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Abstract

We present a coupled fixed point theorems for mixed monotone operators in partially ordered
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1 Introduction

Mixed monotone operators were introduced by D.Guo and V.Lakshmikantham in 1987[3].
Existence of fixed point in partially ordered set has been considered recently in [1-19]. The
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purpose of this paper is to present some coupled fixed point theorems for mixed monotone op-

erator in the context of ordered metric spaces involving following functions with the method
of [2].

Let ¢ denote the class of those functions g : [0,00) — [0, c0)which satisfies the condition
p(t,) — 1 implies ¢t,, — 0 .

Now we briefly recall various basic definition and facts.

Let (X, <) be a partially ordered set and F' : X x X — X. we say that F has the mixed
monotone property if F'(x,y) is monotone nondecreasing in x and is monotone nonincreasing

in y, that is , for any x,y € X,

1,29 € X, 71 <129 = F(x1,y) < F(29,y)

and

Y1, Y2 S XJ A S Y2 = F(x7y1> Z F('IJyQ)

An element (z,y) € X x X is said to be a coupled fixed point of the mapping F' if

Fz,y) == and F(y,z)=y.

Theorem 1. ([1]) Let (X, <) be a partially ordered set and suppose that there exists a
metric d in X such that (X, d) is a complete metric space.Let f : X — X be an increasing
mapping such that there exists an element xq € X with zy < f(x¢). suppose that there
exists 0 € ¢ such that

d(f(z), f(y)) < B(d(z,y))d(z,y), for each z,y € X, with = > y.

Assume that either f is continuous or X is such that
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if an increasing sequence {z,} — xin X, then =z, < x,Vn.

Besides, if

for each x,y € X there exists z € M which is comparable to x and y.

Then f has a unique fixed point.
Bhaskar and Lakshmikantham [3] introduced the notions of mixed monotone mapping and

a coupled fixed point.

Theorem 2.([3]) Let (X, <) be a partially ordered set and suppose that there exists a
metric d in X such that (X, d) is a complete metric space.Let F': X x X — X be a mapping

having the mixed monotone property on X and assume that there exists k € [0, 1) with

d(F(z,y), F(u,v)) < =[d(z,u),d(y,v)], for any > vand y < v.

Do |

If there exist xg,yo € X such that

zo < F(x0,90) and  yo > F(yo, 20)

and suppose either F' us continuous or X satisfies the following property:

if (x,,) is a nondecreasing sequence with x,, — zthen z,, <z for each n € N

and

if (y,) is a nonincreasing sequence with y, — ythen y <y, for each n € N

then F' has a coupled fixed point.
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2 Main result

let (X, <) be a partially ordered set and d a metric on X such that (X,d) is a complete

metric space.Further, we consider in the product space X x X the following partial order:

if (x,y), (u,v) € X x X, (z,y) < (u,v) <= x<u and y>wv.

Now we present the following theorem which is a version of Theorem2.1 of [1] in the context

of mapping with the mixed monotone property.
Theorem 3.Let (X, <) be a partially ordered set and suppose that there exists a met-

ric d in X such that (X, d) is a complete metric space.Let F' : X x X — X be a mapping

having the mixed monotone property on X and continuous such that

d(F(z,y), F(u,v)) < B(max(d(z, u), d(y, v)))maz(d(z,u), d(y, v)),

for all z,y,u,v € X with > u and y < v , where g € 0.
If there exist g,y € X with

19 < F(xo,50) and  yo > F(yo, 7o)

then F' has a coupled fixed point.

Proof.We construct sequences (x,,) and (y,) putting

Tpr1 = F(xn,yn) and  ypy1 = F(yn,x,), for n > 0.

In order to the proof is more comprehensive we will divide it in several steps.

Step 1 x, < xp11 and y, > yYuy1, for n > 0.

In fact, we use the mathematical induction.
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As xy < F(xo,y0) = o1 and yo > F(yo, xo) = y1 our claim is satisfied for n = 0.

Suppose that our claim holds for some fixed n > 0.Then, since x,_1 < z, and y, < Y,_1

and, as F' has the mixed monotone property, we get

Tnt1 = F(xnayn) > F(xnflayn) > F(xnflyyn71> = Tp

and

Yn+1 = F(ynaxn) < F(ynflwxn) < F(ynflyxn71> = Yn

and this proves our claim.

Step 2 hmn—>oo d(l‘n, xn—l—l) = hmn—)oo d(yna yn+1) = 0.

