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Abstract

Suppose X = (X1, · · · , Xp), (p ≥ 2), where Xi represents the mean of a random sample of size

ni drawn from binomial bin(1, θi) population. Assume the parameters θ1, · · · , θp are unknown

and the populations bin(1, θ1), · · · , bin(1, θp) are independent. A subset of random size is

selected using Gupta’s (Gupta, S. S. (1965). On some multiple decision(selection and ranking)

rules. Technometrics 7,225-245) subset selection procedure. In this paper, we estimate of the

average worth of the parameters for the selected subset under squared error loss and normalized

squared error loss functions. First, we show that neither the unbiased estimator nor the risk-

unbiased estimator of the average worth (corresponding to the normalized squared error loss

function) exist based on a single-stage sample. Second, when additional observations are

available from the selected populations, we derive an unbiased and risk-unbiased estimators of

the average worth and also prove that the natural estimator of the average worth is positively

biased. Finally, the bias and risk of the natural, unbiased and risk-unbiased estimators are

computed and compared using Monti Carlo simulation method.
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1 Introduction

The problem of estimation the parameters of the selected subset was initiated by Jeyarathnam

and Panchapakesan (1984, 1986). The problem is also considered by Vellaisamy and Sharma

(1990) and Vellaisamy (1992, 1996), Misra (1994), Vellaisamy and Punnen (2002), Moeschlin and

Vellaisamy (2002), Gangopadhyay and Kumar (2005), Kumar, Mahapatra and Vellaisamy (2009),

Vallaisamy and Al-Mosawi (2010) and Al-Mosawi, Shanubhogue and Vellaisamy (2011).

Suppose for i = 1, 2 · · · , p, Xi and Xi represent the sum and the mean, respectively, of a ran-

dom sample of size ni drawn from binomial population bin(1, θi). Assume the populations are

independent and the parameters θ1, . . . , θp are unknown. It is well-known that Xi ∼ bin(ni, θi)

while Xi is no longer binomial. Let θ[1] = max{θ1, · · · , θp} and X(1) = max{X1, · · · , Xp} and let
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θ = (θ1, . . . , θp), X = (X1, . . . ,Xp) and X = (X1, . . . , Xp). The population associated with θ[1] is

called the best population and in case of ties, we randomly tagged any of the tied populations.

Using Gupta’s (1965) subset selection approach, a subset of the binomial populations of random

size is selected according to the following subset selection rule (Gupta and Panchpakasen (2002),

page 257)

R: Select the population Bin(1, θi) in the subset iff Xi ≥ X(1) − d, (1.1)

where d = d(p, P ∗, n1, . . . , np) > 0 is the smallest nonnegative number for which

min
i=1,...,p

{ inf
0≤λ≤1

P (CS;λ, d, ni)} ≥ P ∗,

where P (CS;λ, d, ni) is the probability of including Bin(1, θi) in the selected subset when θ1 =

. . . , θp = λ and P ∗((1/p) < P ∗ ≤ 1) is a pre-specified quantity.

In this paper, we considered the estimation problem of the average worth of the parameters for

the selected populations. Namely our estimand is

Φ =
p∑
i=1

θiψi(X), (1.2)

where ψi(X) =
I(Xi ≥ X(1) − d)∑p
j=1 I(Xj ≥ X(1) − d)

. It is easy to see that I(Xi ≥ X(1) − d) ≡ I(Xi ≥

X(1)i − d), where X(1) = max(X1, . . . , Xi−1, Xi+1, · · · , Xp). The loss function considered here is

given by

L(Φ,Φ1) =
(Φ1 − Φ)2

Φk
, (1.3)

where Φ1 is an estimand of Φ and k = 0, 1. The loss (1.3) for k = 0 correspond to the squared

error loss function while for k = 1 correspond to the normalized squared error loss function.

Unlike the classical estimation problem, our estimand is not fixed but it is a random parametric

function which is a function of parameters and observations, as well.

