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Abstract

In this paper, the Homotopy analysis Method (HAM) is applied to the Maxwell system.
The HAM yields an analytical solution in terms of a rapidly convergent infinite power
series with easily computable terms.

1. Basic of Homotopy analysis method

We consider the following differential equation

N[u()]=0, (1)

where N isanonlinear operator, 7 denotes independent variable, u(z)is an

unknown function, respectively. For simplicity, we ignore all boundary or initial
conditions, which can be treated in the similar way. By means of generalizing the
traditional homotopy method, Liao [7] constructs the so-called zero-order

deformation equation

(- p)LI¢(z; p) — U, (7)1 = phH(z)N[¢(z; p)], (2)
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Where pe[0,1] is the embedding parameter, h # 0 is a non-zero auxiliary parameter,
H(z)
is an auxiliary function, L is an auxiliary linear operator, u,(z) is an initial guess of is

an
unknown function, respectively. It is important, that one has great freedom to choose

auxiliary things in HAM. Obviously, when p = 0 and p = 1, it holds

#(z;0) =u,(7), #(;1) =u(7) (3)

respectively. Thus, as p increases from 0 to 1, the solution ¢(z; p) varies from the initial
guess U, (7)to the solution u(zr).Expanding ¢(z; p) in Taylor series with respectto p,

we have
K3 P) = Uy(0)+ 3, ()P )
Where
uy(r) == LR (5)
ml Op b0

If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and the
auxiliary function are properly chosen, the series (4) converges at p=1, and then we

have
() =y (7) + 2.0 0), ©)

which must be one of solutions of original nonlinear equation, as proved by Liao [1]. As
h=-1and H(r) =1, Eq. (2) become

(- p)LIg(z; p) — U, ()] + PNI¢(z; p)] =0 (7)

Which is used mostly in the homotopy perturbation method, where as the solution
obtained directly, without using Taylor series [2, 3]. According to the definition (5), the
governing equation can be deduced from the zero-order deformation equation (2).

Define the vector

Un ={Uy (7),Uy (), -+, U ()}

Differentiating equation (7) m times with respect to the embedding parameter p and
then setting p=0 and finally dividing them by m!, we have the so-called mth-order

deformation equation
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L[ (7) = ZoUn 2 (2)] = NH (DR, (Una), (8)

subject to initial condition

ou, (x,0) _

u,(x,0)=0, - 0, 9)
Where
> 1 3"'N[g(zp)]
Roldr) =Gy opn oo (o)
And
0 m<1
Zm:{l m>1 (1)

It should be emphasized that u,(z)for m>1lis governed by the linear equation (8)

with the linear boundary conditions that come from original problem, which can be
easily solved by symbolic computation software such as Mathematica. If Eq. (1) admits
unique solution, then this method will produce the unique solution. If equation (1) does
not possess unique solution, the HAM will give a solution among many other (possible)
solutions. For the convergence of the above method we refer the reader to [5,6, 7,9 ].

2. The Maxwell system in meta materials

The DNG, metamaterials can be simulated using lossy Drude polarization and
magnetization modes. The governing equations for modeling wave propagation in
metamaterials are[1,4,10]

oF =VXH (12)
oH =-VXE-K (13)
.UO at - '
1 9] I

— =k, 14
EgWpe 2 Ot eowzpel (14)

1 0K I,

—+
.u()me2 at MOWme

K=H, (15)

where g is the vacuum permittivity, u, is the vacuum permeability, w,,, and w,,,, are
the electric and magnetic plasma frequencies, respectively, I, and [, are the electric and
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magnetic damping frequencies, respectively, E(x, t) andH (x, t) are the electric and
magnetic fields, respectively, and J(x, t)and K (x, t)are the induced electric and
magnetic currents, respectively. The complex materials make solving the metamaterials
model more challenging, since the governing equations cannot be reduced to a simple
vector wave equation as in vacuum.

isa For simplicity, we assume that the modeling domain be Q X (0,T), where Q
bounded Lipschitz polyhedral domain in R® with connected boundarydQ. Furthermore,
we assume that the boundary of Q is perfect conducting so that

nxE =00n 9Q (16)

Where n is the unit outward normal to Q. Also we assume that the initial conditions
are

E(x,0) = Ey(x), H(x,0) = Hy(x) (17)
J(x,0) = Jo(x), J(x,0) = Jo(x).