In facet, using the contractive condition and, since x,, > x,_; and y, < y,_1 (stepl), we

obtain

d(anrl?xn) = d(F(‘/Kmyn)?F(xnflaynfl))
S ﬁ(maz(d(ajn, xn—l)v d(yna yn—l)))max@l(lﬁm xn—1)7 d(ynv yn—l))
mam(d(xn, CCn—l)v d(yn7 yn—l))

IN

and consequently
d($n+1, xn) S max(d(xn, xn—l)y d<yn7 yn—l))
Similarly, since x,,_1 < x,, and y,_1 > y, , we get

= d(F(Yn,T0n), F(Yn-1,Tn_1))
< Blmaz(d(yn -1, yn), d@n 1, 20)))maz(d(yn 1, yn), (@01, 70))
max(d(z,, Tp-1), d(Yn, Yn-1))

d(yTH-h yn)

IN
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and, consequently,

A(Ynt1, Yn) < max(d(zn, Tn-1), d(Yn, Yn—1)) (4)

By (2) and (4)

max(d(Tn11, Tn), d(Ynt1, Yn)) < max(d(Tn, Tn-1), d(Yn, Yn-1))

and, thus, the sequence (max(d(zpi1,%n), d(Ynt1,Yn))) is nonnegative decreasing.This im-
plies that there exists » > 0 such that

lim max(d<xn+17 xn), d(yn+17 yn>) =T (5)

n—oo

assume that r > 0 taking account this and (1) and (3) we get

maw(d(xwrla :Cn), d(yn+17 yn)) < B(max(d(xnv xnfl)a d(ym ynfl)))max(d@'m xnfl)v d(yna ynfl))

then we have

max(d(zni1,Tn), d(Yni1, Yn))
max(d(xn, Tn-1), d(Yn, Yn-1))

< B(maz(d(xn, vp-1), d(Yn, Yn-1)))-

Letting n — oo in the last inequality and taking into account (5), we get

lim B(maz(d(x,, n—1),d(Yn, Yn-1))) = 1,

n—oo

and since # € J this implies » = 0. and, consequently,

lim (maz(d(zni1, Tn), d(Ynt1,Yn))) = 0.

n—oo
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This proves our claim.

Step 3 (z,,) , (yn) are Cauchy sequence.
In fact, assume that at least one of the sequence (z,,) or (y,) is not a Cauchy sequence. This

implies that liny, ;00 d(Zp, ) 7 0 or imy, 100 (Y, Ym) 7 0, and, consequently,

lim (max(d(zn, Tm), d(Yn, Ym))) 7 0.

7,M—00

This means that there exist e > 0 for which we can find subsequences () and (Znu))
with n(k) > m(k) > k such that

lim  (max(d(Tmry, Tak)), AYmky> Ynk)))) = € (6)

n,m—00
Further, corresponding to m(k) we can choose n(k) in such way that it is the smallest integer

with n(k) > m(k) and satistying (6).
Then

(max(d(Tmky, Tuky-1), AYmk)> Yn(k)-1))) < € (7)

Since Tp(k)—1 = Tmk)—1 and Ypk)—1 < Ym(k)—1 , using the contractive condition we can obtain

d(l‘n(k), xm(k)) = d(F((ZL’n(k) 1, yn(k )), F((xm(k; ) ym(k) 1)))
Bmaz(d(zn)—1, Tmk)-1), A Yn(k)—1, Ymk)-1))) (8)
max(d(xn(k) 15 Tm(k)— 1) d( —15 Ym(k)— 1))

IN

X

and

AWYnkys Ymr)) = AE(Yn)—1 Tary-1))s F(Ump) -1, Ty -1)))

A(F ((Ym)—15 Tm()=1)))s F((Yn)-1, Tuy — 1))
Bmaz(d(Tnm)—1, Tmk)-1), AYn(k)—15 Ymk)-1))) (9)
max(d(Tnk)—15 Tmk)-1) > AYnk)—15 Ym(k)—1))-

IA

X
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By (8) and (9) we get

maz(d(Tngwy, Tmk))s AYn(k)> Ym(r))) (10)
< B(max(dcvn(k)fla xm(k)71)7 d(yn(k)q, ym(k)fl)))max(d(xn(k)fb ﬂfm(k)fl), d(yn(k)q, ym(k)fl))'

On the other hand, the triangle inequality and (7) gives us

A(Zn@k)s Tmk)) < A(@Tngr)s Tu)—1) T A Zomk)—1, Tm(e)) < ATpk), Tnry—1) + € (11)

and

A(WYn(ry> Ym(k)) < A Ynk)s Ynk)-1) + A Ymx) =1, Ym(r)) < AYn(k)s Ynk)—1) + € (12)

From (6),(11) and (12) we get

€ < max(d(@nky, Tmk)), AYnk), Ymk))) < Max(d( k), Tngk)—1) A Yn(k)s Ynk)—1)) + €

Letting £k — oo in the last inequality and taking into account the step 2 we have

