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Abstract

Suppose X = (X1, ,Xp), (p > 2), where X; represents the mean of a random sample of size
n; drawn from binomial bin(1,6;) population. Assume the parameters 61, - - - , 6, are unknown
and the populations bin(1,61),--- ,bin(1,6,) are independent. A subset of random size is
selected using Gupta’s (Gupta, S. S. (1965). On some multiple decision(selection and ranking)
rules. Technometrics 7,225-245) subset selection procedure. In this paper, we estimate of the
average worth of the parameters for the selected subset under squared error loss and normalized
squared error loss functions. First, we show that neither the unbiased estimator nor the risk-
unbiased estimator of the average worth (corresponding to the normalized squared error loss
function) exist based on a single-stage sample. Second, when additional observations are
available from the selected populations, we derive an unbiased and risk-unbiased estimators of
the average worth and also prove that the natural estimator of the average worth is positively
biased. Finally, the bias and risk of the natural, unbiased and risk-unbiased estimators are

computed and compared using Monti Carlo simulation method.
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1 Introduction

The problem of estimation the parameters of the selected subset was initiated by Jeyarathnam
and Panchapakesan (1984, 1986). The problem is also considered by Vellaisamy and Sharma
(1990) and Vellaisamy (1992, 1996), Misra (1994), Vellaisamy and Punnen (2002), Moeschlin and
Vellaisamy (2002), Gangopadhyay and Kumar (2005), Kumar, Mahapatra and Vellaisamy (2009),
Vallaisamy and Al-Mosawi (2010) and Al-Mosawi, Shanubhogue and Vellaisamy (2011).

Suppose for i = 1,2--- ,p, X; and X; represent the sum and the mean, respectively, of a ran-
dom sample of size n; drawn from binomial population bin(1,6;). Assume the populations are
independent and the parameters 6,...,6, are unknown. It is well-known that X; ~ bin(n;, 6;)

while X; is no longer binomial. Let 0j1) = maz{0y, -+ ,0,} and Y(l) = max{X1, -, X,} and let
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0= (01,...,0p), X =(X1,...,X,) and X = (X1,...,X,). The population associated with O is
called the best population and in case of ties, we randomly tagged any of the tied populations.
Using Gupta’s (1965) subset selection approach, a subset of the binomial populations of random
size is selected according to the following subset selection rule (Gupta and Panchpakasen (2002),

page 257)
R: Select the population Bin(1,6;) in the subset iff X; > X3y — d, (1.1)
where d = d(p, P*,n1,...,np) > 0 is the smallest nonnegative number for which

z:rllnnp{O%gl\il POSiA dm)}y 2 P,
where P(CS; \,d,n;) is the probability of including Bin(1,6;) in the selected subset when 6 =
...,0, =X and P*((1/p) < P* <1) is a pre-specified quantity.
In this paper, we considered the estimation problem of the average worth of the parameters for

the selected populations. Namely our estimand is
p —
o =) 0iwi(X), (1.2)
i=1

i1 1(X; = Xy —d)

where ¢;(X) = . It is easy to see that I(X; > X1y —d) = I(X; >

Y(l)i — d), where Y(l) =max(X1,...,X; 1, Xit1, ,Yp). The loss function considered here is
given by

(), — @)?

L(®,®,) = ok )

(1.3)

where @, is an estimand of ® and k = 0,1. The loss (1.3) for £ = 0 correspond to the squared
error loss function while for £ = 1 correspond to the normalized squared error loss function.
Unlike the classical estimation problem, our estimand is not fixed but it is a random parametric
function which is a function of parameters and observations, as well.

In the following, we introduce some definitions. Let 2 denote the parameter space i.e. Q = {6 :

0<6;<1,i=1,---,p}

Definition 1.1 (Vellaisamy (1993)) An estimand ® is said to be U-estimable if there is an esti-
mator ®1 such that

Eg®P1 = Ey®,

for all 8 € Q.
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The following definition is Lehmann’s risk-unbiased definition (see Lehmann annd Casella (1998))

under normalized squared error loss function.

Definition 1.2 (Al-Mosawi, Vellaisamy and Shanubhogue (2011)) An estimand ® is said to be

RU-estimable if there is an estimator ®2 such that
Eq®2 = Epd?,

for all 6 € Q.

