
A remark on the coupled fixed point theorems for mixed

monotone operators in partially ordered metric spaces

S.H. Rasouli a , M. Bahrampour b

a Department of Mathematics, Faculty of Basic Science,

Babol University of Technology, Babol, Iran

e-mail: s.h.rasouli@nit.ac.ir

bDepartment of Mathematics,

Islamic Azad University Ghaemshahr branch, Iran

e-mail: md.bahrampour@gmail.com

Abstract

We present a coupled fixed point theorems for mixed monotone operators in partially ordered

metric spaces.
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1 Introduction

Mixed monotone operators were introduced by D.Guo and V.Lakshmikantham in 1987[3].

Existence of fixed point in partially ordered set has been considered recently in [1-19]. The
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purpose of this paper is to present some coupled fixed point theorems for mixed monotone op-

erator in the context of ordered metric spaces involving following functions with the method

of [2].

Let δ denote the class of those functions β : [0,∞) → [0,∞)which satisfies the condition

β(tn) −→ 1 implies tn → 0 .

Now we briefly recall various basic definition and facts.

Let (X,≤) be a partially ordered set and F : X × X → X. we say that F has the mixed

monotone property if F (x, y) is monotone nondecreasing in x and is monotone nonincreasing

in y, that is , for any x, y ∈ X,

x1, x2 ∈ X, x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y)

and

y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y1) ≥ F (x, y2).

An element (x, y) ∈ X ×X is said to be a coupled fixed point of the mapping F if

F (x, y) = x and F (y, x) = y.

Theorem 1. ([1]) Let (X,≤) be a partially ordered set and suppose that there exists a

metric d in X such that (X, d) is a complete metric space.Let f : X → X be an increasing

mapping such that there exists an element x0 ∈ X with x0 ≤ f(x0). suppose that there

exists β ∈ δ such that

d(f(x), f(y)) ≤ β(d(x, y))d(x, y), for each x, y ∈ X, with x ≥ y.

Assume that either f is continuous or X is such that
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if an increasing sequence {xn} → x in X, then xn ≤ x,∀n.

Besides, if

for each x, y ∈ X there exists z ∈ M which is comparable to x and y.

Then f has a unique fixed point.

Bhaskar and Lakshmikantham [3] introduced the notions of mixed monotone mapping and

a coupled fixed point.

Theorem 2.([3]) Let (X,≤) be a partially ordered set and suppose that there exists a

metric d in X such that (X, d) is a complete metric space.Let F : X×X → X be a mapping

having the mixed monotone property on X and assume that there exists k ∈ [0, 1) with

d(F (x, y), F (u, v)) ≤ k

2
[d(x, u), d(y, v)], for any x ≥ u and y ≤ v.

If there exist x0, y0 ∈ X such that

x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0)

and suppose either F us continuous or X satisfies the following property:

if (xn) is a nondecreasing sequence with xn → x then xn ≤ x for each n ∈ N

and

if (yn) is a nonincreasing sequence with yn → y then y ≤ yn for each n ∈ N

then F has a coupled fixed point.
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2 Main result

let (X,≤) be a partially ordered set and d a metric on X such that (X, d) is a complete

metric space.Further, we consider in the product space X ×X the following partial order:

if (x, y), (u, v) ∈ X ×X, (x, y) ≤ (u, v) ⇐⇒ x ≤ u and y ≥ v.

Now we present the following theorem which is a version of Theorem2.1 of [1] in the context

of mapping with the mixed monotone property.

Theorem 3.Let (X,≤) be a partially ordered set and suppose that there exists a met-

ric d in X such that (X, d) is a complete metric space.Let F : X × X → X be a mapping

having the mixed monotone property on X and continuous such that

d(F (x, y), F (u, v)) ≤ β(max(d(x, u), d(y, v)))max(d(x, u), d(y, v)),

for all x, y, u, v ∈ X with x ≥ u and y ≤ v , where β ∈ δ.

If there exist x0, y0 ∈ X with

x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0)

then F has a coupled fixed point.

Proof.We construct sequences (xn) and (yn) putting

xn+1 = F (xn, yn) and yn+1 = F (yn, xn), for n ≥ 0.

In order to the proof is more comprehensive we will divide it in several steps.

Step 1 xn ≤ xn+1 and yn ≥ yn+1, for n ≥ 0.

In fact, we use the mathematical induction.
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As x0 ≤ F (x0, y0) = x1 and y0 ≥ F (y0, x0) = y1 our claim is satisfied for n = 0.

Suppose that our claim holds for some fixed n > 0.Then, since xn−1 ≤ xn and yn ≤ yn−1

and, as F has the mixed monotone property, we get

xn+1 = F (xn, yn) ≥ F (xn−1, yn) ≥ F (xn−1, yn−1) = xn

and

yn+1 = F (yn, xn) ≤ F (yn−1, xn) ≤ F (yn−1, xn−1) = yn

and this proves our claim.