Lemma 2.1. There exists a unique solution for system (12)-(15). Furthermore; the
solution of the system (12)-(15) satisfies the following stability estimate [4]

1 1
& IE@lo” + o IH@Olly" + =2 IKOll” + 5 — W (Ollo” < & IEO)” +

o IH(O)[lo* + — OIS (18)

HoWpm 2

1

E0Wpe 2

K (0)llo” +
Lemma 2.2. Assume that the initial conditions are divergence free.i.e.,
V. (0Eo) = 0,V. (p,Ho) = 0

V.(Jy) = 0,V.(K,) =0 (19)

Then for any time t > 0, the electric field E and electric current J are divergence free.
Similary, for any time t > 0, the magnetic field H and the magnetic current Kare
divergence free.

3. The HAM for the Maxwell system in meta materials

In this section of the paper, we consider the Maxwell system in Meta materials. In
system (12)-(15), we carry directly to 2D by using the scalar and vector curl operators

_ 0B, 0E
VXE=52-22 (20)
_ 4 _ O0H  0H.p
VXH=H,=G_—5" @
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Where the upper index T denotes the vector transpose. Considering the lossy property
of metamaterials, we construct the following exact solution for the 2D transverse
electrical model (assuming all physical parameters to be one, i.e. (g9 = py = wy, =

Wy =le =Ty =1)
/——cos Tx sin ny\

[e~tcost
\ —sinmx cos y

H =+/2 m(cosmx cosmy) et cost

(22)

1
/— 7 COS 1T Sin ny\

[etsint
\ sin x cos wy

= /2 m(cosx cosy) e tsint

To solve the system. (12-15) by means of homotopy analysis method, we choose the
linear operator

ot

ot

L1 [®1 (X, Y, t p)] =

LZ [Q)Z (Xr Y, t; p)] =

003 (x,y,t;
Ly[@3(x,y, t;p)] = ZZ28XER) - o3

ot
Ly[04 (% v, t; p)] = 00, (xéif, t;p)
Ls[0s (%, v, t; p)] = a(ﬁs(xéir, t; p)
Le [0 (%, v, t; p)] = 3®6(Xé13:/, t;p)

With the property: L;[¢;] = 0i = 1,2,3,4,5,6

where c; are integral constants. The inverse L, 'operator are given by
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t
L' = fo(.)dt

We now define a nonlinear operator as

09, 00
N1 [B1, B, B3, B4, Bs, B6] = €4 a—tl - a—; + @,
00, 00
N, [@1, Dz, B3, D4, Bs, 8] = £ a—tz + a—; + 05
09y 08, 09,
Ny[01,05, 05,00, 05, 06] = —= 72+ —=0, -0 (24)
1 00 r,
N5 [@1; @2; @3; @41 ®51 @6] = 2 a > 2@5 - @2
EgWpe t EWpe
00 r,

BoWpm” O pgw?y
Using above definition, we construct the zeroth-order deformation equation

(1-p)Ly [0y, p) — Ex,(x,y,0)] = p by N1 [D1, Dy, B3, Dy, s, D]
(1 - P)L2 [02(x, ¥, t:P) — By (x,y,0)] = p hyNo[01, 0, 83, B4, Bs, O]