I}gglo max(d(Tnk): Tmk))s A Yn()s Ymk))) = € (13)
Again, the triangle inequality and (7) gives us
A(Zn(k)—1, Tme)—1) < A Tre)—15 Tmk)) + A Ty Tmk)—1) < € + ATy, Tmay—1)  (14)

and

AYnk) 15 Ymk)-1) < dYnk)—1, Ymk)) + AYmr), Ympy—1) < € + AYmkys Ymr)-1) (15)
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By (14) and (15) we obtain

maz(d(Tnm)—15 Tmmk)-1)s AYn(k) -1, Ym(k)-1))
< max(d( ks Tmk)—1)s A Ym(k), Ymk)—1)) + €

Using the triangle inequality we have

A(Tn(ry, Tmry) < A Tngry, Tagry—1) + A Tn)—15 Tmr)—1) + ATm) 15 Tm(k))

and

A(Yn(ky, Ymk)) < AYnk)s Ynk)—1) + AYnky—15 Ymk)—1) + AYmk)—1, Ymi(k))

and by the last inequality and (6) we get

[}
IN

2(d(Tn(k), Tk ) d(yn(k) ym(k)))

VAN

(d(

maz(d(Tnky, Tnk)—1)s AYn(k)s Yn(k)-1))

maz(d(Znk)y—15 Tmk)—1)s A Yn(k)—15 Ym(k)—1))
(AT (k)—1: Tm(k))s AYm()—1, Ym(k) )

+ 4

By (16) and (17) we have

(16)

(17)

€— mal‘(d(ﬁn(k), In(k)—1)7 d(yn(k)a yn(k)—l)) - mal‘(d(l‘m(k)—u xm(k))a d(ym(k)—la ym(k)))
< max(d(Tnk) -1, Tmk)-1), AYnk) -1, Ymky—1)) < Maz(d(Tm k), Tmk)-1), AYm(ky, Ym(r)—1)) + €

Letting k — oo in the last inequality and using step 2 we obtain

lim max<d(xn(k)—1a Im(k)—1)7 d<yn(k)—1a ym(k)—l)) =€

k—o0
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Finally, letting & — oo in (10) and using (13),(18) we get

€ < B(max(d(Tpn)y—1, Tmk)-1), AYnk)—15 Ymk)-1)) )€ or € < Ble)e.

we obtain lim,, ;o S(max(d(zy, ), d(Yn, ym))) =1 .
But since € ¢ , we get limy, ;00 maz(d(xp, T ), d(Yn, Ym)) = 0.This is a contradiction.

This proves our claim.

Since (X, d) is a complete metric there exist x,y € X such that

lim z, =z and lim y, =y (19)
n—oo n—oo

Now we prove that (z,y) is a couple fixed point of F.

In fact, as 41 = F (2, yn) and yp41 = F(yn, ¥,) and using continuity of /" and (19) we have

r = lim F(z,,y,) = F(lim z,, lim y,) = F(z,y)

n—00 n—00 n—»00

and this proves that (x,y) is a coupled fixed point of F. O

In what follows, we prove that Theorem 3 is still valid for F' not necessarily contin-

uous, assuming the following hypothesis hold,

if (x,)is a nondecreasing sequence with z,, — = then z, <z, for all n € N.

if (y,)is a nonincreasing sequence with y, — y then y, >y, for all n € N.
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Theorem 4. If in Theorem 3 we substitute the continuity of F' by the condition above

mentioned we also obtain the existence of a coupled fixed point of F.

Proof.Following the proof of Theorem 3 we only have to check that (x,y) is a coupled
fixed point of F.

In fact, since (z,) is nondecreasing sequence and z, — x and (y,) is nonincreasing and
Yn — y, by our assumption,z, < x and y, > y for every n € N.

Applying the contractive condition we have

d(F(z,y), F(xn,yn)) < Blmaz(d(z, zn), d(y, yn)))maz(d(z, ), d(y, yn))
< maz(d(z,z,), Ay, ya)). (20)

On the other hand by triangular inequality and (20) we get

d(l‘,F(l’,y)) < d(l’,l’n+1) +d<l’n+1,F(ZE,y)

- d($7l‘n+1> +d(F($,y),F(ZL’n,yn))

< d(z,zp41) + max(d(z, x,), d(y, yn)).
As z,, — x and y, — y and taking n — oo in the last inequality, we have

d(z, F(z,y)) = 0,

and, consequently, F(z,y) = x .
Using a similar argument it can be proved that y = F(y,x) and this finishes the proof.
O

In what follows, we give a sufficient condition for the uniqueness of coupled fixed point

in Theorem 3 and Theorem 4. This condition is
for (z,y), (u,v) € X x X there exists (z,t) € X x X
which is comparable to (x,y) and (u,v). (*)

Notice that in X x X we consider the partial order relation given by
(z,y) < (u,v) &z <u and y>w.
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Theorem 5. Adding condition (*) to the hypotheses of Theorem 3 (resp.Theorem 4) we obtain

uniqueness of the coupled fixed point of F'.