Step 2 limn→∞ d(xn, xn+1) = limn→∞ d(yn, yn+1) = 0.

In facet, using the contractive condition and, since xn ≥ xn−1 and yn ≤ yn−1 (step1), we

obtain

d(xn+1, xn) = d(F (xn, yn), F (xn−1, yn−1))

≤ β(max(d(xn, xn−1), d(yn, yn−1)))max(d(xn, xn−1), d(yn, yn−1)) (1)

≤ max(d(xn, xn−1), d(yn, yn−1))

and consequently

d(xn+1, xn) ≤ max(d(xn, xn−1), d(yn, yn−1)) (2)

Similarly, since xn−1 ≤ xn and yn−1 ≥ yn , we get

d(yn+1, yn) = d(F (yn, xn), F (yn−1, xn−1))

≤ β(max(d(yn−1, yn), d(xn−1, xn)))max(d(yn−1, yn), d(xn−1, xn)) (3)

≤ max(d(xn, xn−1), d(yn, yn−1))
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and, consequently,

d(yn+1, yn) ≤ max(d(xn, xn−1), d(yn, yn−1)) (4)

By (2) and (4)

max(d(xn+1, xn), d(yn+1, yn)) ≤ max(d(xn, xn−1), d(yn, yn−1))

and, thus, the sequence (max(d(xn+1, xn), d(yn+1, yn))) is nonnegative decreasing.This im-

plies that there exists r ≥ 0 such that

lim
n→∞

max(d(xn+1, xn), d(yn+1, yn)) = r (5)

assume that r > 0 taking account this and (1) and (3) we get

max(d(xn+1, xn), d(yn+1, yn)) ≤ β(max(d(xn, xn−1), d(yn, yn−1)))max(d(xn, xn−1), d(yn, yn−1))

then we have

max(d(xn+1, xn), d(yn+1, yn))

max(d(xn, xn−1), d(yn, yn−1))
≤ β(max(d(xn, xn−1), d(yn, yn−1))).

Letting n → ∞ in the last inequality and taking into account (5), we get

lim
n→∞

β(max(d(xn, xn−1), d(yn, yn−1))) = 1,

and since β ∈ δ this implies r = 0. and, consequently,

lim
n→∞

(max(d(xn+1, xn), d(yn+1, yn))) = 0.
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This proves our claim.

Step 3 (xn) , (yn) are Cauchy sequence.

In fact, assume that at least one of the sequence (xn) or (yn) is not a Cauchy sequence. This

implies that limn,m→∞ d(xn, xm) ̸→ 0 or limn,m→∞ d(yn, ym) ̸→ 0, and, consequently,

lim
n,m→∞

(max(d(xn, xm), d(yn, ym))) ̸→ 0.

This means that there exist ϵ > 0 for which we can find subsequences (xm(k)) and (xn(k))

with n(k) > m(k) > k such that

lim
n,m→∞

(max(d(xm(k), xn(k)), d(ym(k), yn(k)))) ≥ ϵ (6)

Further, corresponding to m(k) we can choose n(k) in such way that it is the smallest integer

with n(k) > m(k) and satisfying (6).

Then

(max(d(xm(k), xn(k)−1), d(ym(k), yn(k)−1))) < ϵ (7)

Since xn(k)−1 ≥ xm(k)−1 and yn(k)−1 ≤ ym(k)−1 , using the contractive condition we can obtain

d(xn(k), xm(k)) = d(F ((xn(k)−1, yn(k)−1)), F ((xm(k)−1, ym(k)−1)))

≤ β(max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1))) (8)

× max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1))

and

d(yn(k), ym(k)) = d(F ((yn(k)−1, xn(k)−1)), F ((ym(k)−1, xm(k)−1)))

= d(F ((ym(k)−1, xm(k)−1))), F ((yn(k)−1, xn(k) − 1))

≤ β(max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1))) (9)

× max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1)).
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By (8) and (9) we get

max(d(xn(k), xm(k)), d(yn(k), ym(k))) (10)

≤ β(max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1)))max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1)).