2 Estimation Based on Single-Stage Sample

This section is devoted to estimate the average worth of the parameters for the selected subset,
using observations from single-stage sample scheme. We prove that the average worth of the

parameters for the selected subset is neither U-estimable nor RU-estimable.

Lemma 2.1 The random parametric function 07 g(Z),r € Zy, the set of nonnegative integers, is

not U-esimable i.e there is no estimator § such that
Ey (67 9(X) = Eg(6(X)),
where g is any real-valued function defined on p-fold Cratesian product of the interval [0,1].

Proof : Observe that

Np ni p
Eo(07g(X) = -+ > g@,....7p)0; [ [ elnj, ;)07 (1 — 0;)" "

zp=0 x1=0 j=1
P P
=g(0,...,0)0; [J(1—0,)" + - +g(1,--- . 1)6; [] 0"
i=1 i
np ny , P P P
@p=0  x1=0 j=1 j=1 j=1
P
zglfzi-l—T HQ;‘J' (g(l, 1, 1) 4+ -+ (fl)zg?:l”jg(o’ 0,--- ,())> 4+ 4 g((), R 70)9;"’
JF#i
| —
where c¢(a, b) = ﬁ. From the last equation, we see that Ey(6;g(X) is a polynomial of degree
(a —b)!
(n1,...,ni—1,n+7r,niy1,...,np). Now, since Eg(d(X)) is a polynomial of degree (n1,...,n,) then
the function 6;g(X) is not U-estimable (Lehmann and Casella (1998), page 100). 1
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Lemma 2.2 The estimand ® given in (1.2) is not U-estimable.

Proof :  Since 6;4;(%),i = 1,--- ,p are not U-estimable using Lemma 2.1, then & is not U-

estimable. 1

Similarly, we can prove the following lemma.

Lemma 2.3 The estimand ® given in (1.2) is not RU-estimable.

3 Estimation Based on Two-Stage Sample

Assume additional observations are available through second stage sample. We find the natural
estimators for the average worth of the selected subset and prove these estimators are positively
biased. Also we find an unbiased and risk-unbiased estimators for the average worth of the selected
subset in case of additional observations from the selected populations are available through second
stage. In the following lemma, we obtain an unbiased estimator for the one-dimensional random

function A" g(W).

Lemma 3.1 Let W and Y,, r > 1 be independent random variables , where W ~ bin(n,\) and
Y, ~ bin(r,\). If g(w) is a real-valued function defined on Z4., the set of non-negative integers,

such that Eg(|g(W)|) < oo, then

(W +Y,)™

Ex(A"g(W)) = EA( (n+ )0

g(W+Y;—r)>.

Proof : It is clear that T'=W 4 Y, ~ bin(n + r, A). Observe that

1) £ T nfr ) M1 — )t
- - _ — - t— t _ nrr—
A < (TL + T)(T‘) g( T)) — (n + T)(T) g( T)C(n + r? ) ( )

n—+r
=Y gt —r)e(n,t —r)A (1 =N !
t=r

n

=" g(w)e(n, w)A¥ (1 — A)"™

w=0

=A"Ex(g(W)).

The following lemma extends Lemma 3.1 for p-dimensional case.
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Lemma 3.2 Let X = (X1, ,Xp) andY = (Yo, 1,--+,Ye, ) be vectors of p independent bino-
mial random variables, where X; ~ bin(n;, 0;), Yy, i ~ bin(r;,0;) andr; > 1; 1 <i < p. Assume Y
is independent of X. Let X = (X1, ,X,) where X; = X;/n;. If f(T) is a real-valued function
such that Ey(|f(X)]) < oo, then