In the following, we introduce some definitions. Let Ω denote the parameter space i.e. Ω = {θ :

0 < θi < 1, i = 1, · · · , p}.

Definition 1.1 (Vellaisamy (1993)) An estimand Φ is said to be U-estimable if there is an esti-

mator Φ1 such that

EθΦ1 = EθΦ,

for all θ ∈ Ω.
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The following definition is Lehmann’s risk-unbiased definition (see Lehmann annd Casella (1998))

under normalized squared error loss function.

Definition 1.2 (Al-Mosawi, Vellaisamy and Shanubhogue (2011)) An estimand Φ is said to be

RU-estimable if there is an estimator Φ2 such that

EθΦ2
2 = EθΦ2,

for all θ ∈ Ω.

2 Estimation Based on Single-Stage Sample

This section is devoted to estimate the average worth of the parameters for the selected subset,

using observations from single-stage sample scheme. We prove that the average worth of the

parameters for the selected subset is neither U-estimable nor RU-estimable.

Lemma 2.1 The random parametric function θri g(x), r ∈ Z+, the set of nonnegative integers, is

not U-esimable i.e there is no estimator δ such that

Eθ(θri g(X) = Eθ(δ(X)),

where g is any real-valued function defined on p-fold Cratesian product of the interval [0,1].

Proof : Observe that

Eθ(θri g(X) =
np∑
xp=0

· · ·
n1∑
x1=0

g(x1, . . . , xp)θri

p∏
j=1

c(nj , xj)θ
xj

j (1− θj)nj−xj

=g(0, . . . , 0)θri

p∏
j=1

(1− θj)nj + · · ·+ g(1, · · · , 1)θri

p∏
j 6=i

θ
nj

j

=g(0, . . . , 0)
np∑
xp=0

· · ·
n1∑
x1=0

(−1)
∑p

j=1 xj

p∏
j=1

c(nj , xj)θri

p∏
j=1

θ
xj

j + · · ·+ g(1, · · · , 1)θri

p∏
j=1

θ
nj

j

=θni+r
i

p∏
j 6=i

θ
nj

j

(
g(1, 1, · · · , 1) + · · ·+ (−1)

∑p
j=1 njg(0, 0, · · · , 0)

)
+ · · ·+ g(0, · · · , 0)θri ,

where c(a, b) =
a!

b!(a− b)!
. From the last equation, we see that Eθ(θig(X) is a polynomial of degree

(n1, . . . , ni−1, ni+r, ni+1, . . . , np). Now, since Eθ(δ(X)) is a polynomial of degree (n1, . . . , np) then

the function θig(X) is not U-estimable (Lehmann and Casella (1998), page 100).
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Lemma 2.2 The estimand Φ given in (1.2) is not U-estimable.

Proof : Since θiψi(x), i = 1, · · · , p are not U-estimable using Lemma 2.1, then Φ is not U-

estimable.

Similarly, we can prove the following lemma.

Lemma 2.3 The estimand Φ given in (1.2) is not RU-estimable.

3 Estimation Based on Two-Stage Sample

Assume additional observations are available through second stage sample. We find the natural

estimators for the average worth of the selected subset and prove these estimators are positively

biased. Also we find an unbiased and risk-unbiased estimators for the average worth of the selected

subset in case of additional observations from the selected populations are available through second

stage. In the following lemma, we obtain an unbiased estimator for the one-dimensional random

function λr g(W ).

Lemma 3.1 Let W and Yr, r ≥ 1 be independent random variables , where W ∼ bin(n, λ) and

Yr ∼ bin(r, λ). If g(w) is a real-valued function defined on Z+, the set of non-negative integers,

such that Eθ(|g(W )|) <∞, then

Eλ
(
λr g(W )

)
= Eλ

(
(W + Yr)(r)

(n+ r)(r)
g(W + Yr − r)

)
.

