1 ≤ λ a(x) f(ψ2),
−∆ψ2 ≤ λ b(x) g(ψ1),

and {
−∆z1 ≥ λ a(x) f(z2),
−∆z2 ≥ λ b(x) g(z1).

Then the following result holds:

Lemma 2.1. (See [6]) Suppose there exist sub and super- solutions (ψ1, ψ2) and (z1, z2)
respectively of (1) such that (ψ1, ψ2) ≤ (z1, z2). Then (1) has a solution (u, v) such that
(u, v) ∈ [(ψ1, ψ2), (z1, z2)].
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We make the following assumptions:

(H1) f, g : [0,∞) → [0,∞) are C1 nondecreasing functions such that f(s), g(s) > 0 for
s > 0.

(H2) For all M > 0,

lim
x→∞

f(Mg(x))

x
= 0.

(H3) Suppose that there exists ϵ > 0 such that:

λ1 a0
m

f(ϵ) < min
{
b1 g(

1

2
ϵ σ2), a1 f(

1

2
ϵ σ2)

}
,

λ1 b0
m

g(ϵ) < min
{
b1 g(

1

2
ϵ σ2), a1 f(

1

2
ϵ σ2)

}
,

and

max
{ ϵ λ1
b1 g(

1
2
ϵ σ2)

,
ϵ λ1

a1 f(
1
2
ϵ σ2)

}
≤ 1

||b||∞
.

Now we are ready to state our existence result.

Theorem 2.2. Let (H1) − (H3) hold. Then there exists a positive solution of (1) for
every λ ∈ [λ∗(ϵ), λ

∗(ϵ)], where

λ∗ = min
{ ϵm

a0 f(ϵ)
,
m ϵ

b0 g(ϵ)
,

1

||b||∞

}
, (6)

λ∗ = max
{ ϵ λ1
b1 g(

1
2
ϵ σ2)

,
ϵ λ1

a1 f(
1
2
ϵ σ2)

}
. (7)

Remark 2.3. Note that (H3) implies λ∗ < λ∗.

Example 2.4. Let α > 0, f(x) = e
αx
α+x and g(x) = ex. Clearly f, g satisfy (H1) and

(H2) as

lim
x→∞

f(Mg(x))

x
= lim

x→∞

e
αM ex

α+M ex

x
= 0.

We can choose ϵ > 0 so small that f, g satisfy (H3).
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Proof of Theorem 2.2. We shall verify that (ψ1, ψ2) = (ψ, ψ) where ψ = 1
2
ϵ ϕ2

1 is a
sub-solution of (1). Since ∇ψ = ϵ ϕ1∇ϕ1, a calculation shows that

−∆ψ = −(
1

2
)ϵ∆ϕ2

1

= −ϵ (|∇ϕ1|2 + ϕ1∆ϕ1)

= ϵ (λ1ϕ
2
1 − |∇ϕ1|2).

Thus ψ is a sub-solution if

ϵ (λ1ϕ
2
1 − |∇ϕ1|2) ≤ λ a(x) f(

1

2
ϵ ϕ2

1).

First we consider the case when x ∈ Ω̄δ. We have λ1 ϕ
2
1 − |∇ϕ1|2 ≤ −m on Ω̄δ and since

λ ≤ λ∗, then λ ≤ mϵ
a0 f(ϵ)

. Hence

−∆ψ = ϵ (λ1 ϕ
2
1 − |∇ϕ1|2) ≤ −mϵ

≤ −λ a0 f(ϵ)

≤ −λ a0 f(ϵ
1

2
ϕ2
1)

≤ λ a(x) f(ψ).

A similar argument shows that
−∆ψ ≤ λ b(x) g(ψ)

when x ∈ Ω̄δ.

On the other hand, on Ω \ Ω̄δ, we note that ϕ1 ≥ σ > 0, a(x) ≥ a1, b(x) ≥ b1 and since
λ ≥ λ∗, we have λ ≥ ϵ λ1

a1 f(
1
2
ϵσ2)

. Hence

−∆ψ = ϵ (λ1 ϕ
2
1 − |∇ϕ1|2) ≤ ϵ λ1

≤ λ a1 f(
1

2
ϵ σ2)

≤ λ a(x) f(ψ).

A similar argument shows that:

−∆ψ ≤ λ b(x) g(ψ).

Those we have shown that (ψ1, ψ2) is sub-solution.
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Now, we will prove there exist a c large enough so that (z1, z2) = ( c
l
e, g(c) e) is a super-

solution of (1) where l = ||e(x)||∞. A calculation shows that:

−∆ z1 =
c

l
.

By (H2) we can choose c large enough so that

c (λ ||a(x)||∞) l)−1 ≥ f(l g(c)).

Hence

−∆ z1 =
c

l
≥ λ ||a(x)||∞ f(l g(c))

≥ λ a(x) f(e(x) g(c))

= λ a(x) f(z2).

Next, since λ ≤ λ∗ we have λ ≤ 1
||b||∞ . Hence

−∆ z2 = g(c)

≥ g(c
e

l
)

≥ λ ||b||∞ g(c
e

l
)

≥ λ b(x) g(z1),

i.e. (z1, z2) is a super-solution of (1) with zi ≥ ψi for c large, i = 1, 2. (Note |∇e(x)| ̸= 0
on ∂Ω). Thus, there exists a positive solution (u, v) of (1) such that (ψ, ψ) ≤ (u, v) ≤ (z1, z2).
This completes the proof of Theorem 2.2. �
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