Proof.Suppose that (z,y) and (z,t) are coupled fixed point of F, that is x = F(x,y),
y=F(y,x), z= F(z,t) and t = F(t, z).

Let (u,v) be an element of X x X and comparable to (x,y) and (z,t). Suppose that
(x,y) > (u,v) (the proof is similar in other cases).

We construct the sequences (u,,) and (v,) defined by
Uy = U, Vg =V, Upt1 = F(Un, Vp), Uny1 = F(Vn, up).

We claim that (x,y) > (uy,v,) for each n € N.
In fact, we will use the mathematical induction.

For n =0, as (x,y) > (uy,,v,), this means up = v < x and y > v = vy and, consequently,

(Uo, UO) S (‘Ta y)
Suppose that (x,y) > (u,,v,), then using mixed monotone property of F, we get

Upt1 = F(umvn) < F(:L‘,Un) < F(xvy) =T

Upt1 = F(vp,u,) > F(y,u,) > Fy,z) =y

and this proves our claim.
Now, since u,, < x and v,, > y, using the contractive condition we have

d(xaun) = d(f('%vy)vp(un*lﬂvn*l))
B(maa(d(z, ), d(y, v)ymaz(d(e, un 1),y va 1)) (21)
max(d(x,u,—1),d(y, vn_1)),

VARRVAN

and, analogously

dy,va) = d(F(y, ), F(vn-1,tn-1))

= d(F(vp-1,un1), F(y,2))
B(maz(d(z, u,—1), d(y,v,—1))).max(d(x, u,_1), d(y, va—_1)) (22)
max(d(z, u,—1), d(y, vn_1)).

VARV

From (22) and (23), we obtain
max(d(z,uy,), d(y,v,)) < B(maz(d(x,u,—1),d(y, vn_1)))maz(d(z, u,_1), d(y, v,_1))
< max(d(z, u,—1),d(y, vn-1))- (23)
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This last inequality implies that
max(d(x,uy,), d(y,v,)) < maz(d(z, up,_1), d(y, v,_1)),

and, consequently, the sequence (maz(d(z,u,),d(y,v,))) is decreasing and nonnegative , and
S0,

lim (maz(d(x,u,),d(y,v,))) =, (24)

n—oo

for certain r» > 0.
Now we show that » = 0, on the contrary assume r > 0.
Using (24) and letting n — oo in (23) we have

r < B(r)r,

and consequently lim, ., 5(r) = 1, since 8 € 9§, then lim,,_,o max(d(z,u,),d(y, v,)) = 0.
This contradiction, proves r = 0, this gives us u,, — x and v, — .

using a similar argument for (z,¢) we can obtain
U, — 2 and v, —t
and the uniqueness of limit gives x = z and y = ¢.

This finishes the proof. O

Theorem 6. Under assumption of Theorems 3 (or Theorem 4), suppose that zy and yo

are comparable then the coupled fixed point (z,y) € X x X satisfies x = y.

Proof. Assume zy < yp (similar argument for yo < xg).

We claim that z,, <y, for all n € N, where z,11 = F(z,,y,) and yp11 = F(Yn, Tn).
Obviously,the inequality is satisfied for n = 0.

Suppose T, < y,.

Using the mixed monotone property of F', we have

Tny1 = F(xnayn) < F(ynayn) < F(ynvxn) = Yn+1

and this proves our claim.

Now, using the contractive condition, as x, < y,, we get

d<xn+layn+1) = d(yn+1axn+1) = d<F(ymxn)a F(Invyn))
< Bd(@n, yn))max (T, yn) < maz(x,, yn) (25)
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then, we have

d<xn+la yn+1) < d(xnu yn)'

Thus, lim,, e d(zn, yn) = 7, for certain r > 0.

Taking n — oo in (25), we have

r<B(r)r or p(r)=1,

since 8 € ¢ then lim,, o d(x,,y,) = 0, this gives us r = 0.

As z, — x and y, — vy and lim, o d(z,,y,) = 0, we have 0 = lim,, o d(Ty,y,) =

A(limp 00T, liMp—00yn) = d(z,y) and thus x = y.

This finishes the proof. O
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