Proof : It is clear that T = W + Yr ∼ bin(n+ r, λ). Observe that

Eλ

(
T (r)

(n+ r)(r)
g(T − r)

)
=
n+r∑
t=0

t(r)

(n+ r)(r)
g(t− r)c(n+ r, t)λt(1− λ)n+r−t

=
n+r∑
t=r

g(t− r)c(n, t− r)λt(1− λ)n+r−t

=λr
n∑

w=0

g(w)c(n,w)λw(1− λ)n−w

=λrEλ(g(W )).

The following lemma extends Lemma 3.1 for p-dimensional case.
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Lemma 3.2 Let X = (X1, · · · , Xp) and Y = (Yr1,1, · · · , Yrp,p) be vectors of p independent bino-

mial random variables, where Xi ∼ bin(ni, θi), Yri,i ∼ bin(ri, θi) and ri ≥ 1; 1 ≤ i ≤ p. Assume Y

is independent of X. Let X = (X1, · · · , Xp) where Xi = Xi/ni. If f(x) is a real-valued function

such that Eθ(|f(X)|) <∞, then

Eθ

(
f(X)

p∏
i=1

θrii

)
= Eθ

(
f

(
X +

p∑
i=1

(Yri,i − ri)
ni

ei

) p∏
i=1

(Xi + Yri,i)
(ri)

(ni + ri)(ri)

)
, (3.1)

where a(b) = a(a − 1) . . . (a − b + 1) and ei is a p-vector whose i-th component one and the rest

are zero.

Proof : Write for simplicity X = (Xi, X
(i)), Y = (Yri,i, Y

(i)) and θ = (θi, θ(i)), where

X(i) = (X1, · · · , Xi−1, Xi+1, · · · , Xp), Y (i) = (Yr1,1, · · · , Yri−1,i−1, Yri+1,i+1, · · · , Yrp,p) and θ(i) =

(θ1, · · · , θi−1, θi+1, · · · , θp). By the independence of the Xi’s and Yri,i,

Eθ

(
f

(
X +

p∑
j=1

Yrj ,j − rj
nj

ej

) p∏
i=1

(Xi + Yri,i)
(ri)

(ni + ri)(ri)

)

=Eθ(1)
p∏
i=2

(Xi + Yri,i)
(ri)

(ni + ri)(ri)

(
Eθ1

(
(X1 + Yr1,1)(r1)

(n1 + r1)(r1)
f

(
X +

p∑
j=1

Yrj ,j − rj
nj

ej

)∣∣X(1), Y (1)

))

=Eθ(1)
p∏
i=2

(Xi + Yri,i)
(ri)

(ni + ri)(ri)

(
Eθ1θ

r1
1 f

(
X +

p∑
j=2

Yrj ,j − rj
nj

ej

)∣∣X(1), Y (1)

))
( using Lemma 3.1)

=Eθ(2)
p∏
i=3

(Xi + Yri,i)
(ri)

(ni + ri)(ri)

(
Eθ2θ

r1
1 θ

r2
2 f

(
X +

p∑
j=3

Yrj ,j − rj
nj

ej

)∣∣X(2), Y (2)

))
,

and continuing this process completes the proof.

From classical estimation theory, it is known that
Xi + Y1,i

ni + 1
is the UMVUE of θi, i = 1, · · · , p, so

that the natural estimator of Φ based on single additional observation from each of the selected

populations is given by

ΦN =
p∑
i=1

Xi + Y1,i

ni + 1
ψi(X). (3.2)

In the following theorem, we show that the natural estimator ΦN is a biased estimator.

Theorem 3.1 The natural estimator (3.2) is positively biased i.e. EθΦN ≥ EθΦ, for all θ ∈ Ω.
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Proof : Without loss of generality, we consider the case p = 2. For p = 2, (1.2) and (3.2) are,

respectively, reduced to

Φ =


θ1, if x2 < x1 − d;

θ2, if x1 < x2 − d;
1
2(θ1 + θ2), if x2 − d ≤ x1 ≤ x2 + d.

and

ΦN =


X1+Y1,1

n1+1 , if x2 < x1 − d;
X2+Y1,2

n2+1 , if x1 < x2 − d;
X1+Y1,1

2(n1+1) + X2+Y1,2

2(n2+1) , if x2 − d ≤ x1 ≤ x2 + d.