T - - i~ T B (X + Y, )
E, (f(X) 119) R, (f (x ; ; <Yn>e> 11 m> TR

where a®® = a(a —1)...(a —b+1) and e; is a p-vector whose i-th component one and the rest

are zero.
Proof : Write for simplicity X = (X;, X®)Y = (V,,;,Y®) and 6 = (6;,09), where
X(Z) - (X17 e 7Xi—17Xi+17 e 7Xp)7 Y(l) - (}/7'1,17 e 7}/;“7;_1,7;—17}/7“7;_‘_172'—&-17 e 7}/7“1,,;)) and 9(1) ==
(01, ,0i—1,0i11,-- - ,0,). By the independence of the X;’s and Y}, ;,

rd =T\ T2 X+YH i)
<f<X+Z ) IS >

=1

P
(Xi + Yy, ) (X1 +Y 1 Yo j—Tj 1 1
=Eyu E X + L ) x® vy
" zl_[ (ni + 1) ") ”) Z —u )l
P
(Xi + Y, ;) :
=FEyn) H nf—l-?f o <E910” (X + Z Yrjs = : ej) ’X (1))>( using Lemma 3.1)
(Xi +Yr i) i) 17 Yojg—1j y (@
9(2)1—[ nl+’r EGQQ 102 X+Z gy 7 : ———e¢; |X s
and continuing this process completes the proof. 1
Xi+Yi,

From classical estimation theory, it is known that is the UMVUE of 6;,i =1, --- ,p, so

n; +
that the natural estimator of ® based on single additional observation from each of the selected

populations is given by

X; +le -
(I)N Z nl+1 z ) (32)

In the following theorem, we show that the natural estimator @ is a biased estimator.

Theorem 3.1 The natural estimator (3.2) is positively biased i.e. Eg®n > Eo®, for all 6 € Q.
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Proof : Without loss of generality, we consider the case p = 2. For p = 2, (1.2) and (3.2) are,
respectively, reduced to
01, if To < T — d;
b = 0, if 71 < Ty — d;
%(914—6’2), iz —d <71 <To+d.

and
X;:ﬁ’l, if Tog < T1 — d;
Oy = XZ:}&’Q, if 7, < To —d;
S+ ae, B —d<T <T+d.
Now
X1+Yi -+ = Xo + S
Eg(® D) —01 ) I( X< X — 0y | I(X1<X9—d
CI <n1+1 1)(2 1 - <2+1 2>(1 2 —d)
1 Xi+Y11 | Xo+Yip
SE C -0 | [(Xo—d< X1 <Xo+d
+2 <n1+1 ng + 1 ! 2>( 2 1 2 ))
1 X1+Yi, S 1 Xo+Yio .
=—FEgy| ————— -0 | [(Xo< X1 —d)+ =Ey| ————= — 0 | [(X1 < Xo—d
2 (n1+1 1>(2 ! )+29< no + 1 2)( 1 <X2—d)
1 +1 (say),
T T TRy,

since I(Yg—dgyl SYQ‘f—d) = 1—[(?1 <Y2—d)—f(y2 <Y1—d) and (Xi+Y1,i)/(ni+1)
is an unbiased estimator of 6;,7 = 1,2. Now, using Lemma 3.2 in 7, we obtain

X, +Y]
—E9< 1+ Y11

m 1

X Y — X1 +Y; Yi1—-1
1+ 11 <Xi—d)— 1++111I<X2<X1+ 1,1 —d>>
ni n

91)I(X2 <Y1 *d)

X1—|—

S R
_E9< ( (Xy < X1 — d)—I<X2<X1+1’1—d>>
n1+1 ny

X Y, -1
XtV (X2+d<X1<X2+d—1’1>>
n1+1 ny

since P Xo4+d < X1 < Xo+d— h, 11 1) > (. Similarly, we can prove 7o > 0 and this completes

the proof. 1

Using Lemma 3.2, we find an unbiased estimator for the average worth of the selected subset.

241



Riyadh Al-Mosawi/ TIMCS Vol .3 No.2 (2011) 236 - 245

Theorem 3.2 The estimator
P
Xi+Y,:, (= Yi;—1
> nmwz( +< = )) (3.3)

It is of interest to write an explicit form of (3.3) for the special case p = 2. When p = 2, (3.3)

is an unbiased estimator of ®.

reduces to
X Y; — — 1-Y;
22+ N2 if X, < Xo—d— L2
Yy 1—vi, 2 1-Y
-2 oL if Xyg—d— —2 <X, < Xg—d— —2L;
OB % %
1+ Y11 2+ Y19 .= —Y11 = - — Y12
Dy = ’ 2 i Xy —d+ Lo X <Xp+d— — 12,
v %nl—gfl) 2(ng +1) 2 . n%/ = o= . n%/
21t Xy td——— 2 c X < Xy bdt ——bL
%m%ifl) ng Ly ny
A1t if X1 > Xo+d+ ——t,
ny+1 ni

Now, we find a risk-unbiased estimator with respect normalized squared error loss function of the

average worth for the selected subset using Definition 1.2.