On the other hand, the triangle inequality and (7) gives us

d(xn(k), xm(k)) ≤ d(xn(k), xn(k)−1) + d(xm(k)−1, xm(k)) < d(xn(k), xn(k)−1) + ϵ (11)

and

d(yn(k), ym(k)) ≤ d(yn(k), yn(k)−1) + d(ym(k)−1, ym(k)) < d(yn(k), yn(k)−1) + ϵ (12)

From (6),(11) and (12) we get

ϵ ≤ max(d(xn(k), xm(k)), d(yn(k), ym(k))) ≤ max(d(xn(k), xn(k)−1), d(yn(k), yn(k)−1)) + ϵ

Letting k → ∞ in the last inequality and taking into account the step 2 we have

lim
k→∞

max(d(xn(k), xm(k)), d(yn(k), ym(k))) = ϵ (13)

Again, the triangle inequality and (7) gives us

d(xn(k)−1, xm(k)−1) ≤ d(xn(k)−1, xm(k)) + d(xm(k), xm(k)−1) < ϵ+ d(xm(k), xm(k)−1) (14)

and

d(yn(k)−1, ym(k)−1) ≤ d(yn(k)−1, ym(k)) + d(ym(k), ym(k)−1) < ϵ+ d(ym(k), ym(k)−1) (15)
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By (14) and (15) we obtain

max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1))

≤ max(d(xm(k), xm(k)−1), d(ym(k), ym(k)−1)) + ϵ (16)

Using the triangle inequality we have

d(xn(k), xm(k)) ≤ d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k)−1) + d(xm(k)−1, xm(k))

and

d(yn(k), ym(k)) ≤ d(yn(k), yn(k)−1) + d(yn(k)−1, ym(k)−1) + d(ym(k)−1, ym(k))

and by the last inequality and (6) we get

ϵ ≤ max(d(xn(k), xm(k)), d(yn(k), ym(k)))

≤ max(d(xn(k), xn(k)−1), d(yn(k), yn(k)−1))

+ max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1)) (17)

+ max(d(xm(k)−1, xm(k)), d(ym(k)−1, ym(k)))

By (16) and (17) we have

ϵ−max(d(xn(k), xn(k)−1), d(yn(k), yn(k)−1))−max(d(xm(k)−1, xm(k)), d(ym(k)−1, ym(k)))

≤ max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1)) < max(d(xm(k), xm(k)−1), d(ym(k), ym(k)−1)) + ϵ

Letting k → ∞ in the last inequality and using step 2 we obtain

lim
k→∞

max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1)) = ϵ (18)
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Finally, letting k → ∞ in (10) and using (13),(18) we get

ϵ ≤ β(max(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1)))ϵ or ε ≤ β(ϵ)ϵ.

we obtain limn,m→∞ β(max(d(xn, xm), d(yn, ym))) = 1 .

But since β ∈ δ , we get limn,m→∞ max(d(xn, xm), d(yn, ym)) = 0.This is a contradiction.

This proves our claim.

Since (X, d) is a complete metric there exist x, y ∈ X such that

lim
n→∞

xn = x and lim
n→∞

yn = y (19)

Now we prove that (x, y) is a couple fixed point of F .

In fact, as xn+1 = F (xn, yn) and yn+1 = F (yn, xn) and using continuity of F and (19) we have

x = lim
n→∞

F (xn, yn) = F ( lim
n→∞

xn, lim
n→∞

yn) = F (x, y)

y = lim
n→∞

F (yn, xn) = F ( lim
n→∞

yn, lim
n→∞

xn) = F (y, x)

and this proves that (x,y) is a coupled fixed point of F . �

In what follows, we prove that Theorem 3 is still valid for F not necessarily contin-

uous, assuming the following hypothesis hold,

if (xn) is a nondecreasing sequence with xn → x then xn ≤ x, for all n ∈ N.

if (yn) is a nonincreasing sequence with yn → y then yn ≥ y, for all n ∈ N.
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Theorem 4. If in Theorem 3 we substitute the continuity of F by the condition above

mentioned we also obtain the existence of a coupled fixed point of F .

Proof.Following the proof of Theorem 3 we only have to check that (x, y) is a coupled

fixed point of F .

In fact, since (xn) is nondecreasing sequence and xn → x and (yn) is nonincreasing and

yn → y, by our assumption,xn ≤ x and yn ≥ y for every n ∈ N .

Applying the contractive condition we have

d(F (x, y), F (xn, yn)) ≤ β(max(d(x, xn), d(y, yn)))max(d(x, xn), d(y, yn))

≤ max(d(x, xn), d(y, yn)). (20)

On the other hand by triangular inequality and (20) we get

d(x, F (x, y)) ≤ d(x, xn+1) + d(xn+1, F (x, y)

= d(x, xn+1) + d(F (x, y), F (xn, yn))

≤ d(x, xn+1) +max(d(x, xn), d(y, yn)).

As xn → x and yn → y and taking n → ∞ in the last inequality, we have

d(x, F (x, y)) = 0,

and, consequently, F (x, y) = x .

Using a similar argument it can be proved that y = F (y, x) and this finishes the proof.