Now

Eθ(ΦN − Φ) =Eθ
(
X1 + Y1,1

n1 + 1
− θ1

)
I(X2 < X1 − d

)
+ Eθ

(
X2 + Y1,2

n2 + 1
− θ2

)
I(X1 < X2 − d)

+
1
2

Eθ
(
X1 + Y1,1

n1 + 1
+
X2 + Y1,2

n2 + 1
− θ1 − θ2

)
I(X2 − d ≤ X1 ≤ X2 + d)

)
=

1
2

Eθ
(
X1 + Y1,1

n1 + 1
− θ1

)
I(X2 < X1 − d) +

1
2

Eθ
(
X2 + Y1,2

n2 + 1
− θ2

)
I(X1 < X2 − d)

=
1
2
η1 +

1
2
η2(say),

since I(X2− d ≤ X1 ≤ X2 + d) = 1− I(X1 < X2− d)− I(X2 < X1− d) and (Xi +Y1,i)/(ni + 1)

is an unbiased estimator of θi, i = 1, 2. Now, using Lemma 3.2 in η1, we obtain

η1 =Eθ
(
X1 + Y1,1

n1 + 1
− θ1

)
I(X2 < X1 − d)

=Eθ
(
X1 + Y1,1

n1 + 1
I(X2 < X1 − d)− X1 + Y1,1

n1 + 1
I

(
X2 < X1 +

Y1,1 − 1
n1

− d
))

=Eθ
(
X1 + Y1,1

n1 + 1

(
I(X2 < X1 − d)− I

(
X2 < X1 +

Y1,1 − 1
n1

− d
))

=Eθ
(
X1 + Y1,1

n1 + 1
I

(
X2 + d < X1 ≤ X2 + d− Y1,1 − 1

n1

))
>0,

since P
(
X2 + d < X1 ≤ X2 + d− Y1,1−1

n1

)
> 0. Similarly, we can prove η2 > 0 and this completes

the proof.

Using Lemma 3.2, we find an unbiased estimator for the average worth of the selected subset.
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Theorem 3.2 The estimator

ΦU =
p∑
i=1

Xi + Y1,i

ni + 1
ψi

(
X +

(
Y1,i − 1
ni

)
ei

)
(3.3)

is an unbiased estimator of Φ.

It is of interest to write an explicit form of (3.3) for the special case p = 2. When p = 2, (3.3)

reduces to

ΦU =



X2 + Y1,2

n2 + 1
, if X1 < X2 − d−

1− Y1,2

n2
;

X2 + Y1,2

2(n2 + 1)
, if X2 − d−

1− Y1,2

n2
≤ X1 < X2 − d−

1− Y1,1

n1
;

X1 + Y1,1

2(n1 + 1)
+
X2 + Y1,2

2(n2 + 1)
, if X2 − d+

1− Y1,1

n1
≤ X1 ≤ X2 + d− 1− Y1,2

n2
;

X1 + Y1,1

2(n1 + 1)
, if X2 + d− 1− Y1,2

n2
< X1 < X2 + d+

1− Y1,1

n1
;

X1 + Y1,1

n1 + 1
, if X1 > X2 + d+

1− Y1,1

n1
.

Now, we find a risk-unbiased estimator with respect normalized squared error loss function of the

average worth for the selected subset using Definition 1.2.

Theorem 3.3 The estimator ΦRU such that

Φ2
RU =

p∑
i=1

(Xi + Y2,i)(2)

(ni + 2)(2)
ψ2
i

(
X +

Y2,i − 2
ni

ei

)

+ 2
p∑

i=j+1

p−1∑
j=1

(Xi + Y1,i)(Xj + Y1,j)
(ni + 1)(nj + 1)

ψi

(
X +

Y1,i − 1
ni

ei +
Y1,j − 1
nj

ej

)
ψj

(
X +

Y1,i − 1
ni

ei +
Y1,j − 1
nj

ej

)
(3.4)

is a risk-unbiased estimator of Φ.