(1 - p)L3[@;5(x,y,t;p) — Ho(x,y, )] = p h3N3[D1, D,, B3, B4, D5, Bs]  (25)
(1 = p)La[@s(x,y, 6 D) = Jxo (%, ¥, D] = p haNo[@1, B2, B3, Ba, Bs, D]
(1= p)Ls [25 (6 v, 5 D) — Iy, (5., O] = p hsNs[@1, 82, B3, 84, B, O]

(1 —p)Lel@s(x,y,t;p) — Ko(x,y,)] = p heNg[D1, D2, B3, D4, B, D6 ]

With the initial condition:
@1 (X: y; t; O) = EXO (X, Y; t)‘ ¢1 (XJ Y; t; 1) = EX (X, Y; t)
02(x,y,t0) = Ey (x,y, )¢ 0,(xy, 1) = Ey(xy,t)
@3(X; Y; t; 0) = HO(X, Y; t)‘ @3(){) Y; t; 1) = H(X, Y; t)
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D4(x,y,50) =J; (x,y,t) P,(xy,t1) =%yt
Bs(x,y,50) =], (xy,t)¢ Ps(xy, 1) =],(xy, 0
? (xy,50) =K (xy,t) ® (xy,t1) =KXyt

Thus, we obtain the mth-order deformation equations

P —

L1 [Exm(XJ Y t) — Xm Exm_1(X1yrt)] = thlm [E_x)m_llEym_erm—lr Xm_lilym_liKm—l]

e —

LZ [Eym(XJ Y t) ~ Xm Eym_l(X'y't)] = hZRZm [Exm_llEym_liHm—li Xm_lilym_liKm—l]

—

]-‘3 [Hm (X, Y, t) — Xm Hm—l(Xr Y t)] = h3R3m [Exm_llEym_liHm—lilxm_y]ym_liKm—l] (26)

—_

Ly _]xm(X:y:t) — X ]Xm_l(X,y,t)_ = h5R4m [Exm_1: Eym_1:Hm—l:]xm_p]ym_liKm—l]

—_

L5 _]ym(X'y't) — Xm ]ym_l(XIYIt)_ = hSRSm [Exm_llEym_liHm—lilxm_lilym_liKm—l]

—_

L6 _Hm (X' Y t) — Xm Hm—l(XIYIt)_ = h6R6m [Exm_llEym_liHm—lilxm_lilym_liKm—l]

where
N N SR I S B RS
o Byl o] =20 gy Doy
o (B B 1T B = g P+ P P 27
Rs,, [E—X)m—l'E—Y)m—l'ﬁm_l'im—l’gm—l'ﬁm_l] - Sonlfpez a]yan’é_l 8011':;3 e’ bem 1 ™ By g
S T Kot ks =

Now the solution of the m-th-order deformation Eq. (26) for m > 1
_1 —_ _— — — — -
Exm (X' Y t) = Xm Exm_l(X' Y, t) + hl L [le [Exm_l' Eym—l' Hm—l' ]Xm—l’ ]ym—l' Km—l]

_1 — —_— — — — -
Eym(XJ Y, t) = Xm Exm_l(xr Y, t) + h'Z L [RZm [Exm_l' Eym_l'Hm—l']xm_lllym_lle—l]
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-1 — —_— — — — —
Ho (5,0 = ZpHno1 Gy, ) +hs LT[Ry, [Bxp 0By Bt ey Kua|  (28)

—

_1 —_ s e d — —
]xm(XJ Y, t) = Xm Ixm_l(X: Y, t) + h4 L [R4m[ xm_lrEym_llHm—ll]xm_ll]ym_vim—l]

—

_1 _— s —_— — s
]ym(XJ Y, t) = Xnm Ixm_l(X' Y t) + hS L [RSm [Exm_llEym_lrHm—lr]xm_lr]ym_liKm—l]

—

_1 _— s —_— — o
Km (X, Y, t) = Xm Km—l(Xﬁy't) + h6 L [R3m[ xm_llEym_llHm—lr]xm_lr]ym_liKm—l]

We start with under initial approximations:

1
——cosmx sinmy

E'_,_.' _ 4 2

5= ()| 3
: —sinmx cosmy

h ""-'l2 -

H, =2 m(cosmx cosmy) e tcost

1
— —=COSTIX Sinmy

Jo = (JI)= ;"2 e~ sint
. — sinmx cosmy
h ""--'I‘2

K, =2 m(cosmx cosmy) e sint

By means of the above iteration formula (28) if h; = —1, we can obtain directly the
other components as

E( t) [EX] [EXO (X, Y; t) + 21+=08 EXi (X, Y; t)
X, ) = = [ele] =
VO =R T B oy ) + DS E, (D)
cos (mx) sin (my )e ~t (—cosift) +4m2etthy +2m2ett £h12 .
V2
__cos (my ) sin (mx )e "t (—cos ) +4n2et thy+2m2ett ehy? .

V2

H(x,y,t) = Hy(x,y,t)

+o0
+ Z H;(x,y,t)
i=0

= V2 e~tcos(mx) cos(my) (cosift) + 2etths + eft whg” + -
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_ ]x _ ]XO(X’y’t)+ i+=o?)]xi(xry1t) _
1@y0 =] = lfyo<x, y.0 + 55, Gy 0]

et cos (mx ) sin (my Yhyg (—2ew,,2siniift)+2e thy*+et t?e hyw,>+ett? hy’r,)

+ .-
ZSWPEZ\/E
et cos (mx) sin (mx )hs (—2ew,, 2sinift) +2e  ths*+ett?e hsw,,’+e't? hs’r,) N
ZSWPEZ\/E

K(x,y,t)
= Ifo x,y,t)

+ Z Ki(x,y,t)
i=0

me ™" t cos(mx) cos(my)hg (—2 sinfft)pw,,,,* + 2e‘ths”’ + e 't? I he” + e't?p hgw,,,?
V2w,

We now choose: € = -1,y =—-1,m =5h; = “Lwym =1Lwy =1, =1, =1,
and then obtain:

cos(mx) sin(my) (—1 + 4m2th, + 22t eh,”
V2
cos(ry) sin(mx) (—1 + 4m2th, + 22t h,’
V2

E(xy,t) =

H(x,v,t) = v2 cos(mx) cos(my) (1 + 2thy + t phy”)

t cos(mx) sin(my)hy (4ew,,” + 2Ry + t Ayl

2e wpf 2

Xy, t)= 5
Iy ) t cos(mx) sin(mx )hg (dewy,* 4+ 2hs + t hsT,

anpgf V2

7 t cos(mx) cos(my)hg (4uwp, 2 + 2k + t I, hg

K(X1Y!t) = - u\/zw 2

And then choose: € = =2, u =—-2,m = 5,h; = -Lwp, =1Lwp =1, =1T, =1,
with this chose, we have:
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cos(mx ) sin(my) (1 + 80m2t)
V2
cos(my) sin(mx) (1 + 80m~t)
V2

E(xv.t) =

H(x,y,t) = v2 mcos(mx) cos(mwy) (—1 + 40t)

t cos(mx) sin(mwy)t (1560 + 516t + 44t 4+ t2)

CHy 19242
J(xy.t) t cos(my) sin(mx )t (1560 + 516t + 44t + t2)
19242
m t cos(mmx) cos(my) (1560 + 516t + 44t% + t3)
K&yt =
96v/2
Conclusion

Homotopy analysis method is a powerful method which yields a convergent series
solution for Maxwell's equation system. This method is better than numerical methods,
as it is free from rounding off errors, and does not require large computer power.

It is apparently seen that HAM is a very powerful and efficient technique in finding
analytical solutions for wide classes of linear and nonlinear problems. The results show
that HAM is a powerful mathematical tool for solving nonlinear partial differential
equations and systems of nonlinear partial differential equations.

Mathematica has been used for computations in this article.
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