�

In what follows, we give a sufficient condition for the uniqueness of coupled fixed point

in Theorem 3 and Theorem 4. This condition is

for (x, y), (u, v) ∈ X ×X there exists (z, t) ∈ X ×X

which is comparable to (x, y) and (u, v). (*)

Notice that in X ×X we consider the partial order relation given by

(x, y) ≤ (u, v) ⇔ x ≤ u and y ≥ v.
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Theorem 5. Adding condition (*) to the hypotheses of Theorem 3 (resp.Theorem 4) we obtain

uniqueness of the coupled fixed point of F .

Proof.Suppose that (x, y) and (z, t) are coupled fixed point of F , that is x = F (x, y),

y = F (y, x), z = F (z, t) and t = F (t, z).

Let (u, v) be an element of X × X and comparable to (x, y) and (z, t). Suppose that

(x, y) ≥ (u, v) (the proof is similar in other cases).

We construct the sequences (un) and (vn) defined by

u0 = u, v0 = v, un+1 = F (un, vn), vn+1 = F (vn, un).

We claim that (x, y) ≥ (un, vn) for each n ∈ N .

In fact, we will use the mathematical induction.

For n = 0, as (x, y) ≥ (un, vn), this means u0 = u ≤ x and y ≥ v = v0 and, consequently,

(u0, v0) ≤ (x, y).

Suppose that (x, y) ≥ (un, vn), then using mixed monotone property of F , we get

un+1 = F (un, vn) ≤ F (x, vn) ≤ F (x, y) = x

vn+1 = F (vn, un) ≥ F (y, un) ≥ F (y, x) = y

and this proves our claim.

Now, since un ≤ x and vn ≥ y, using the contractive condition we have

d(x, un) = d(f(x, y), F (un−1, vn−1))

≤ β(max(d(x, un−1), d(y, vn−1)))max(d(x, un−1), d(y, vn−1)) (21)

≤ max(d(x, un−1), d(y, vn−1)),

and, analogously

d(y, vn) = d(F (y, x), F (vn−1, un−1))

= d(F (vn−1, un−1), F (y, x))

≤ β(max(d(x, un−1), d(y, vn−1))).max(d(x, un−1), d(y, vn−1)) (22)

≤ max(d(x, un−1), d(y, vn−1)).

From (22) and (23), we obtain

max(d(x, un), d(y, vn)) ≤ β(max(d(x, un−1), d(y, vn−1)))max(d(x, un−1), d(y, vn−1))

≤ max(d(x, un−1), d(y, vn−1)). (23)
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This last inequality implies that

max(d(x, un), d(y, vn)) ≤ max(d(x, un−1), d(y, vn−1)),

and, consequently, the sequence (max(d(x, un), d(y, vn))) is decreasing and nonnegative , and

so,

lim
n→∞

(max(d(x, un), d(y, vn))) = r, (24)

for certain r ≥ 0.

Now we show that r = 0, on the contrary assume r > 0.

Using (24) and letting n → ∞ in (23) we have

r ≤ β(r)r,

and consequently limn→∞ β(r) = 1, since β ∈ δ, then limn→∞ max(d(x, un), d(y, vn)) = 0.

This contradiction, proves r = 0, this gives us un → x and vn → y.

using a similar argument for (z, t) we can obtain

un → z and vn → t

and the uniqueness of limit gives x = z and y = t.

This finishes the proof. �

Theorem 6. Under assumption of Theorems 3 (or Theorem 4), suppose that x0 and y0

are comparable then the coupled fixed point (x, y) ∈ X ×X satisfies x = y.

Proof. Assume x0 ≤ y0 (similar argument for y0 ≤ x0).

We claim that xn ≤ yn for all n ∈ N , where xn+1 = F (xn, yn) and yn+1 = F (yn, xn).

Obviously,the inequality is satisfied for n = 0.

Suppose xn ≤ yn.

Using the mixed monotone property of F , we have

xn+1 = F (xn, yn) ≤ F (yn, yn) ≤ F (yn, xn) = yn+1

and this proves our claim.

Now, using the contractive condition, as xn ≤ yn, we get

d(xn+1, yn+1) = d(yn+1, xn+1) = d(F (yn, xn), F (xn, yn))

≤ β(d(xn, yn))max(xn, yn) ≤ max(xn, yn) (25)
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then, we have

d(xn+1, yn+1) ≤ d(xn, yn).

Thus, limn→∞ d(xn, yn) = r, for certain r ≥ 0.

Taking n → ∞ in (25), we have

r ≤ β(r).r or β(r) = 1,

since β ∈ δ then limn→∞ d(xn, yn) = 0, this gives us r = 0.

As xn → x and yn → y and limn→∞ d(xn, yn) = 0, we have 0 = limn→∞ d(xn, yn) =

d(limn→∞xn, limn→∞yn) = d(x, y) and thus x = y.

This finishes the proof. �
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