Proof : It is easy to see

Φ2 =
p∑
i=1

θ2
i ψ

2
i (X) + 2

p∑
i=j+1

p−1∑
j=1

θiθjψi(X)ψj(X).

So that

EθΦ2 =
p∑
i=1

Eθθ2
i ψ

2
i (X) + 2

p∑
i=j+1

p−1∑
j=1

Eθθiθjψi(X)ψj(X)

=
p∑
i=1

Eθ
(Xi + Y2,i)(2)

(ni + 2)(2)
ψ2
i

(
X +

Y2,i − 2
ni

ei
)

+ 2
p∑

i=j+1

p−1∑
j=1

Eθ
(Xi + Y1,i)(Xj + Y1,j)

(ni + 1)(nj + 1)
ψi
(
X +

Y1,i − 1
ni

ei +
Y1,j − 1
nj

)
ψj
(
X +

Y1,i − 1
ni

ei +
Y1,j − 1
nj

ej
)
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using Lemma 3.2. This completes the proof.

4 Monti-Carlo simulation

In this section, a comparison of the performance of the natural, unbiased and risk-unbiased

estimators, using Monti-carlo simulation technique is performed. The simulation is done using

Matlab 7.6 (R2008a) for the case and ni = n, i = 1, 2, · · · , p and the values of d are selected from

Gibbons, Olkin and Sobel (1999), Table Q.2, page 503. We follow the simulation procedure used

by Vellaisamy and Al-Mosawi (2011). First the value of p and n are chosen and then a set of

{θ1, · · · , θp} of parameter values are chosen at random within the range (0, 1). In the second step,

an observation Xi is randomly chosen from the distribution bin(n, θi), 1 ≤ i ≤ p. In step 3, the

selection rule R, defined in (1.1), is used to select the subset. To estimate the average worth of the

parameters associated with the selected populations, we compute the bias and risk of the natural

ΦN and unbiased ΦU estimators and the risk-bias and risk of the natural ΦN2 and risk-unbiased

ΦRU estimators. The above procedure is repeated 1500 times and the averages of the risks are

calculated. The above procedure is repeated a number of times with different sets of parameters

in (0, 1) and then the averages are also calculated and presented in the Table 1.

We observe the following facts from the simulation results. The bias of the unbiased and risk-

unbiased estimators are clearly close to zero. The bias of the natural estimator is positive and

it increases with p,number of populations, increases and decreases with n increases for almost

all the cases. The risk of the natural estimator is apparently less than that of the unbiased and

risk-unbiased estimators, for all the cases.
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Table 1: The bias and risk of the natural, unbiased and risk-unbiased estimators

n p Bias(N) Bias(US) Risk −Bias(RS) Risk(N) Risk(US) Risk(RS)

5

2 0.0324 0.0005 -0.0007 0.0197 0.0258 0.0269

5 0.0338 0.0002 0 0.0084 0.0112 0.0097

10 0.0473 -0.0004 -0.0007 0.0066 0.0072 0.0057

20 0.0226 -0.0002 -0.0002 0.0022 0.0021 0.0018

10

2 0.0221 -0.0002 -0.0008 0.0116 0.0172 0.0189

5 0.0402 -0.0001 -0.0015 0.008 0.014 0.013

10 0.0535 0.0004 -0.0014 0.0063 0.0113 0.0088

20 0.0457 0.0001 0 0.0036 0.0045 0.0032

20

2 0.0205 0 -0.0009 0.0092 0.0139 0.015

5 0.0303 -0.0005 -0.0023 0.0059 0.0138 0.0147

10 0.0444 0.0007 -0.0009 0.0049 0.0127 0.0105

20 0.0443 0.0009 0.0005 0.0034 0.0064 0.0041
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