Theorem 3.3 The estimator ®gry such that

X+ Yo, Y277; -2
T oL VLTI Iy

= (n +2)@ n;
p p-1
(Xi +Y1,)(X; + Y — Yi;-1 Yi,—1 — Yi;-1 Yi;,—1
+ 2 + 11 + 1’j)1/1i X 1 e; + Ly € 1/1]' X+ L4 e; + LJ e;
£ (ni+1)(n; +1) n; n; n; n;
i=j+1 j=1

(3.4)

1$ a risk-unbiased estimator of P.

Proof : It is easy to see

292 X)+2 Z Zeeﬂm X).

i=j+1 j=1
So that

P p p-l
Eyd2 :ZE99§¢§(Y)+2 D Egbibhi(X)y;(X)

i*j-}-lj:l
0 (nﬁg)() i n;

p  p-l
ZZ Xi+ Y1) (X, + Y1 — Y;-1 Yi,;,—-1 — Y1 Y1 —

(n; + 1)(n] +1) n; n; n; n;
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using Lemma 3.2. This completes the proof. ]

4 Monti-Carlo simulation

In this section, a comparison of the performance of the natural, unbiased and risk-unbiased
estimators, using Monti-carlo simulation technique is performed. The simulation is done using
Matlab 7.6 (R2008a) for the case and n; =n,i =1,2,--- ,p and the values of d are selected from
Gibbons, Olkin and Sobel (1999), Table Q.2, page 503. We follow the simulation procedure used
by Vellaisamy and Al-Mosawi (2011). First the value of p and n are chosen and then a set of
{61,---,0,} of parameter values are chosen at random within the range (0,1). In the second step,
an observation X; is randomly chosen from the distribution bin(n,6;),1 < i < p. In step 3, the
selection rule R, defined in (1.1), is used to select the subset. To estimate the average worth of the
parameters associated with the selected populations, we compute the bias and risk of the natural
& and unbiased & estimators and the risk-bias and risk of the natural ® 9 and risk-unbiased
®py estimators. The above procedure is repeated 1500 times and the averages of the risks are
calculated. The above procedure is repeated a number of times with different sets of parameters
in (0,1) and then the averages are also calculated and presented in the Table 1.

We observe the following facts from the simulation results. The bias of the unbiased and risk-
unbiased estimators are clearly close to zero. The bias of the natural estimator is positive and
it increases with p,number of populations, increases and decreases with n increases for almost
all the cases. The risk of the natural estimator is apparently less than that of the unbiased and

risk-unbiased estimators, for all the cases.
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Table 1: The bias and risk of the natural, unbiased and risk-unbiased estimators

n | p || Bias(N) | Bias(US) | Risk — Bias(RS) || Risk(N) | Risk(US) | Risk(RS)
2 0.0324 0.0005 -0.0007 0.0197 0.0258 0.0269
) 0.0338 0.0002 0 0.0084 0.0112 0.0097
° 10 0.0473 -0.0004 -0.0007 0.0066 0.0072 0.0057
20 0.0226 -0.0002 -0.0002 0.0022 0.0021 0.0018
2 0.0221 -0.0002 -0.0008 0.0116 0.0172 0.0189
5) 0.0402 -0.0001 -0.0015 0.008 0.014 0.013
0 10 0.0535 0.0004 -0.0014 0.0063 0.0113 0.0088
20 0.0457 0.0001 0 0.0036 0.0045 0.0032
2 0.0205 0 -0.0009 0.0092 0.0139 0.015
5) 0.0303 -0.0005 -0.0023 0.0059 0.0138 0.0147
20 10 0.0444 0.0007 -0.0009 0.0049 0.0127 0.0105
20 0.0443 0.0009 0.0005 0.0034 0.0064 0.0041
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